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SKEW CELLULARITY OF THE HECKE ALGEBRAS OF TYPE G(¢,p,n)

JUN HU, ANDREW MATHAS, AND SALIM ROSTAM

ABSTRACT. This paper introduces (graded) skew cellular algebras, which generalise Graham and Lehrer’s
cellular algebras. We show that all of the main results from the theory of cellular algebras extend to skew
cellular algebras and we develop a “cellular algebra Clifford theory” for the skew cellular algebras that arise
as fixed point subalgebras of cellular algebras.

As an application of this general theory, the main result of this paper proves that the Hecke algebras of
type G(¢, p,n) are graded skew cellular algebras. In the special case when p = 2 this implies that the Hecke
algebras of type G(¢,2,n) are graded cellular algebras. The proof of all of these results rely, in a crucial way,
on the diagrammatic Cherednik algebras of Webster and Bowman. Our main theorem extends Geck’s result
that the one parameter Iwahori-Hecke algebras are cellular algebras in two ways. First, our result applies to
all cyclotomic Hecke algebras in the infinite series in the Shephard-Todd classification of complex reflection
groups. Secondly, we lift cellularity to the graded setting.

As applications of our main theorem, we show that the graded decomposition matrices of the Hecke
algebras of type G(¢, p,n) are unitriangular, we construct and classify their graded simple modules and we
prove the existence of “adjustment matrices” in positive characteristic.

1. INTRODUCTION

The Hecke algebras of complex reflection groups were introduced by Ariki and Koike [1,2] and Broué and
Malle [6], as generalisations of the Iwahori-Hecke algebras of Coxeter groups. Cyclotomic Hecke algebras have
been studied extensively both because of their rich representation thery and because of their connections to
reductive groups [5]. Interest in these algebras intensified with the introduction of the quiver Hecke algebras,
or KLR algebras, which categorify the integrable highest weight representations of Kac-Moody algebras [22,
31]. In particular, Brundan—Kleshchev [7] and Rouquier [31] proved that the Ariki-Koike algebras, which
are the Hecke algebras associated to the complex reflection groups G(¢, 1, n) in the classification of Shephard
and Todd [2,6], are isomorphic to the quiver Hecke algebras Z2 of type A.

The theory of cellular algebras, which was introduced by Graham and Lehrer [15], gives a framework for
constructing all the irreducible modules of an algebra. In particular, Graham and Lehrer proved that the
Ariki-Koike algebras are cellular. Later, Hu and Mathas [18], the first two named authors of this paper,
extended this result to show that these algebras are graded cellular algebras.

Rostam [29], the third named author of this paper, introduced the quiver Hecke algebras %{}m of type
G(£,p,n) as fixed point subalgebras of Z2. Extending Brundan and Kleshchev’s graded isomorphism theo-
rem, Rostam proved that %ﬁn is isomorphic to a cyclotomic Hecke algebra of type G(¢, p,n). Under some
strong assumptions on the parameters, Rostam used [18] to prove that %{}m is a cellular algebra. For ex-
ample, he showed that %{}m is a graded cellular algebra if p and n are coprime. In general, he proved that
a natural basis of %’1’}7", arising from a particular cellular basis of the Ariki-Koike algebra cannot be an
“adapted” cellular basis; see [30, §5.2].

We can now state the main result of this paper, which shows that the Hecke algebras of type G(¢,p,n)

are graded skew cellular algebras, with the important case p = 2.

Main Theorem. Let %’1’}7" be the KLR algebra of type G(¢,p,n). Then %ﬁn is a graded skew cellular

algebra. Moreover, if p =2 then ‘%zj},n is a graded cellular algebra.

This result recovers and generalises known results from the (ungraded) representation theory of the Hecke
algebra of G(¢, p,n) to the graded setting. In particular, this proves that the graded decomposition matrices
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are unitriangular, extending [14], and using [3, §10] and [21] we obtain a new construction and classification
of the graded simple modules, extending [14,16].

As important special cases, our Main Theorem shows that the Iwahori-Hecke algebras of types A,_1,
B,, = Cy, D,, and Iy(n) are graded skew cellular algebras. These are the complex reflection groups of types
G(1,1,n),G(2,1,n),G(2,2,n) and G(n,n,2), respectively, in the Shephard-Todd classification. This result
extends Geck’s theorem [11], which shows that the Iwahori-Hecke algebras of finite Coxeter groups are cellular
algebras. In particular, our main theorem gives a new graded cellular algebra structure on the Iwahori-Hecke
algebras of type D,,, which are the Hecke algebras of type G(2,2,n). More generally, we show that the Hecke
algebras of type G(2d,2,n) are graded cellular algebras, for d,n > 1. When d > 1, this result is completely
new, even in the ungraded setting. If d = 1 and n > 2 then we generalise Geck’s result to the graded
setting. Geck’s proof relies on Kazhdan—Lusztig theory, which does not exist for complex reflection groups.
The proof of our main theorem relies in a crucial way on the diagram calculus introduced by Webster [32]
and Bowman [3]. In related work, LePage and Webster [24, §4] generalise Webster’s diagrammatic algebras
to give diagrammatic Cherednik algebras of type G(¢,p,n) but they do not consider questions relating to
cellularity. Finally, note that since the first version of this paper appeared online, Lehrer and Lyu [23] used
our theory of skew cellular algebra to prove that the generalised Temperley—Lieb algebra of type G(r,p,n)
is graded cellular.

To prove our main theorem, Definition 2.2 introduces (graded) skew cellular algebras, which can be viewed
as an analogue of Clifford theory for cellular algebras. More precisely, skew cellular algebras generalise the
cellular algebra framework to certain fixed-point subalgebras of cellular algebras. We show that the main
structural results of cellular algebras hold for skew cellular algebras. In particular, we show that:

e cach (graded) skew cellular algebra has a family of (graded) skew cell modules

e the (graded) simple modules of a (graded) skew cellular algebra arise in a unique way as quotients
of the (graded) skew cell modules

e the (graded) decomposition matrices of skew cellular algebras are unitriangular.

In contrast to cellular algebras, the simple modules of a skew cellular algebra are not necessarily self-dual;
see Proposition 2.19 for a precise statement.

The outline of this paper is as follows. Chapter 2 introduces and then develops the representation theory
of skew cellular algebras, together with the closely related notion of a shift automorphism of a cellular algebra.
Section 2.4 develops Clifford theory in this setting. Chapter 3 recalls and extends the definitions and known
results about the cyclotomic KLR algebras of type G(¢,p,n) and about the Webster-Bowman diagram
calculus for the diagrammatic Cherednik algebras. Chapter 4 is the technical heart of the paper where we
use the diagrammatic Cherednik algebras to define an explicit diagrammatic basis of Z2 (Definition 4.36),
which has the properties that we need to prove that %’Qn is a skew cellular algebra. Chapter 5 uses the
diagram basis of 2 constructed in Chapter 4 to show that Z has a shift automorphism. Using the results
from Chapter 2, this implies that %’;})n is a skew cellular algebra, establishing our Main Theorem. Finally, as
two applications of our main results, Section 5.3 gives an “adjustment matrix” result for the Hecke algebras
of type G(¢,p,n) and Section 5.4 gives the classification of the graded simple %ﬁn—modules.

An index of notation can be found at the end of the paper.

Acknowledgements. Jun Hu was supported by the National Natural Science Foundation of China (No.
12171029). Andrew Mathas was supported, in part, by the Australian Research Council. The authors are
thankful to Chris Bowman for many discussions and to Loic Poulain d’Andecy for suggesting the term
“skew cellular”. We thank the referee for their comments and suggestions, which significantly improved our
exposition.

2. SKEW CELLULAR ALGEBRAS

This chapter defines and then develops the representation theory of graded skew cellular algebras. The
first section sets our notation for graded algebras. The second section, which is the heart of the chapter,
defines skew cellular algebras and shows how to extend the general theory of graded cellular algebras [15,18]
to the skew setting. In the third section we study graded cellular algebras with shift automorphism that,
like Clifford theory, provides a general tool for showing that fixed-point subalgebras of cellular algebras are
skew cellular algebras. In the fourth section we study Clifford theory for the skew cellular algebras arising
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from a graded cellular algebra A with a shift automorphism o, especially when o4 is e-splittable (in the
sense of Definition 2.39).

2.1. Graded algebras. Throughout this paper we fix a commutative integral domain R with one. In this
paper a graded R-module is a Z-graded R-module M = & ., My. If m € M, then m is homogeneous
of degree d, for d € Z. If M is a graded R-module and s € Z let M(s) be the graded R-module that is equal
to M as an (ungraded) R-module but where the grading is shifted so that the homogeneous component of
M (s) of degree d is M (s)q = My_s, for d € Z.

A graded algebra will always mean a Z-graded algebra, which is a graded R-module such that A.A44 C
Acyg, for ¢,d € Z. A (graded) A-module is a graded R-module M = @, , My together with an A-action
A x M — M such that A.My C M.y, for ¢,d € Z.

The category of graded A-modules has objects the graded A-modules and morphisms the homogeneous
A-module maps of degree 0. The graded dimension of a graded module M = @ ., Mg is the Laurent
polynomial

dim; M = "(dim My) t* € Z[t,t7").
deZ
If the algebra A comes equipped with an anti-involution then the dual of a graded A-module M is the
graded A-module
M* = Homa(M, R) = @) Homa (My, R),
dez

where R is in degree 0 and A acts on M™* via its anti-involution. A graded A-module M is self-dual if
M = M* as graded A-modules.

Finally, if M is a graded R-module let M be the ungraded R-module obtained by forgetting the grading.
In particular, if M is a graded A-module then M is an ungraded A-module.

2.2. Skew cellular algebras. Like cellular algebras, skew cellular algebras are defined in terms of a skew
cell datum. To describe these we first need some basic notation.

Recall that a poset, or partially ordered set, is an ordered pair (P,>), where P is a set and > is a
reflexive, antisymmetric and transitive relation on P. If z,y € P and x &> y then we write y < z. In addition,
if x # y then write z > y and y < =.

Definition 2.1. A poset automorphism of (P,>) is a permutation o of P such that
A wif and only if o(N) B o(p), for all \,u € P.
If 0 = ¢ is an involution we say that v is a poset involution of (P,>>).

Note that if o a poset automorphism of (P,>) then A > u <= o(A\) > o(p). Following [15, 18], we can
now define graded skew cellular algebras.

Definition 2.2 (Z-graded skew cellular algebras). Let R be an integral domain and A a Z-graded R-algebra
that is free and of finite rank as R-module.

A graded skew cell datum for A is an ordered quintuple (P, ., T, C,deg) where (P,>) is a poset, ¢ is a
poset involution of P, for each \ € P there is a finite set T'(X) together with a bijection

n:TA)—T((N);s — u(s) = tx(s), for alls € T(X),

such that t,(xy o tx = idp(y), and

C: [T xT(N)—4;(s,0) > car, and deg: [ T(\) = Z
AEP AEP
are two functions such that C is injective and

(C1) Each element cs¢ is homogeneous of degree deg cqt = degs + degt, for A € P and s,t € T'(\).

(Ca) The set {cq|5,t € T(N), A € P} is an R-basis of A.

(C3) Ifa€ A and s,t € T(N), for A € P, then there exist scalars rys(a), which do not depend on t, such

that
acsy = Z Fos(@)cor  (mod APH),
veT(N)
3



where AP is the R-submodule of A spanned by {cqp | a,b € T(u) for X<ty € P}.
(C4) There is a unique R-algebra anti-isomorphism % : A— A such that (cst)* = c,(t).(s), for all s,t € T(\)
and A € P.
A Z-graded skew cellular algebra is a graded algebra that has a graded skew cell datum. The basis
{cst| N € P and s,t € T(\)} is a Z-graded skew cellular basis of A.

Applying the anti-isomorphism * to relation (Cs3) and using (C4) together with the assumption that ¢ is
a poset involution, shows that if a € A and s,t € T'(\), for A € P, then

(C/g) cL(s)L(t)a* = Z Tut(a>cb(5)L(u) (HlOd ADL(A)).
ueT(N)
Therefore, after relabelling, if a € A and s,t € T'(\), for A € P, then
(23) Cst = Z TL(u),L(t) (a*)csu (HlOd A‘>>\),
ueT(X)

where the scalars 7,(),,(1y(a*) are the same scalars appearing in (C3). In particular, 7« (a*) does not
dependent on s.

Remark 2.4. 1f + = idp is the identity map, and ¢y = idp(y) for all A € P, then Definition 2.2 recovers the
definition of graded cellular algebras from [18]. If, in addition, we forget the grading on A then Definition 2.2
reduces to Graham and Lehrer’s original definition of cellular algebras [15]. Thus, graded cellular algebras
are given by a graded cellular datum (P, T, C, deg) and cellular algebras are given by a cell datum (P, T, C).
A skew cellular algebra is a graded skew cellular algebra that is concentrated in degree 0. In particular,
skew cellular algebras are a generalisation of Graham and Lehrer’s definition of cellular algebras.

The reader might find it helpful to refer to the following example when reading this section. More
complicated examples of skew cellular algebras are given in Example 2.33 below.

Example 2.5. We give a “toy example”. Let R be any ring and let x and y be indeterminates over R. Fix
an integer m > 1 and set A = R[z]/(z™) @ R[y]/(y™). Let (P,>) be the poset P = Zy x {0,1,...,m — 1}
with (i,k) > (¢/,k) only if ¢ = ¢’ and k > k' (as integers). Define the poset involution ¢:P — P by
(i, k) = (i+1,k). For A = (i, k) € P set T(\) = {k} and deg(k) = k. In particular, ¢x(k) = k. Then, for
A= (i, k) € P we have s,t € T'(\) only if s = t = k, so define

xF, ifi =0,

yk, ifi=1.

Then (P,:,T,C,deg) is a Z-graded skew cell datum for A. O

Cost = Crr = {

For the rest of this section fix a graded skew cellular algebra A with skew cell datum (P, ¢, T, C, deg). We
now study the graded representation theory of A, generalising the results of [15,18].

Definition 2.6. Let A € P. The (left) graded skew cell module Cy is the left graded A-module with
basis {cs |5 € T(N)} and with A-action determined by

acs = Z ris(a)ey, forae A and s € T(N),
teT(\)
where T5(a) € R is the scalar defined in (Cs).

Remark 2.7. The name “skew cell module” also appears in [4] but where the term “skew” refers to skew
Young diagrams. A priori, these are different objects.

Let A € P. Then C\ = @ c;(Cr)a is a graded A-module, where (C))q is the free R-module with basis
{cs |5 € T(N) with degs = d}.
If u,s,t,0 € T(X\) then, by (C3) and (2.3),

CusCtp = Z Tat(Cus)Cav = Z TL(b)L(E)(CrD)Cub (mod AD)\)-
acT(N) beT(N)
4



It follows that
(2.8) Tat(cys) 7 0 only if a = u,
and 7,(p),(s)(cf,) 7 0 only if b = v and, consequently, that

Tut(cus) = Ty(0)e(s) (Crn)'

By (C3) and (2.3), the scalar 7y(cyt) depends only on s and t and not on the choice of u and b.
The next definition is motivated by [15, Definition 2.3] and the calculations above.

Definition 2.9. Let A € P. Let ¢ = ¢y :Cy x C\—> R be the R-bilinear map determined by
B(cs, ) = Tue(Cus) = Too)u(s) (Cho) € R, for all s,t € T(N).

Then, by the calculations above,
(2.10) CusCo = P (Cs, C)Cup  (mod APH).

To better understand ¢, we abuse notation and extend the map ¢y :T(X) — T(¢(N\)) to an R-linear
isomorphism

tx: O —=C(n); Cs = Cu(s)s for s € T()\).

In general, the R-linear map ¢y :Cyx — C,(y) is not an A-module homomorphism. If A € P is fixed and
x € C)y then we simplify our notation and write «(x) = wx(x) € Cyy). In particular, t(cs) = ta(cs), for
s€T(N).

The following lemma, which gives the main properties of ¢y, is modelled on [26, Proposition 2.9]. However,
note that for skew cellular algebras the bilinear form ¢, not necessarily symmetric.

Lemma 2.11. Let A € P and x,y € C).
a) We have ¢x(x,y) = du(n) (L,\(y),b,\(ac)).
b) If a € A then ¢x(x,ay) = ¢ux) (ta(y), a*ea(x)) = da (L (@ ea(z)), y)-
¢) If s,u € T(N) then cyst = Px(Cs, T)Cy.

d) The form ¢y is homogeneous of degree 0.

Proof. Since ¢ is bilinear, and ¢y is linear, it suffices to consider the cases when x = ¢; and y = ¢, for
s, te T(N).
By the discussion above Definition 2.9, for any u, v € T(\) we have
da(css e) = rue(Cus) = Tu(0),u(s) (Cto) = To(0)0(5) (Cu(v),0(0) = D) (Cut), Cucs))
proving (a). Now consider part (b). Working modulo A>*, for any u,v € T'()\)

or(cs, ace)eyy = Z rye(a)dr(cs, ey ) by Definition 2.6,
veT(N)
= > reda)euscro by (2.10),
veT(N)
= cus(acy) by (Cs),
= (cus)cio
= Z rL(s/),L(ﬁ)(a*)cus’ctn by (Cg),
s/€T(N)
= Z TL(E/),L(S)(Q*)¢A(CEI;Ct)cun by (210),
s’€T(N)
= Z Tu(s),0(s) (@) Du(x) (Cu(e)s Cu(sry ) Cuv by part (a),
s'€T(N)
= ¢n) (Cuy, a*eys))ewn  (mod AP by Definition 2.6.



Therefore, ¢x(cs, ace) = ¢,n)(cu(y), a*cy(s)). Hence, ¢x(x,ay) = ¢,(n) (t(y), a*t(x)), proving the first identity
in (b). Applying part (a), we deduce that

Oa(x,ay) = ¢, (1 (), a*ea(x)) = da (1 (@ ea(x)), y),

completing the proof of (b).
Finally, part (c) follows immediately from (2.10) and part (d) follows by comparing the degrees on the
left and right hand sides of (2.10). O

Remark 2.12. If s € T(X) and a € A then ¢,(\)(acr(z)) = az if and only if 15 : Cy — C,(y) is an A-module
homomorphism. Hence, by Lemma 2.11(b), the bilinear form ¢, is associative if and only if ¢y is an A-
module homomorphism. In particular, ¢, is symmetric and associative when ¢y = id¢,, as is the case for
(non-skew) cellular algebras.

For any A € P, and for any ring R, the radical of C is:
(2.13) rad(Cy) = {y € Cx | ¢ar(z,y) =0 for all x € Cy}.

The next proposition is the skew cellular algebra analogue of [18, Lemma 2.7].
Proposition 2.14. Let A € P. Then the radical rad(C)) is a graded A-submodule of Cy.
Proof. If y € rad(Cy) and a € A then, by Lemma 2.11(b),

o(x,ay) = (b(LL(,\) (a*LA(x)),y) =0, for any = € C).

Therefore, ay € rad(Cy), showing that rad(Cy) is an A-submodule of Cy. By Lemma 2.11(d), the form ¢y
is homogeneous of degree 0, so rad(C)) is a graded submodule of C). O

Remark 2.15. Note that because ¢, is not symmetric this is the right radical of ¢ and, a priori, this is
different from the left radical of ¢. It is not clear if the left radical of ¢, is an A-submodule of C\ because
there is no obvious left-handed analogue of Lemma 2.11(b).

Definition 2.16. For A € P set Dy = Cy/rad(Cy). Let Py = {\ € P| Dy # 0}.

By Proposition 2.14, D) is a graded A-module. The next result extends the arguments of [18, §2.2], to
characterise the graded simple A-modules. Recall that the Jacobson radical of an A-module M is the
intersection of its maximal A-submodules.

Theorem 2.17. Suppose that R is a field.

a) If A € Py, W is an A-submodule of Cy and 0 € Homa(C,,C,/W), then there exists a unit r € R*
such that 0(z) = ra + W for all x € C,.

b) If A € Py then Dy is an absolutely irreducible graded A-module. Moreover, rad Cy is the Jacobson
radical of C\ and, consequently, Dy is the unique simple head of C).

¢) If \,u € Py and Dy ~ D, (k), for some k € Z, then A = p and k = 0.

d) The set {Dx(k)|\ € Py and k € Z} is a complete set of pairwise non-isomorphic graded simple
A-modules.

Proof. Part (a) follows the same argument from the proof of [15, Proposition (2.6)]. Similarly, the proof
of [15, Proposition (3.2)(ii)] and [18, §2.2] show that if A\ € Py then D, is an absolutely irreducible graded
A-module. Now using (a) we deduce that Dy is the unique simple head of C\ and, hence, that rad(C) is
the unique maximal submodule of Cy, so rad C) is the Jacobson radical of C. The remaining parts of the
theorem follows using the arguments from [18, §2.2]. O

Corollary 2.18. Suppose that R is a field. Then {D, |\ € Py} is a complete set of pairwise non-isomorphic
ungraded simple A-modules.

The next result describes the duals of the simple modules of skew cellular algebras.

Proposition 2.19. Suppose that R is a field. Then D} ~ D,y as graded A-modules. In particular, X € Po
if and only if L(X) € Py.
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Proof. Let A € Py. Then, by definition, there exist =,y € Cy such that ¢, (z,y) # 0. By Lemma 2.11(a), we

have ¢,(x) (¢ta(y), ea(z)) = da(x,y) # 0 and thus o(\) € Po.
Now for each y € C,(y) there is a well-defined R-linear map from 6, : Cx — R given by

ey(x) = ¢)\(LL()\) (y)ax)v for z € C)\'
By definition, 8, (z) = 0if z € rad Cy, so we can consider 6, as a map from D) to R. Again by Lemma 2.11(a),
AA(Lny (W), ) = oy (ea(z),y),80 8, = 0if y € rad C,(y). Hence, there is a well defined map © : D, (y) — D}
given by Ox(y +radC,)) = 0, for y € C,(»). The map ©, is homogeneous of degree 0 since ¢y is
homogeneous of degree 0 by Lemma 2.11(d). Moreover, by Lemma 2.11(b), if a € A then

eay(x) = ¢)x (LL()\) (ay),x) = ¢A(LL()\) (y)7 Q*I) = ey(a*x) = aey(x)
So ©, is a morphism of A-modules. Moreover, since ¢,(y) is a bijection, it follows from the equality
OA(Ln) (W), ) = ¢y (ea(z),y) that ©x: D, () — D3 is injective.
We now assume that R is a field. Since ©) is injective we deduce that dimg D,(y) < dimg Dy. By the
same argument, the map ©,(y) : Dx — Dj( ") is also injective, which gives the reverse inequality. We deduce
that ©) is an isomorphism and this concludes the proof. O

By Proposition 2.19, if R is a field and A € Py then the graded A-module Dy is self-dual if and only
if A = ¢(\). In the special case when A is a cellular algebra, this recovers the well-known result that the
simple modules of cellular algebras are self-dual since the involution ¢ is the identity map in this case by
Remark 2.4.

Finally, as in [18, §2.3], define the graded decomposition matrix of A to be the matrix

(2.20) Da(t) = (dau(t)), where dyu(t) == > _[Cx: Du(k)Jt", for A € P and p € Py.

kEZ
We order the rows and columns of D4 (t) by any total order > that extends >; that is, if A > p then A > p,
for A\, u € P. The arguments for cellular algebras now generalise to prove the following.

Proposition 2.21. Let A€ P and u € Py. Then:
a) d)\ﬂ(t) S Zzo[t,t_l];
b) dxu(1) =[Cyx: D,
¢) duu(t) =1 and dx,(t) # 0 only if A > p.
In particular, the graded decomposition matriz D 4(t) is upper unitriangular.

2.3. Shift automorphisms of graded cellular algebras. This section defines shift automorphisms of
graded cellular algebras, which provides a general framework for constructing skew cellular algebras from
cellular algebras. This framework is used to prove all of the main results in this paper.

As in the last section, let R be an integral domain with one. Recall from Remark 2.4 that a graded cellular
algebra A is determined by a graded cell datum (P, T, C, deg).

Definition 2.22. Let A be a Z-graded cellular R-algebra with graded cell datum (P,T,C,deg). A shift
automorphism of A is a triple of automorphisms o = (ca,0p,0r) where o4 is an R-algebra automorphism
of A, op is a poset automorphism of P and or is an automorphism of the set T =[], T'(\) such that:

a) If s € T(N) then op(s) € T(op(N)) and deg(or(s)) = deg(s).

b) If s,t € T(\) then oa(cst) = Cop(s)or(t)-

¢) Ifs,t € T(N\), for X\ € P, then ok (t) = t if and only if ok(s) = s, for k € Z.

Throughout this section we fix a graded cellular algebra A with a shift automorphism o. The algebra of

o a-fixed points in A is
A% ={a € A|oa(a) = a}.
The aim of this section is to show that A? is a skew cellular algebra.

In practice, a shift automorphism o = (04, 0p, or) is completely determined by the map op. Part (c) of
Definition 2.22, which is used in (2.27), is a non-trivial assumption that ensures that whenever a:’,i restricts
to give an automorphism of T'(A) then all of the o%-orbits in 7'(\) have the same size. As the meaning will
always be clear from context, we often abuse notation and simply write ¢ instead of 04, op or or.

A trivial example of a shift automorphism is given by taking the identity maps (ida,idp,idr). Here is a
less trivial example.
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Example 2.23. For n € Z>1, the full matrix algebra A = Mat, (R) is a cellular algebra, with P = {n} and
T(n) = {1,...,n}, where the cellular basis elements is given by the set of elementary matrices E;;, where
1 <4,j < n. Following [27, Example 2.1.3], fix integers di, ..., d, € Z such that d; + d,4+1—; = 0 and define
a Z-grading on A by setting deg E;; = d; + dpt1—; for 1 < 4,5 < n. Then A is a graded cellular algebra
with graded cellular basis {F;;}, where Fij = Ej,11—; and deg(i) = d;, for 1 < i,j < n. The condition
d;j + dpt1—;5 = 0 ensures that the degrees add in the relation Fy; F(,,11_j), = Fi.

To define a shift automorphism of A, suppose that w € &,, is any permutation that is a product of p
disjoint Z-cycles such that w(n +1—1) = n+1—w(i), for 1 <7 < n. For example, w could be the
permutation given by w(i) = n+1 — 4, for 1 <4 <n, when n is even and p = . Then A has a unique shift
automorphism o = (04, 0p,or) such that or(i) = w(i), for 1 < i < n. Explicitly, o7 = w, op = idp and
04(Fij) = Fuiyw), for 1 < 4,5 < n. The assumption that w is the product of p disjoint %—cycles ensures
that all of the or-orbits have size p, in accordance with Definition 2.22(c). The second condition on w is
forced by the requirement that o4 respect the relations Fy; F,, 41— j)x = Fix. If n is odd then by looking at
the sum w =Y w(i), it follows that w(2t) = 24 which forces w = 1e,,. So, w # 1 only if n is
even.

If we drop the requirement that A be a graded algebra then we do not need to assume that w(i) = n+1—1,
for1 <i<n. &

The following properties of shift automorphisms are immediate from Definition 2.22.

Lemma 2.24. Suppose that (o4, 0p,0r) is a shift automorphism of the graded cellular algebra A. Then o4 is

*

homogeneous automorphism of A of degree zero such that o 4(A>*) = A>7P XN Moreover, o 4(a*) = (04(a))*,
for all a € A.

For the rest of this section fix a graded cellular algebra A with graded cell datum (P, T, C,deg) and a
skew cellular algebra automorphism o = (o4,0p,0r). Let

p=|oal and pp = |op|

be the orders of the automorphisms o4 and op, respectively. Note that p is also the order of op, since
by Definition 2.22b) if k € Z then

ok =ida <= 0% (cot) = cat for all s,t € T(A\) and A € P
— Co”,}(s),o”%(t) = Cst for all S, te T()\) and A € P
> oh(s)=s for all s € T(\) and A € P

— ok =idy.

In particular, both pp and p are finite since P and T are finite sets. Finally, by Definition 2.22a) we have
that pp divides p. For the rest of this section we assume that R contains a primitive pth root of unity ¢ and
p - 1R is invertible in R.

The cyclic group Zp = (op) = Z/ppZ acts on P, let P, be a set of representatives for this action. For
example, if < is any total order refining < then one could take

Po={AeP|ob(\) <Afor 0 <k <pp}
For each A € P let
oy = min{k > 1ok ()\) = \} and px» = p/ox.
Then o) is the size of the Zp-orbit of A, so o) divides pp and py € N.

Lemma 2.25. The elements in the same Zp-orbit are not comparable under <. That is, if X € P and
ke{l1,...,0\ — 1}, the elements A and ¥\ are not comparable under <.

Proof. Let A € P and let [A\] = {o%()\)|0 < k < 0,} be the Zp-orbit of . By way of contradiction, suppose
that there exist k,l € Z such that 043/\ < Ué;)\. Since op is a poset automorphism, for any m € Z

TRA= Ug_k (053)\) < Ug_k (053/\) = Ug_k-H)\.
We have shown that for any p € [)], there exists v € [A] such that ¢ <0 v. But this is absurd because this

implies that the finite poset ([A], <) has no maximal element. O
8



Define the binary relations <, and <, on P, by
A <y p <= there exists k € Z, 0;%)\ <
and
Ao b <= A=por <, i,
for any A\, u € P,. Since op is a poset automorphism,
A <y p <= there exists [ such that A < oépu,
<= there exist k,[ such that U;E)\ < aé;u
<= for all [, there exists k such that U;E/\ < aé;u

<= for all k, there exists [ such that U;E/\ < aé;u.
Proposition 2.26. The binary relation <, is a partial order on P,.

Proof. By definition, A <, A for all A € P,. To show that <, is transitive suppose that A <, p <, v, for
A, v € Py If either A = p or p = v then A <, v, so we can assume that A\ # p # v. Then there exist k,!
such that a;g)\ < p < Ué;u thus 053)\ < aé;u (since < is transitive) thus A <, v. Finally, if A <, u <, A then
if A\ # p there exist k,l such that A < ok < ohb). Using again the transitivity of < we obtain A < oA
which contradicts Lemma 2.25. ]

Let oy = 03. Then the cyclic group Zyx = (ox) = Z/paZ acts on T()\). Let T,()\) be any set of
representatives for the Zy-orbits of T'(\). By Definition 2.22(c), all of the Zy-orbits in T'(\) have the same
size, so [Ty ()| divides |[T'(A)|. Let or(\) = |T'(N)|/|T»(N\)| be the size of any Zy-orbit in T'(A\). Note that
or()) divides |Zy| = pa, in particular or(A) divides p since py divides p. If A and p are in the same Zp-orbit
then it is easy to see that oy = o, and or () = or(u).

Let Pyp ={(X, k)| A € Py and k € Z/or(N)Z}, considered as a poset with ordering <, given by

(M E) Do (1,1) <= (N k) = (,1) or A < pa,

for all (A, k), (u,1) € Pop. We write (X k) <o (i,0) if (A k) # (1, 1) and (A k) <5 (1,1), that is, if A <5 p.
For (A, k) € P, p, define T,,(\, k) = T,,(A). Finally, set

OT(>\)—1
k j—
(2.27) V=3 NTA(Cypi ) forste TL(\ k),

Jj=0

where €y = eP/°T(N) and 54 = Z?:_ol 0f4. To complete the definition of a skew cell datum for A7, let ¢, be
the poset involution of Py, given by ity (A, k) = (A, —k) and let (o) (a k) @ To (A, k) = T (A, —k) be given by
the identity map of T,,()), for (A, k) € P, p. Finally, if s,t € T, (A, k) set C, (s, t) = cgf) and deg, (s) = deg(s).

We can now show that a (graded) cellular algebra with a shift automorphism gives rise to a (graded) skew

cellular algebra in the sense of Definition 2.2. This result can be viewed as a cellular algebra analogue of
Clifford theory.

Theorem 2.28. Suppose that A is a graded cellular algebra with graded cell datum (P, T,C,deg) and shift
automorphism o = (oca,0p,0r) over the integral domain R containing a primitive pth root of unity €, where
p is the order of ca. Assume that p-1r € R*. Then A° is a graded skew cellular algebra with skew cellular
datum (Pop, o, Ty, Cs,deg, ).

Proof. By construction, the fixed point subalgebra A is an R-subalgebra of A, so it remains to check that
the quintuple (Py.p, to, Tw, Cy, deg,) satisfies the assumptions of Definition 2.2.

First note that ¢, is a poset automorphism of P, since (A, k) >, (,1) if and only if A >, p, which is
if and only if (A, —k) >4 (g, —1). We now check (Cy), (Cz), (Cs) and (C4) from Definition 2.2. The first of
these properties is easy but the others require more work.

First, if s,t € T,,(\, k) then 74 is homogeneous of degree 0 by Lemma 2.24 and deg(or(s)) = deg(s), for
all s € T(\) by Definition 2.22(a). Therefore, deg(cgf)) = deg(cst) = deg(s) + deg(t), for all s,t € T, (A, k).
Hence, (C1) holds.
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Next consider (Cz). If a € A then 4(a) € A%, so by (2.27) we have cilf) € A°, for all 5,t € T,(\, k)
and (A k) € P,p. To show that {c (k) } is a basis of A7 first observe that because p - 1p € R*, for any
be A%, b=p '(pb) = p L S P_L ok (b) = p~'Fa(b) € spang{Ta(a)|a € A}. Tt follows that the fixed point
subalgebra A7 is spanned by {7 4(cs)}. By definition,

p—1 p—1
(2.29) Falcs)) =Y 0ohi(car) Z Cok (
k=0
In particular, T4 (cst) = Ta(csrv) Whenever s’ = o%(s) and t' = o%(t), for some k > 0. Tt follows that the

algebra A“ is spanned by the set
C={valcst) |5 € T,(N),t € T()\) and X € P, }
= {7a( Cood ( ‘5 teT,(A\),0<j<or(\) and X € P,},

where the second equality follows because oy = 05> : T(\) — T'()) is a bijection. We claim that C is linearly
independent and hence of basis of A7. By (2.29), when we expand 7 4(cst) in the c-basis of A the supports
of the different elements of C are disjoint, so C is linearly independent because {cs¢} is a basis of A. Finally,
observe that, by (2.27), the transition matrix between the basis in C and {cglf)} is given by Vandermonde
matrices in {€}/ |0 < k,j < or(\)}, which are invertible over R since op()) - 1z = H?i?)fl(l —¢l) and
or(A) divides p in Z. More precisely, for any A € P, and s,t € T,(\)

(2.30) spanR{cilf) |ke{l,...,or(N)}} = spanR{EA(cgﬁgi(t)) cje{l,...,or(A\)}}.

Hence, {cgf)} is a basis of A%, so (Cz) holds.
We now verify (Cs). Fix (A, k) € P,p and s,t € T, (A, k). Let a € A?. Using (Cs) for the c-basis of A
and the fact that 74 is A%-linear

or(A)—1 ‘
acgf) = Z EI;\JEA(GC&U&({))

j=0

or(A)—1
Z Y eVros(@Falc, ) +Tab),
= veT(N)

for some b € AP,
By direct calculation,
or(A)—

k
acgt) —oa(b Z Z 5>\ o5 (@ G alc, (t))

Jj=0 veT(N)
OT()\ OT()\

= Z > Z €3 7ot (0),5(0)T4(Ct (5) 03 )

j=0 veTo(N) 1=0

- Z Z Z Eij’ral)\(n)@(a)&f\(Cn)a;jfz)t)

OT()\ OT()\
- Z > Y 1ot 0,607 4 (G0, 1)
j=0 veTo(N) =0
0T(>\)—1 or )\) 1

= a)\rz Z a)\aA nU())

10



where
orT ()\) —1

(231) T;s(a) = Z Elfxl’ra;(u),s(a)v
=0

does not depend on t. To complete the proof of (C3) it suffices to prove that 7a(b) € (A7)>=**) where
(A7)>e(ME) is the R-submodule of A% spanned by

{0 € Ty (1) for (u,1) € Pop with (1,0) o (A K)}.

Since b € AP, it suffices to prove that Ta(cup) € (A7)> MK whenever u,0 € T(u) and g > A Let
to € P, be the representative of  under the action of Zp on P. Then pu = 0¥ ug for some k € Z and since
p > X we deduce that g >, A (recalling that A € Py). Finally, if I € Z is such that ug == olu € T, (1)
then & a(cyn) = Ta(Cug,), Where by = olv. Now if vy = o,,01 with vy € T (10), by (2.30) the element
TA(Cun) =T A(Cugo,) 18 in _
spang (e, [ J € {1, or(uo)} .

Thus, T4 (cyo) € (A7) MR since g >, A. This proves that A satisfies (C3).

Finally, we prove (C4). By Lemma 2.24, the anti-isomorphism * of A restricts to an anti-isomorphism of
A?. Moreover, if 5,t € T, (A, k) and (A, k) € P, then

( ) OT(A)fl OT(A)fl
k) * kj— * kj—
(co) = Z N (’A(%,aiu)) - Z exTA(C] (1).0)
Jj=0 j=0
or(A)—1 or(A)—1
kj— —kj—
- Z EAJUA(Ct,o;jQXE) - Z ) JUA(C*v”i(E))
Jj=0 j=0
—k
e
This completes the proof that A7 is a graded skew cellular algebra. g

It is an interesting question whether every skew cellular algebra arises in this way, that is, as the fixed
point subalgebra of a cellular algebra.

Corollary 2.32. In the setting of Theorem 2.28, if or(\) < 2 for all A\ € P then A° is a graded cellular
algebra with cellular datum (Pyp, Ty, Cy,deg,). In particular, if 2 is invertible in R and A is a graded
cellular algebra with graded cell datum (P, T, C,deg) and shift automorphism o = (oa,0p,01) such that o4
has order 2 then A° is a graded cellular algebra with cell datum (Pyp, Ty, Cy,deg,).

Proof. By Theorem 2.28, the algebra A” is graded skew cellular with skew cellular datum (Py p, to, s, Csr, deg,,).
By construction, the involution ¢, of P, is given by ts (A, k) = (A, —k). Since op(A) < 2 we have k = —k
in Z/or(\)Z, s0 1, = idp, ,. Moreover, still by construction, the map (. )z x) : To (A, k) — T5 (X, —k) is the
identity map of T5(\). Hence, (t5)(a k) is the identity map of T, (), k). Recalling Remark 2.4, this proves
the first statement. We deduce the second statement by noting that if 2 € R* then —1g # 1 in R, so —1p
is a primitive square root of unity in R. |

Example 2.33. Maintain the notation from Example 2.23. In particular, A = Mat,,(R) has graded cellular
basis {F;; |1 < i,j <n} and o is the shift automorphism of A given by o(Fi;) = Fy(iyuw(j), Where w € &,, is
a permutation such that w is the product of p disjoint %—cycles and w(in+1—i)=n+1—w(), for 1 <i<n.
Hence, p = p and we need to assume that R contains a primitive pth root of unity and that p- 15 € R*.
The reader can check that the skew cellular subalgebra of o-fixed points is

A% = {M = (m”) €A ‘ M5 = May(i)w(j) for 1 <i,5 < n}
Possible choices for w include the permutations (1,2)(3,4), (1,3)(2,4) or (1,4)(2,3) when n = 4 and
(1,2,3)(6,5,4) when n = 6. In these examples we have p = 2 thus A7 is in fact cellular by Corollary 2.32.
An example where A7 is skew cellular but where Corollary 2.32 does not apply is with w = (1,3)(2,5)(4, 6),
where p = 3. Of course, if w is trivial (which happens when p = n) then A7 = A is a cellular algebra. For

example, w must be trivial if n is odd by Example 2.23.
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We note that Xi and Zhang [34, Theorem 4.5] have shown that the algebra A? is cellular; their proof is
based on Jordan reduction. &

2.4. Clifford theory. In this section we explicitly describe how Clifford theory works for skew cellular
algebras that are obtained using a shift automorphism, as in Theorem 2.28. The results in this section
should be compared with [19, §3.7].

If M is any A-module, let “M be the A-module M where the action of A is twisted by ¢. In other words,
for any m € M and a € A we have

a-oprm=oc(a) pm.

Let M | be the restriction of M to an A?-module. If N is an A%-module, we write N 1 for the induced
A-module.
Recall that A is a graded cellular algebra with a shift automorphism o.

Lemma 2.34. Using the notation of (C3), Tov.0s(0(a)) = res(a), for alla € A, X € P and v,s € T(}).
Consequently, ¢x(co,Cs) = Por(Co(v): Co(s))-
Proof. By (Cs) we have
acsy = Z Fos(a)cor  (mod APH).
veT(N)
Applying o using Definition 2.22(b) and Lemma 2.24,
U(a)ccrﬁ,a't = Z Tbﬁ(a)ccrb,crt (HlOd ADO’A)7

veT(N)

Hence, the first equality follows because {cyy} is an R-basis of A. In turn, this implies the second equality
by Definition 2.9. g

Proposition 2.35. Let A € P. The R-linear map vy : Cx — Cyn defined by cs — Cos, fors € T'(N), induces
isomorphisms of graded A-modules Cy ~°Cyy and Dy ~ °Dy.

Proof. By definition, ~, is an isomorphism of R-modules. To show that it is an A-module isomorphism,
suppose that a € A. Then, using Lemma 2.34,

macs) = Y rs(@nnlee) = D Toves(0(a))con = o(a)cos,
vET(N) veT(N)

which proves the first isomorphism. The fact that this is an isomorphism of graded modules comes from Definition 2.22a).
To prove that Dy ~ 7 D, it suffices to show that (rad(CA)) = rad(C,»), which follows because ¢y (cs, ct) =
Do (Cos, Cot) by Lemma 2.34. O

We now assume that € € R is a primitive p-th root of unity and that p- 1z € R*, so that Theorem 2.28
applies. For any (A k) € Py p, let Cg\k) be the associated skew cell module of A%, with R-basis {cgk) |s €

T,(\ k)} and R-bilinear form ¢)\k), which is not symmetric in general.

Lemma 2.36. Let (\, k) € Pyp and 5,t € T,(\, k). Then

OT()\)—l
¢E\k)( e )) = Ppa Z 5§I¢A(Cg;(s),ct)-
=0

Proof. Note that the maps a — rg(a) and b — 7. (b) for a € A and b € A? are R-linear. Unravelling the
definitions, if u € T, (A) then

OT(A)fl

¢( )(cgk),cik)) _ rut(cﬁi)) _ Z Eijrat(EA(Cu,oi(s)))'

=0
12



Therefore, by (2.31),

OT()\)f
k k k k —
(bg\ )(Cg )70,5 )) — Z g)\Jg’;lr L )t(UA(Cu,ai(s)))
J,1=0
OT()\) 1

p—1
k(j+1
Z Z exryy ot ).t (€ o—m<u>,ama§<s>)-
4,l=0 m=0

Now by (2.8) we have rgi(u)yt(c ) # 0 only if ¢} (u) = o™ (u). In particular, this implies that

Umu,amai(s)
o™ (u) € T(N), s0 oy | m. Writing m = oxm/ we obtain o} (1) = o (). Now write m’ = aor()\) + m”,
with 0 < m” < or(\). Then o§* (u) = o§*" (u) and so m” = I, since the Zy-orbit of u has exactly size or(\).
Recalling that o () divides py, we have r . L M(c #£0, for 0 < m < p only if m = oy(aor(A)+1)

omu, amov 5))

with 0 < a < %, in which case c™(b) = a)\( ) for all v € T'(A). We thus obtain
(k) ( (k) (k) XL k( j+1)
vl o) = Z T, (Cag(u),aljj(s))
_ Z lc(JJrl)¢A C Ji+is ),Ct)
(AM)—lor(N)—
= Z Z Xéa(co 00 1)
=0
OT(A)fl
= P Z 5§l¢>\ (ng(s),ct)a
1=0
as desired. g
Proposition 2.37. Let A € P,. The R-linear map
0T(>\)—1 or )\) 1
@ C’/(\k) — Ch; (k) — Z afkjca (s)’
k=0
induces isomorphisms of graded A°-modules
OT()\ OT(>\)—1
EB cP~cyl,  and P DY ~Dil.

k=0

Proof. First note that v is homogeneous since deg?(s) = degs = dego’(s) for all s € T,(\ k) = T,())
and all j € Z by Definition 2.22a). By the Vandermonde determinant argument that we used in the proof
of Theorem 2.28, the map ~4 sends a basis to a basis, so is an R-module isomorphism.

We prove that @, C’ik) >~ ()| as A%-modules. Recall that if s € T'(A) and a € A then

OT()\
e X s XSt
vET(N) veT,(A) 1=0
in Cy. Similarly, if s € T,,(\, k) and @ € A? then
OT(>\)—1 )
ank) = Z T(J ( )Cl(Jk)v where T(Js(a) = Z EI;\JTai(U),s(a)v
veT, (N k) Jj=0
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in Cgk). For any k € Z/or(N)Z, s € T,(\, k) and a € A’ we have

( ) OT(A)fl OT(A)fl OT()\

k —kj

avx(cs’) = Z ) J‘lcai(a): Z Z Z Tt (0),00 () (@) Cot (v)-
j=0 Jj=0 veT,(A) =0

Now by Lemma 2.34 we have 7,1 () .4 () (a) = Tol=i (v) .(a) since a € A?. Thus, we obtain, recalling that e
PR A ad
is an or(A)-th root of unity,

orT )\) 1 OT()\
k _
av;\(cg )) — Z Z kl Z gA r I J(U)s( )Ca;(u)

WET,(A) 1=0

orT )\) 1 OT()\
- Z Z A Z E)\r](b)g a)Cyl (v)

WET,(A) =0

or(A)—1

- Z Z ExThs(@)eo) )
o (N)
= Z Tns(a)'VA(cgk))

This proves that v} is A?-linear, thus establishing that €, C;k) = (C) ] as A%-modules.
To prove the second isomorphism, it suffices to prove that

OT(>\)—1

(2.38) D (rad cg’”) = rad .
k=0
Let z = ZseTa(A) xﬁcgk) € rad Cg\k) with z; € R.
By Lemma 2.36, if t € T, () then
OT()\
0= E\k) (Cgk)ux) = Z $s¢&k (C’Ek) Cgk) = Px Z Z $5¢)\ C ol (¢ )705)'
s€T,(N) s€Ty(\) J=0

Thus, if t € T,(A\) and 0 <[ < op(A) then, using Lemma 2.34,
(05 (Ca§t77$\(x)) = Z TP (CUZA(’L)’WS\(CEIC)))

s€T5(N)
OT()\)fl
—kj
Z Z €x ]CL'5¢)\ (Cai(t)vco§(5)>
se€Ty(\) J=0
OT()\ )
= gkl Z Z 9 1o (cal;j(t),cg)
se€T,(\) 7=0
OT()\

= E;kl Z Z g)\ xs(b)\ (C ](t),Cg)

s€Ty(N\) Jj=0

207

proving that 74(z) € radCx. To prove that rad Cx C @x74 (rad C;k)), first note that if s € T,(\) and
Jj € Z/or(N)Z then
OT()\

E EAC‘- .

s —1 1

A (Ca;5 =




Let z =3 . cr (n ZOT M-t T5,jCqi (5 € Tad Ox. We have

or >\) 1 o )\) 1
—1 —1 k
I E : E : ZCg,]’)/S\ C j( /\ E § €\ xs,gCg )
s€T,(A) =0 56T (A) 4,k=0

So, to complete the proof it is enough to show that if 0 < k < or(A) then
or )\) 1

Z Z E)\ argjcr GradC'ik),

s€Ty(N) Jj=0

Using Lemma 2.36 and Lemma 2.34, if t € T,,(\) then

OT()\ OT()\
Z Z E)\ 1'5 _](b)\ ’Ek) gk)) Px Z Z E)\ xs,j(b)\ (Ca.é\(t), Cs)
s€T,(A) j=0 €T, (N)  4,1=0
OT()\

OT()\)fl

= Px Z Z El)gxl‘rs,j(bk (caé\(t)a Cgi (5))

sET,(N) 4,1=0
OT()\) 1

= pa Z E§l¢)\(co&(t)7x)
=0

where the last equality comes from the fact that x € rad Cl. ]

Definition 2.39. The automorphism o4 is e-splittable if there exists an invertible element z € A* that is
homogeneous of degree 0 such that o4(z) = ez.

Fix z € AX as in Definition 2.39. Then 2'A% = ker(c4 —&?), for i > 0. The terminology of Definition 2.39
is justified because if R is a field then we can decompose A into a direct sum of o 4-eigenspaces

p—1
(2.40) A=A

since o4 has order p. In particular, if o4 is e-splittable then A is free, and hence projective, as an A7-module.
Recall from Proposition 2.35 that vy : Cx — Cy is an R-linear isomorphism such that vy (az) = o(a)ya(x),

for all a € A and = € C). For j > 0 define the R-isomorphism v, ;: Cy —C,j by

(241) 7)\.,]' :’ygj71)\o~-~0"y>\,

and set o¢ x = Ya,0,, an R-automorphism of C. Then o¢ x(¢s) = ¢o,s, for all s € T'(A). In particular oc, x

has order or(A). The R-linear isomorphism 7, ; satisfies

(2.42) i (ax) = oy (a)y 4 (), for all @ € A and = € C,.

In particular o¢, ) satisfies

(2.43) ooa(az) = o5 (a)oo (), for all a € A and z € C\.

Proposition 2.44. Suppose that o4 is e-splittable. Then op(\) = px for all X € P.

Proof. Under the isomorphism ~} of Proposition 2.37, the cell module C’ik) is sent into the eigenspace
ker(oa A — a’f\) Since €) € R*, these eigenspaces are in direct sum and we conclude that

OT()\)fl

(2.45) C)\ = @ ker(aq)\ — EI;)
k=0
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Now let x € C) be an eigenvector for o¢, ) with eigenvalue 5’/{. By (2.43), we have

oo(zz) = 0% (2)oc A (x) = e 2k = e22 b 2a.

Since z € A%, we have zz # 0 and thus zz is an eigenvector for o¢ \ with eigenvalue 5°*5§. By (2.45), this

implies that e € (1), thus € is an or(A)-th root of unity. But e has order - = py thus p | or(A)

thus py = or(X) since or(\) | pa. O

In particular, Proposition 2.44 implies that €y = ¢°*. Now let 7 be the homogeneous automorphism
of A given by 7(a) = zaz~ !, for a € A. Note that A7 is stable under 7. The next result is a complement
to Proposition 2.37.

Proposition 2.46. Let (A, k) € P,,. The map
Wl - oYz 7 (Eh @)
induces graded A°-module isomorphisms
O/(\k) ~ TO/(\k+1) and Df\k) ~ TDE\]CH).
Proof. During the proof of Proposition 2.44 we obtained v} (C’ik)) = ker (acy)\ — a’f\) and

(247) A (C) = A ().

Thus, the map ”ygk) is well defined. Moreover, it is clearly bijective since z € A*. Equation (2.47) implies

that there is an A?-module isomorphism Cik) ~ TCng) because if x € Cik) and a € A% then
k -1 -1 -1
7 (az) = 147 (74(02) =937 (2anh (@) = 7 (T(@)274 ()

= ()7 (274 (@) = 7)) (2).

Moreover the map vgk) is homogeneous of degree 0 since z has degree zero (and 7} is homogeneous).

Finally, by Theorem 2.17(b), rad Cg\l) is the Jacobson radical of C;l) for all [ so, since vgk) is an A7-

module isomorphism, ”y/(\k) (rad C/(\k)) = rad C/(\kH). Hence, ”y/(\k) induces an isomorphism Df\k) ~ TDg\kH) of

A%-modules. O

Since A? is a skew cellular algebra, Theorem 2.17 gives a classification of the graded simple A%-modules.
Combining the results above we obtain the following classification of the simple A%-modules in terms of the
simple A-modules.

Theorem 2.48. Let R be a field containing a primitive pth root of unity €. Suppose that A has graded cell
datum (P,T,C,deg) and a shift automorphism o = (ca,0p,0r) such that o4 is e-splittable and has order
p. Then

{Dg\k)<s) | D 40 for (\, k) € Pyp, and s € Z}

s a complete set of pairwise non-isomorphic graded simple A -modules.

Proof. First note that because R contains a primitive pth root of unity the characteristic of R cannot
divide p, so p - 1g is invertible in R. Therefore, A is a skew cellular algebra with skew cellular datum
(Po.ps to, T, Co, deg,) by Theorem 2.28. Therefore, by Theorem 2.17, a complete of pairwise non-isomorphic

graded simple A%-modules is given by the non-zero modules in the set {Dg\k) ()| (A k) € Pyp,s € Z}. By
Proposition 2.37, Proposition 2.44 and Proposition 2.46, if A € P, then

D £0 <= DP +£0 for some 0 < k < py <= D" £ 0 for all 0 < k < py.
Hence, the result follows. O

By (2.40), if M is an A%-module then the induced A-module M 7 is given by



where the action of a € A on z'M is given by
p—1
ax:szajx, forzx e M
j=0
where az’ = 7, 27a; with a; € A7,
Recall the R-linear maps 7y j: Cx — Cyiy from (2.41).
Proposition 2.49. Assume that R is a field and that o4 is e-splittable. For (A, k) € Py p, let

0,\1

A//, _> @CUJ)\

be the A°-linear map whose j-th component is gien by yx,j oYy for 0 < j < ox. The unique corresponding
A-linear map vy : C k)T—>€B Cyix tnduces isomorphisms of graded A-modules

oyx—1 oyx—1

o] ~ @Cm and D] = EBDC,JA

Proof. Since C/(\k)T ~ @?zoziC’gk) as an A-module, if z; € C’/(\k), where 0 < i < p, by Frobenius reciprocity

p—1 p—1
% (5o) -5 et
i=0 i=0
The map ~} is A-linear by construction. Recalling from Proposition 2.44 that or(A) = pa, thus

PITo(A)| = oapaA|T5(A)| = ox|T (V)]
It follows that the starting and ending R-vector spaces have the same dimension. To prove that ~4 is bijective

it suffices to prove that it is injective.
Let (2i)o<i<p be as above and assume that ~¥ (Zf:_é zlxl> = 0. Since 45(z) = >_5 *0 Y, (YA (@) for all

we have

T e C’/(\k), we deduce that for all 0 < j < o) we have

p—1

> 2 (A (i) = 0.
1=0

Now using Definition 2.39 and (2.42), we deduce that
p—1
Y e (A @) =0,
i=0
Since y,; is an R-isomorphism, we deduce that for all 0 < j < oy we have

Es”z’xl—o.

Writing ¢ = apy + b for 0 < a <oy and0§b<p>\,

oy—1 pa—1

Z Z e (@Patb)i papatbal (g0 b)) =0, for all 0 < j < oy.
a=0 b=0
By (2.47), z“p*"’b%\(cgk)) = %\(Cngrb)). Thus, using Proposition 2.37,
oy—1
Z a’ajp*zapk*yf\(xapﬁb) =0, for 0 < j <oyand 0<b<p,.
a=0
Since P> is a primitive oy-th root of unity, for a fixed 0 < b < p) we obtain an invertible linear system, so
2Py, (Zapr46) = 0in Cy, for 0 < j,a < oy and 0 < b < py. Since z € A* we deduce that 4 (z;) = 0, for
17



0 <i < p. Hence, z; =0 in Cik) since v} is injective. We conclude that ~ is injective, proving the first
isomorphism of A-modules. Note that this isomorphism is homogeneous of degree 0 since deg(z) = 0 and 4¥
is homogeneous.

To prove the second isomorphism, by Proposition 2.35 and Proposition 2.37 we have

p—1 oy—1
vy <@ Z'rad C/(\k)> C @ rad C,; .
i=0 =0
Moreover we also obtain that

dimgrad C,;\ = dimgrad C) = p) dimpg rad Cgk),

for all 0 < j < o). Thus, the above inclusion is an equality and the proof is complete. O

Remark 2.50. With a little more care it is possible to prove Proposition 2.49 over an integral domain that
contains . As in [19, §3.7], the existence of the isomorphism of Proposition 2.49 can be deduced from more
general results such as [13, Proposition 2.2] (and [16, Appendix]). The point of Proposition 2.49 is to give
an explicit isomorphism.

3. HECKE ALGEBRAS AND DIAGRAMMATIC CHEREDNIK ALGEBRAS

Having set up the machinery of skew cellular algebras we are now ready to tackle the main results of
this paper, which show that the Hecke algebras of type G(¢,p,n) are graded skew cellular algebras. To do
this we use the cyclotomic KLR algebras of type A, together with the diagrammatic Cherednik algebras, to
construct a shift automorphism of these algebras.

3.1. Hecke algebras. This section recalls the definitions and results from the literature that we need about
the Hecke algebras of type G(¢,p,n). Throughout this paper we fix positive integers n, p and d, with p > 2.
Recall that R is a commutative integral ring with 1. Let K = Frac(R) be the field of fractions of R. We
assume that K contains a primitive pth root of unity €. Set ¢ = pd and fix cyclotomic parameters

Q1,...,Qi € K. Set Q= (Q1,...,Qq) and
QY¢ = (eQ1,€°Q1, ... ,PQ1,eQ2, ..., ePQa, ... ,€Qu, . . ., ePQq).
Finally, fix an invertible Hecke parameter q € K.
Definition 3.1 (Ariki and Koike [2], Broué and Malle [6]). The Hecke algebra of type G(¢,1,n) with Hecke

parameter q and cyclotomic parameters QY€ is the unital associative K -algebra 54, (q, QV¢) with generators

To,T1,...,T,_1 and relations:
d
[T -ab) =o, Ty Ty Ty = TyToTi T,
k=1
(T — ¢)(T +1) = 0, ThTh1Ty = Tey1 T Thy1,

T =TT i fi— > 1,
where 1l <r<n,l1<k<n—1and1<i,j<n.

Remark 3.2. The algebra 7, (q, Q¥¢) is in fact a special case of a Hecke algebra of type G(¢,1,n), which
can have ¢ arbitrary cyclotomic parameters Q1,...,Q¢ € K.

Inspecting the relations, 7%, (q, QV¢) has a unique automorphism & of order p such that
(3.3) o(Ty) =eTy and o(T;) =T, for 1 <i<n.
We can now define the main (ungraded) algebras of interest in this paper.

Definition 3.4 (Ariki [1], Broué and Malle [6]). The Hecke algebra of type G(¢,p,n) with parameters
q € K* and QY € K* is the fized-point subalgebra

H, . (0,Q%%) = (#,(¢,Q"))" = {h € #,(q,Q"®) | o(h) = h}.
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Equivalently, /7, ,(¢,Q"%) is the subalgebra of J#,(q, Q%) that is generated by Ty, T, ' Ty and
T1,...,Tyh—1. Notice that J7, , (q, QV¢) is an Iwahori-Hecke algebra of type D when £ = p = 2.

From the relations it is clear that if ¢ € K is any non-zero scalar then J%,(q,cQV¢) = #,(q, QV¢) and
hence that 7, ,(q,cQ"®) = 7, ,.(q,Q"¢), where cQ"® = (ceQ1,...,ce?Qq). Moreover, by [17], we can
assume that the cyclotomic parameters Q1,--- ,Qq are in a single (e, ¢)-orbit. That is, Q;/Q; € eZq” for
any 1 <i4,5 <d.

Let e = min{e > 0|1+ ¢g+---+¢° ! =0} and set e = oo if no such integer exists. Using Clifford theory,
as discussed on [16, Page 3383], we can further assume that Q; = ¢,

(3.5) QVe = (5qp1,£2qp1, co BPPY JeqP? L e et L e ).

and that we are in one of the following two cases:
Case 1. ¢“ Ne? # {1}: Equivalently, e < oo and ged(e,p) > 1. Let m = ged(e,p) and write p = mp'.
We may assume that e = me’ and that ef = qel is a primitive mth root of unity in K. Note that
p' =min{l <a < ple® € ¢*}.
Case 2. ¢?Ne? = {1}: Equivalently, either e < oo and ged(e, p) = 1, or e = 0o. For consistency of notation
with Case 1, we assume that 0 = p; < pg < --- < pg and set p’ = p, ¢/ = e and m = 1. In fact, as noted
in [20, Corollary 2.10], if e = co then we can replace ¢ with an é root of unity for some sufficiently large é
without changing the (graded) isomorphism type of 7%, (g, QV¢). Henceforth, we assume that e is finite.
Permuting the integers p1, ..., pq does not affect %, (q, QV¢) up to isomorphism and, similarly, we can
replace p, with p, + e since g? ¢ = ¢P+. In order to be able to construct the basis that we need to prove
our main results we adopt the following convention.

Definition 3.6. A d-charge is a d-tuple of integers p = (p1,...,pa) € Z such that
Pat1 — Pa > (2n+3)e, forl<a<d.

We assume that we have a fixed p for the rest of this paper. For convenience, we assume that p; = 0. In
particular, this implies that 0 = p; < p2 < --- < pq.

3.2. Quiver Hecke algebras. The quiver Hecke algebras, or KLR algebras, are a remarkable family of
Z-graded algebras that were introduced by Khovanov and Lauda [22] and Rouquier [31]. Following [29], and
to a lesser extent [7], this section defines the quiver Hecke algebras of type G(¢,1,n) that we need to study

Hp (2, Q).
Definition 3.7. Set T = {e/¢*|0 < j < p and 0 < i < e}. An I-composition of n is a finitely supported

tuple @ = (a;)iez of mon-negative integers that sum to n. Let €* be the set of I-compositions of n. If
a = (ai)iez € CL let
I ={i=(ir,...,in) €I" oy = #{1 < k <n|ip =i} for all i € T}.

A residue sequence is an element of T".

Let &,, be the symmetric group of degree n. As a Coxeter group, &,, is generated by s1,...,8,-1,
where s, = (r,r +1). If w € &,, then a reduced expression for w is any word w = s, ...s,, with k
minimal.

The symmetric group &,, acts on Z" by place permutations and the sets Z¢, for a € €, are the &,,-orbits
of Z™. In particular, the sets Z% are finite. Set

J'={1,2,---,p'} and I=2Z/eZ.
As noted in [29], there is a natural bijection I x J' —— T given by sending (i, j) to /¢, for (i,7) € I x J'.
Henceforth, we identify I x J’ and Z using this bijection.

Definition 3.8 (Rouquier [31, §3.2.5]). Let T' be the quiver with vertex set T and edges i — qi, for i € T.
Let T be the full subquiver of T with vertex set {q"|i € I}.

Notice that there is an isomorphism of quivers I'. = ry ), where TY) has vertex set {e’q"|i € I}, for

1 < j < p'. Moreover, there are no edges between the vertices of I'Y and the vertices of I'*F) ifj£keJ.
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Hence, I' = I‘él) U---u 1“8”’) is the disjoint union of p’ copies of the quiver I'., which is the affine quiver of
type Aél).

Following Rouquier [31, §3.2.4], for 4, j € Z define homogeneous polynomials Q; ;(u,v) € R[u, v], where u
and v are indeterminates, by

(v—u),
Qi,j(u,v) = ( ), if 4 (—j,
ifiAj,

ifi=j.

e

if ¢ — 7,

SN

IS

(u—v)(v—u), ifisj,
1

)

0

where all edges are in the quiver I'. The degree of Q; j(u,v) is its homogeneous degree.

For « = (i,5) € I x J' = I, define A, to be the multiplicity of /¢* in QV¢. Set A = (A,),cz.

Definition 3.9 (Khovanov and Lauda [22], Rouquier [31]). Let o be an Z-composition of n. The quiver
Hecke algebra of type G(¢,1,n) and weight A is the unital associative R-algebra %’g} with generators

{e(]1€eZU{y1, - ynt U{t1,. .., n_1}

and relations

e(i)e(j) = die(i), Sierae(d) =1, y " e(i) =0,
yre(i) = e(i)yr, Yre(i) = e(sr1)¢r, YrYs = YsYr
Yrths = Ysthy, if Ir—s|>1,
UrYs = Ysthr, if s # 1+ 1,

wryr-i-le(i) = (yr"/}r + 5iTir+1)e(i)7 yT+1wT6(i) = (wryT + 5iTir+1)e(i)7
1/’36(1) = Qi'r‘-,i'r‘+l (yTv yT+1)e(i)

(1/1r+11/)r1/1r+1 _ 1/1r1/)r+11/1r)€(i) _ 5m;+2 Qir,ir+1(yrayr+l) - Qir,ir+1(yr+27yr+1)e(i)

Yr — Yr42
for all admissible r,s and i,j € T. Set # = @ %é}
aEEt

Remark 3.10. In the literature, Z2 is often called a cyclotomic Hecke algebra of type A and weight A. Our
naming convention reflects the close connections between the algebras ., (q, Q"¢) and Z2.

An important consequence of these relations is that Z2 is a Z-graded algebra with

deg Qir,ir+1 (U, ’U), if iT 7£ iTJrl

dege(i) =0, degy, =2 and degeye(i)= o )
-2, if 4 = Gy,

Following the reformulation in [29], we can now state the main result of [7] that we need in order to apply
this result to the algebra 7, , (q, QVe).

Theorem 3.11 (Brundan and Kleshchev’s isomorphism theorem [7,29]). Assume that R = K is a field.
Then there is an isomorphism of K -algebras f: #,(q, Q%) —= #A.

Motivated in part by Definition 3.4, the third named author [29] generalised this result to show that
H, (g, QV¢) is isomorphic to the fixed-point subalgebra of %’,’l‘ under a certain homogeneous automorphism
of order p. Recall the automorphism o of %, (g, QV¢) from (3.3). By definition, ¢ has order p, so (o) = (¢),
which is a cyclic group of order p.

If a € € let o - a be the Z-composition of n given by

(3.12) (0-a); = ag—14 for all 7 € 7.

Observe that left multiplication by e gives a map 7% — Z7%;i +— ei = (i1, ...,ci,). Moreover, by (3.5),
A, = A, forall € 7.
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Theorem 3.13 (Rostam [29], [28, §1.4]). Let o € €. There is a unique homogeneous R-algebra isomorphism
o D — FD,, such that

0'2 (e(i)) = e(Ei), Ué}(yr) =y, and 0'2(1/15) = s,

foralll<r<n,1<s<nandiel”.

Set o = @, o2, so that o2 is an automorphism of Z2 = @, #2. To ease the notation, we normally

a T

write ¢ = o. We are abusing notation here because the automorphism o of Z2 is not equal to the
automorphism o of J%,(q, QV¢) that was defined in (3.3). This abuse is justified by Theorem 3.14 below.

If o is an Z-composition let [a] = {o* - a|1 < k < p} be the orbit of @ under the action of (o) ~ Z/pZ.
Let I = {[a]| @ € €} be the set of o-orbits of €* and if [a] € 7 set %[ﬁ] = @psea %é\ By definition,

an = @ ar- @
€€t la]lezn

and the isomorphism o of Theorem 3.13 restricts to an automorphism o of e%’[ﬁd. Hence, we can consider o
as both an automorphism of L@[’;] and as an automorphism of ZA.

Theorem 3.14 (Rostam [29, Theorem 4.14, Corollary 4.16]). Assume that R = K is a field. We can choose
the isomorphism f: #,(q, QV¢) ——— Z of Theorem 3.11 so that the following diagram commutes

M (a2, QYF) ! s

| E

,(q,QV°) 7 s

Consequently, f induces an isomorphism 7, ,(q, Q) = @ (%ﬁ]) .
[a]ezrn

Definition 3.15 (Rostam [29], [28, §1.4]). The quiver Hecke algebra of type G({,p,n) of weight A is
the R-algebra

For [a] € T2 let #}, = (@[Ig])g.

The algebra %{:n inherits a Z-grading from %2 since o is a homogeneous automorphism of #2. The
aim of this paper is to better understand the algebra %{}n Our main tool is the diagrammatic Cherednik

algebra introduced by Webster [32] and Bowman [3].

3.3. Loadings, multicharges and /-partitions. This section introduces the combinatorics that underpins
Webster’s diagrammatic Cherednik algebras.

After Definition 3.4 we fixed integers (d, e, e’, p,p’,m, n, p1,. .., pa) subject to Definition 3.6 that determine
q and QV¢. Using this data we now fix a choice of multicharge Kk = (k1, ..., k¢) that we use in Section 3.4
to single out a diagrammatic Cherednik algebra that is particularly well adapted to studying 77, ,,(q, QVe).

Definition 3.16. The multicharge of 7, ,(q, Q%) is the sequence k = (K1, ..., kg) with

be’
Rl = Pa+1 + 0
p

where l=ap+b+1 with0<a<dand0<b<p.

Remark 3.17. If d = 1, the multicharge & is an example of a “FLOTW charge” (see [3, Example 1.6]).
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For the rest of this paper we fix the multicharge s of Definition 3.16 and we identify ¢ and qe// v Recalling
Definition 3.6, Definition 3.16 implies that QY€ = ("1,...,&"*).

Note that b%: < pp—e,/ =me’ = e, for 0 < b < p. Therefore, 0 = K1 < ko < -+ - < Ky since pgr1 — pg > € by
Definition 3.6.

Examples 3.18.
e Cousider G(p,p,n) and suppose that ged(e,p) = 1. Then £ = p=p' and m =d =1 so that ¢/ = ¢
andnz(O,%,%...,(p%)e).
e Suppose that p’ = 3 and m = 2 with e = 2¢’ < co. Then

K = (Oa%/v"'a%e/ap27"'7p2+%e/a"'apda"'apd_F576/)- &
The set of /-nodes is the set of all ordered triples
(3.19) NE={(r,e,]) eN?|0<r,c<mand 1 <I</}.

A partition of n is a sequence p = (u1,. .., un) of non-negative integers satisfying pq > -+ > pp and
|| == g1 + -+ -+ pn = n. Let (0) be the empty partition (where h = 0) and use exponentiation for repeated
parts. An (-partition of n is an (-tuple g = (u™M]...|u¥)) of partitions such that [u™M |+ --- + |u®] = n.
Let 2! be the set of f-partitions of n. An f-partition u € 22! is identified with its diagram, which is the
set of nodes

u=A{(rcl)e %”1 <r< Nz(:l)}'
We draw /-partitions as an array of boxes in plane using Bowman’s variation of the Russian convention, as
in the following example.

Example 3.20. Let p = (3,1]22|13). The diagram of p is:

QI

Fix an integer N with

(3.21) N > 2nep’ (£ + 1).
Using the multicharge k = (k1, ..., /) define a loading function x, : A, — Q by
(3.22) Xp(r,c, 1) =c—r+ (k- Z_—}) — e

Remark 3.23. Bowman [3, §1.3] defines his loading function as x,(r,c,l) = ky — £ + ¢ — 7 — % (r + ¢). The

term Z—} is there to separate the nodes (r,¢,1) and (r,¢,1"), when | # I’. We divide by ¢ + 1, rather than

¢ as Bowman does, precisely because if m =1 = d then p = p’ = £ 50 K1 = pas1 + bT‘f,. The [ — 1 in the
numerator is a convenient renormalisation so that x,(0,0,1) = k1 = 0.

Lemma 3.24. The function {1,..., £} = R;l— r; — Z—i is strictly increasing. Moreover, if |l = ap+b+1,
with 0 < a <d and 0 <b < p, then

ap -1 (a+1)p

atl — 57— < — = < Pq I
Patl = gy ST gy SPent T eT

Proof. Let I, € {1,..., ¢} and write l =ap+b+1and ' =a'p+b +1 with 0 < a,a’ <dand 0 < b,V < p.
Without loss of generality, assume that [ < I’. If @ < o’ then by the inequality of Definition 3.16, together
with the observation that p}% = me’ = e, we obtain

-1 e -

l
= purt1 — pa Y —b)— — >(©2n+3)e—e—1>0.
71 Pat Pa+1+ ( )p, “_1_(”4' Je—e—1>
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Now if a = a’ and b < b’ we have

-1 e 1 e 1
PRSP k. gy Yy A (S (A
Fr == gy = )<p’ €+1> ( )(p €+1> >0,

since p < ¢, proving the first claim. If I = ap+ b+ 1, we have ap+ 1 <1 < (a + 1)p and we deduce that

e (a+1)p—-1

ap_ _ l—1< n
atl — 57— S Ki— 57— < pa e———
Pa+1 i1 l It Pa+1 D 1

: 1 e
Thus, we deduce the result since =1 <y

The key properties of the x,-coordinate function are given by the following lemma

Lemma 3.25. Let v = (r,¢, 1),y = (v',c,l') € AF. Let a,a’ € {0,...,d— 1} such that |l —ap,l' —a'p €
{1,...,p}.

a) If v #7" then xp(v) & {xo(7'), %o (7') £ 1}.

b) If a > a’ then xp(7y) > xo(7') + 1.

¢) Ifa=d and c—r > — 1" then x,(7) > %, (7).

Proof. First consider part (a). Write l = ap+b+ 1,1 = a'p+ ¥ + 1, where 0 < b,b’ < p. Suppose that
Xp(7) = %p(7") £ 1. Then we have

1 J— r+c—r —c

1 / ! /
L (Pust = pur - b 1)~ — - = +1.
e(erl part1) +(c—r—c +7") +( )p @+ e N

Applying Definition 3.6, (3.19) and (3.21), we can deduce from the above equality that a = a’ and ¢ —r =
¢ — 1’ £ 1. Since |F=| < G
because ¢ —r = ¢ —r’ = 1. This proves that x,(7) # X,(7") £1. In the case where %1 is replaced by 0, then
a similar argument shows that a = o/, b=V, c—r=¢ —r andc+r = +7r'. Thusc= ¢ and r = 7/,
which contradicts the fact that v # +'. This proves that x,(v) # X,(y"). This completes the proof of (a).

For part (b), as above write I’ = a’p + V' + 1, where 0 < V' < p. Recall that p,11 — par+1 > (2n + 3)e by
Definition 3.6 since a > a’. Therefore,

& 5y it follows that b = b’ and hence ¢ +r = ¢’ + 7/, which is impossible

Xp(7) = %p(1') = (e =7 = ¢ +1') + L (pass = pursa) + U — el 4 e
> -2n+(2n+3)+ 1528 — L. & since |b— /| < p,
23—}—:—;,—5—;:—%, since N > 2ne(f + 1),
>2-2 -1, since & =m =% and £ = pd.

Hence, x,(77) > xp(7") + 1 since p > 2 and e > 2.
Finally, part (c) is immediate from the definition of x, because 0 < k; — pgy1 < p;—i =me' =e. O

In particular, Lemma 3.25(a) shows that x, defines a total order on the set of nodes.
Let A € 2 be an (-partition. Abusing notation slightly, the loading of A is the set

(3.26) %p(A) = {xp(r, ¢, 1) [ (r,c,1) € A}
Example 3.27. Let A = (2,1,1|22) and suppose that p = 1 so that k = p. The following diagram shows

the loadings x,(A) for two different choices of p.
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P1 P2 x P1 P2 x
In both diagrams, the line from a node (r,c,l) to the z-axis gives the loading x,(r,c,l). The different
components of A are drawn with different heights to make it easier to distinguished between them. The next
section explains the significance of this diagram and the red strings. <

Extending this notation slightly, define a generalised partition to be a finite subset v C RxRx{1,...,¢}
such that x, () has the same cardinality as ¥ and for any 1 <1 < ¢,

(3.28) X5(0,0,1) € xp(V), xp(0,0,1) =1 ¢ x,(V) and x+1¢x,(V) for all z € x,(V).

By Lemma 3.25, if X € 2¢ then X is a generalised partition. Conversely, if 7 ¢ 22! is a generalised partition
then © need not satisfy the conclusions of Lemma 3.25. When we consider generalised partitions below we
will only be interested in the set x, (V).

In order to define a partial order on 2%, define the residue of (r,¢c,l) € A, to be

(3.29) res(r,c,l) ==q¢" "€

Recall that ¢ = ¢¢/7', so res(r,c,1) = ebqPa+1t¢" where | =ap+b+1for 0 <a<dand 0<b < p.
If X C AF write A = {7, ..., 7} so that the nodes 77, ..., v, are sorted by decreasing loading function,
that is, x, (7)) < -+ < X5(77"). The residue sequence of A is

(3.30) res(A) = (res(77),res(13), ..., res(v,)) € I
If o € € is an Z-composition of n set
P =X € P |res(A) € I°).

We have the decomposition &2 = | |, 2 (disjoint union).
The following definition plays a key role in this paper. In particular, it defines the partial order that
appears in our main result, which gives a skew cellular basis for %7n(q, QVe).

Definition 3.31 (Webster’s ordering [3, Definition 1.3, Proposition 1.4]). Let X\, u € Z¢ be two (-partitions.
Then XD, o if there exists a bijection 6 : X— p such that

res (6()) = res(y) and Xp (0(7)) < %x(7), for all v € A.
IfAB,p and X # p write A, .

Example 3.32. By Definition 3.6, 0 = p1 < --- < pgq. Therefore, A>,(1"]0]...|0) whenever res(A) =
res(1|0]...|0) and (0]...|0|n) >, p whenever res(p) = res(0| ... |0|n). <&

3.4. Diagrammatic Cherednik algebras. Webster realises the quiver Hecke algebras of type G(¢,1,n) as
idempotent subalgebras of his diagrammatic Cherednik algebras [32]. Following Bowman [3], we now recall
these results, extending them to the slightly more general quiver I' as we go. We start by defining Webster
diagrams.

A string in R? is a diffeomorphism of the form [0,1] — R2%;¢ + (s(t),t). By definition, a string is a
smooth curve in R? with no loops. We sometimes identify a string with the corresponding map t — s(t). We
regard a string as a directed path from bottom (¢ = 0) to top (¢t = 1).

Every string that we consider will be labelled by a residue i € Z. An i-string is a string of residue .

A crossing of two strings is a point where they intersect. A dot on a string is a distinguished point in the
image of the string that is not on any crossing or on the start or end points of the string. We will frequently
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refer to the following configuration of strings when they occur in sufficiently small local neighbourhoods of

hox 5%

a dot double crossing straight strings triple crossings

Pulling apart the strings in a double crossing gives straight strings whereas pulling the string through the
crossing in one of the triple crossings gives the other triple crossing. We apply this terminology below to red,
solid and ghosts strings, which we now define.

Recall that Definition 3.16 fixes the multicharge k € QF.

Definition 3.33 (Webster [32, Definition 4.1], Bowman [3, Definition 4.1]).
Let \,u C Af. A Webster diagram with multicharge k and type (X, ) and top residue sequence i € I"
consists of the following:

a) Red strings ri,...,r; such that r; has residue ¢ and ri(t) = x,(0,0,1), fort € [0, 1].

b) Solid strings si,...,s,, ordered so that s1(1) > sg(1) > --- > s,(1), such that

xpN) = {se()[1 <k <n} and xp(p) = {s¢(0) |1 < k < n}

and s is an ig-string, for 1 <k <mn.
¢) Each solid i-string has a ghost i-string that is obtained by translating the corresponding solid string
one unit to the right.
The solid strings in a Webster diagram are decorated with finitely many dots on the solid strings, with each
dot having a ghost dot one unit to the right on the corresponding ghost string. Exactly two strings in a
Webster diagram intersect at each crossing and no (red, solid or ghost) string can be tangential to any other
string.

Given a Webster diagram D, set top(D) = (A, i) and bot(D) = (u,j), where j = (j1,...,7n) € I"™ is
the residue sequence of the solid strings when read in order from right to left along the bottom of D. Then
i and j are the top residue sequence and bottom residue sequence of D, respectively. Ifi = j then
res(D) =1i=j is the residue sequence of D.

To help distinguish between the different types of strings in Webster diagram we draw red strings as thick
red strings and ghost strings as dashed gray strings.

Remark 3.34. Ghost dots do not appear in Webster’s paper [32] but can be found in Bowman [3, Remark
4.8]. Including the ghost dots does not change the algebras up to isomorphism and makes the relations easier
to write because they are more symmetrical with respect to the dots and ghost dots.

Two Webster diagrams of type (X, p) are equivalent if they have the same residues, same number of dots
on each string, when ordered from right to left at the top of the diagram, and they differ by an isotopy, which
is a continuous deformation in which all of the intermediate diagrams are Webster diagrams. In particular,
the red strings are fixed by isotopy.

Let #, (X, pt) be the set of (isotopy classes) of Webster diagrams of type (X, u). If o is an Z-composition
then set

(3.35) Yo)= |J #pp). and #n)= |J 7o\ w).

A ue P A uePL

Of course, #)p(n) = Uaeﬁf;; W) = UA,HG%‘; Yo, ).
Let D,E € #,(n) be Webster diagrams such that bot(D) = top(E). Define D o E to be the Webster
diagram obtained by identifying the southern points of D with the northern points of F and then rescaling.
There is a distinguished Webster diagram 1§ € #,,(X, A), for each ¢-partition A € &2 and each residue
sequence i € Z", in which all of the strings are vertical. By definition, 1} o 1} = 1. If a Webster diagram
D of type (A, i) has top residue sequence i and bottom residue sequence i’ then D = lg\Dlz.
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Example 3.36. Let £ =4, e =3 and p = 2 so that ¢/ = 3, p’ =2 and let p; = 9 so that k = (0,1.5,9,10.5).
Let A = (22]1]0]2) and fix i € Z". Then 1} is the Webster diagram

- (e o
where the solid strings have residues i1, ..., 47 when read from right to left. The x,—coordinates of the solid
strings are given by the loadings x,(v), for v € A. By (3.22), the x,—coordinate of the Ith red string is
é(m — Z—i), for 1 <1 < ¢ =4. In particular, the leftmost red string has z-coordinate x,(0,0,1) = & =
O
Lemma 3.37. Let U be a generalised partition and i € ™. Let D be a Webster diagram of type (U, V) that

does not contain any crossings. Then D is isotopic to lig, where 1 is the (top) residue sequence of D.

Proof. In order to construct an isotopy from D to li;7 write x,(V) = {z1 < --- < x,} and let sq,...,s, be
the solid strings in D. For u € [0,1], let D) be the Webster diagram of type (¥, ) and residue i, which

has solid strings sgu), . ,sslu) given by

s 20,1 —R x [0,1];¢ = (1 — w)sg(t) + uag,t),  for 1<k <n.
By construction, D = D©) and 1% = DM, 5o to complete the proof it suffices to prove that the strings
in D) never intersect, for u € [0, 1]. By assumption, the solid strings in D do not intersect, so s (t) < s;(t)
for 1 < k < 1 < £. Therefore, if u € [0,1] then s\ (t) < s\ (t) for 1 < k < I < ¢, so the solid strings in
D™ do not intersect. Essentially the same argument show that there are no intersections between any of
the solid, ghost and red strings in D(*), completing the proof. O

We can now define Webster’s diagrammatic Cherednik algebras.

Definition 3.38 (Webster [32, Definition 4.2], Bowman [3, Definition 4.5]). The diagrammatic Cherednik
algebra AP is the R-algebra
AL = (D A%

aECE
where, for each I-composition o, the R-algebra AP, is the unital associative algebra generated by the Webster
diagrams in #p(a) such that
DE - {D oE, if bot(?) = top(E),
0, otherwise,
and the following bilocal relations hold:
A) (Dots and crossings) Solid and ghost dots can pass through any crossing except:

w XX e XX

B) (Double crossings) A double crossing between any two strings can be pulled apart except in the
following cases:

wo o o[t m Pt

(Ws) X

1 1

. ——
\
S, = =@ ==

where j =iq €T
C) (Triple crossings) A string can be pulled through a crossing except in the cases:
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) '
T g i R I V] j ot 3 g

where j =iq €T

voq
D) (Unsteady diagrams) A Webster diagram is unsteady if it contains a solid string that at any
point is n units or more to the right of the rightmost red string. Any unsteady diagram is zero.

PSR-
.

Solid and ghost strings always occur in pairs, so any solid or ghost strings that are not drawn in the
relations above are still part of the relations even though they do not appear. All of the relations in
Definition 3.38 are bilocal in the sense that the relations need to be applied locally in the regions around the
solid strings and their ghost strings. In particular, strings may appear between the solid strings and their
ghosts in the double and triple crossing relations.

The relations drawn in (A), (B) and (C) of Definition 3.38, are the exceptional relations. The remaining
relations are the non-exceptional relations of A2. When they are applied, none of the non-exceptional
relations introduce additional diagrams. Explicitly, the non-exceptional relations in (A) allow a dot to be
pulled through a crossing, those in (B) allow a double crossing to be pulled apart, and those in (C) allow a
string to be pulled through a triple crossing.

As with Z2, the algebra A? is Z-graded with the grading defined on the Webster diagrams by summing
over the contributions from each dot and crossing in the diagram according to the following rules:

deg * =2 deg >< = —20;; deg .’ =0j,qi

1 j 1 j
deg \\ =0jq-1i deg\i\ =0;; deg /I/ =0,
i j i J T g

All other crossings, and the ghost dots, have degree 0. The algebra A® is Z-graded because all of the relations
in Definition 3.38 are homogeneous with respect to this degree function.

Remark 3.39. To make some proofs easier to read, we sometime require the diagrams to have their solid
strings starting or ending in a set x,(¥), where U is a generalised partition (cf. (3.28)). In particular, if
D € Wp(A, 1) is a Webster diagram with no dots or intersecting strings on the line y = H, where H € (0, 1),
then we can factor D as D = D" o D~ where the diagrams D and D~ are the restrictions of D to R x [H, 1]
and R x [0, H], respectively. We then have Dt € #,(\,v) and D~ € #,(v, ) where U is a generalised
partition.

Following [3] we now describe a basis of A?. Recall that we identify an f-partition A € 22! with its diagram.
Let w = (1"]0]...]|0) € Z; compare with Example 3.32. The (-partition w is the unique ¢-partition such

n?

that x,(y) <0, for all v € w.

Definition 3.40. Let A € Z2¢. A A-tableau is a bijection t: X\ — {1,...,n}. If t is a A-tableau then t
has shape X and we write Shape(t) = X. A tableau t is standard if its entries increase along the rows and
columns. In other words,
a) If (r,e,l), (r —1,¢,1) € X then t(r,c,1) > t(r — 1, ¢,
b) If (r,e,l), (r,c — 1,1) € X then t(r,c,l) > t(r,c — 1

H+1;
)+ 1.
Let Std(A) be the set of standard X-tableau.

)

As in Example 3.20, think of standard tableaux as labelled Russian diagrams.
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Example 3.41. Let g = (3,1]22|1%). Then one tableau in Std(u) is
()
Y 14| Ry

Let t € Std(M\) and 1 < k < n. The residue of k in t is res;(t) = res(t1(k)) and
res(t) = (resy(t),resa(t), ... res,(t)) € I

is the residue sequence of t.

Let A € Z.. A node a ¢ X is an addable node of X if AU {a} is (the diagram of) an ¢-partition.
Similarly, « € A is a removable node of A if A\ {a} is an f-partition. Let A(X) and R(A) be the sets of
addable and removable nodes of .

Let t € Std(X). If 1 <1 < nlet t;; be the restriction of t to {1,...,k} and let A = Shape(t;x). Since t
is standard, t;; is a standard Aj-tableau. Define

A () = {7 € A(A) | res(y) = resy(k) and x,(t (k) > x,(7)},
Rie(t) = {7 € R(Ap) [ res(y) = resi(k) and x,(t™" (k) > x,(7)}-
Following [3, Definition 1.11], and [9, (3.5)], the degree of t is the integer

(3.42) degt =Y (#Ak(t) — #Rx(1)).
k=1
In order to attach a Webster diagram to a standard tableau s let cross(D) be the number of crossings in
any diagram D € #,(n). The number cross(D) is preserved by isotopy but when we apply the relations in
AP diagrams with a different number of crossings can appear.

Definition 3.43 ( [32, §4.3], [3, Definition 6.1)). Let t € Std(X), for X € PL. Let Cy € AP be any Webster
diagram in Wp(X,w) such that:
a) For each v € X, there is a solid string of residue res(y) from (x¢(7),0) to (xp(7),1), where x¢(y) =
Xp(t(7),1,1) and (t(7),1,1) € w.
b) The diagram Cy has no dots on any strings.
¢) If C{ is another diagram satisfying (a) and then cross(Cy) < cross(Cy).

A generalised double crossing in a Webster diagram D is a pair of strings in D that cross twice. In
particular, if a diagram C satisfies part (a) of Definition 3.43 and has no generalised double crossing then
C' satisfies (c).

In general, the diagram C' is not uniquely determined by Definition 3.43. In Section 4.5 we give an explicit
construction of such diagrams but, for now, we let Cy be any Webster diagram satisfying Definition 3.43.
Unless stated otherwise, the results that follow do not depend on the choice of diagram for C;.

By construction the bottom residue sequence of Cy is res(t). Moreover, by [3, Theorem 7.1], deg C¢ = deg t.

Let #:#,(X, ) — #p(p,A) be the map that reflects a Webster diagram in the line y = 3. Using
Definition 3.38 it is easy to see that * extends to an involution *:Af — AP, for any Z-composition a.

Hence, we can consider * as a homogeneous automorphism of A? of order 2.
Definition 3.44. Let s,t € Std(A). Define Coy = CIC, € AP.

By the remarks above, Cs¢ is homogeneous of degree degs + degt. The next result shows that a certain
idempotent truncation of AP, that will turn out to be isomorphic to Z2, is a graded cellular algebra in the
sense of Graham and Lehrer [15,18]. Recall the idempotents 13 from before Example 3.36, where X € 22/
and i € Z". Let a be an Z-composition of n. Define the idempotents

(3.45) Ewa= Y 1L, Ew= Y Ewas
iz a€E;
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and define the algebras
(3.46) AP(w) = EpoAPE, 4, Af(w) = E,ARE, = @ Af(w).
aECt

We can now state one of the main results of [3,32].

Theorem 3.47 ( [32, Theorem 4.11], [3, Theorem 7.1]). Let a be an Z-composition of n. Then the algebra
AP(w) is a graded cellular algebra with graded cellular basis

{Cet|s,t € Std(X) for A€ 2L},
with respect to the poset (2L, >,) and homogeneous cellular algebra anti-isomorphism .

In fact, Bowman and Webster give a cellular basis for the algebra A?. We state only this special case
of their result because this is all that we need and because it saves us from having to introduce additional
notation.

Remark 3.48. In type A, Bowman [3] and Webster [32,33] only consider algebras that are attached to the
cyclic quiver I'. whereas we are considering the more general quiver I' from Definition 3.8. As the relations
in AP are local and depend only on the quiver and the choice of residues, it is easy to see that the arguments
of these papers apply without change for the quiver I'. The Webster diagrams, and hence the algebras A?
also depend on the choice of loading function. In his papers Webster considers arbitrary loadings whereas
Bowman fixes a loading that is different from ours; see Remark 3.23. If x and y are two loading functions
then it is easy to see that the corresponding Webster algebras A¥X and AY are isomorphic if

x(7) < x(¥') if and only if y(v) < y(¥) for all v,y € A¥,

where an isomorphism is given by conjugating by the “straight line” diagrams that have strings connecting
x(7) to y(7), for all v € A,f. Comparing the definition of our loading function x,, from (3.22) with Bowman’s
(see Remark 3.23), it is straightforward to see that our loading function is equivalent to one of Bowman’s in
the sense that they give isomorphic Webster algebras.

Theorem 3.49 ( [32], [3, Theorem 6.17]). Let o be an Z-composition of n. There is a unique isomorphism
of Z-graded R-algebras g: #> = AP (w) such that

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
- L SRS ! b eeereernenee ! . LN RO
6(1) — 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
in in—1 ir i1 Rl Ko
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
U D [SOISOSRRRTISSTIL RN JNNIPTTRTSURSTRRSRR I I PO LU [,
®
yre(l) —> 1 1 ’ 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
in in—1 iy i1 Rl Ke
1 ’ 1 1
1 . ’ 1 1
1 LS4 1 1
. L N \l\' .................. ! LN RO
dre@) s | - 11
1 ’ N 1 1
1 \ 1 1
1 ’ . 1 1
in Gn—1 Trt1 i 41 K1 Ke

forieI°.

The idea behind the proof of Theorem 3.49 is to use the relations to pull all of the solid strings in a
diagram D € #,(w,w) to the left of all of the red strings and then check that the relations are preserved
by the map g: %2 — AP (w) given in the statement of Theorem 3.49. For us the important point is that
instead of working in Z2 we can apply the isomorphism g and work in A?(w). We use similar ideas in
Section 5.2 to prove our main results.
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4. REGULAR DIAGRAMS AND SHIFTED TABLEAUX COMBINATORICS

This chapter is the technical heart of this paper. It prepares all the tools we will need in the next section
to prove that the graded Hecke algebras of type G(¢,1,n) have a shift automorphism, which will imply
that the Hecke algebras of type G(¢,p,n) are skew cellular by Theorem 2.28. All of the calculations take
place inside the diagrammatic Cherednik algebra Af. The key point is that the special choice of loading
made in Definition 3.16 ensures that the dominance order >, for the cellular basis of %’Q = B, oAPE, o in
Theorem 3.49 is compatible with the shifted tableaux combinatorics that we introduce later in this chapter.

4.1. Regular diagrams. This section defines a class of diagrams that are easy to work with and which play
a key role in the arguments of Section 4.5.

Definition 4.1. Let D be a Webster diagram. A singular crossing in D is a crossing between a solid
i-string and either:

e another solid i-string

e a red i-string, or

e a ghost ig~!-string.
A crossing is regular if it is not singular. A diagram D is a regular diagram if D has no dots and all
crossings in D are reqular. A singular diagram is any diagram that is not regular.

In particular, any crossing that does not involve a solid string is regular. Note that regular crossings are
preserved by the relations in Definition 3.38 and by isotopy. An element of AP is regular if it is the image of
a regular Webster diagram. By assumption, regular diagrams do not contain any of the exceptional crossings
in Definition 3.38, so the span of the regular diagrams in A? is a subalgebra of A#.

The next result is the analogue for regular diagrams of the algorithm for reducing words in the symmetric
group.

Proposition 4.2. Let U,V be two generalised partitions and let C € #,(V, V') be a regular diagram. Then C
is equal to a reqular diagram with no generalised double crossings.

Proof. Number the strings in C' from left to right along the top of the diagram as si, S2, ..., S2n4¢-

Each string cuts the diagram into two pieces, say Left(sy) and Right(sg). In AP, we claim that the diagram
C' is equal to a diagram that does not have any generalised double crossings in Left(sy), for 1 < k < 2n+ ¢,
and if sy is a not a ghost string then the only crossings of non-ghost strings in Left(s) are between non-ghost
strings s, and s, with min{a, b} < k. Of course, a non-ghost string is either a red string or a solid string.

We prove the claim by arguing by induction on & = 1,2,...,2n + ¢. If k = 1 then we can use the
non-exceptional triple crossing relation (C) from Definition 3.38 to pull the string s; to the left through any
crossings in Left(s1). By induction we assume that the claim is true for the strings sq,...,s,-1. If s; is a
ghost string there is nothing to prove so we may assume that sy is a non-ghost string. To show that the claim
holds for s, use the non-exceptional triple crossing relation (C) from Definition 3.38 to pull the string sj to
the left through any crossing in Left(sy) that involve two larger strings. Pulling s, through a crossing does
not destroy any generalised double crossings in the diagram. Moreover, for any generalised double crossing
D in Left(sy) that involve s, any string which goes through the region surrounded by D can be moved away
from the region by using the non-exceptional triple crossing relation (C) from Definition 3.38 as C' is regular.
As a result, we can apply the non-exceptional relation (B) from Definition 3.38 to pull apart any generalised
double crossings in Left(sy) that involve si. Note that the two strings do not have the same residue since all
crossings are regular. Observe that the crossings involving string s; for j < k are unchanged in this process.
After a finite number of steps we will show that all of the crossings between non-ghost crossings in Left(sy)
will involve a string s;, with j < k, and s; does not meet any other string twice. This completes the proof
of the inductive step and hence proves the lemma. 0

Corollary 4.3. Let U,V be two generalised partitions and let C,D € #,(V,V’) be two regular diagrams
such that the string starting from x,(v) in C and D has the same residue and the same end points, for all
vy €v. Then C =D in AP (D, D).

Proof. By Proposition 4.2, in AP the diagram C*D is equal to a diagram FE that does not contain any
generalised double crossings. By assumption, each string in E starts and ends at the same point, so E does
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not contain any crossings. Hence, F is an idempotent diagram by Lemma 3.37. By the same argument, CC*
is also equal to an idempotent diagram. Thus, in A?,

= (CC*")D =C(C*D) =C,
which completes the proof. O

Hence, once we fix the start and end positions of the n solid strings, together with their residues, then
the set of regular diagrams can be identified with a subgroup of &,,.

4.2. Shifted tableaux combinatorics. Recall from Definition 3.15 that %’A
o-fixed points:

", is defined as an algebra of

A A
Koo = (%)
Motivated by Theorem 3.49, we want to consider the o-fixed point subalgebra of the diagrammatic Cherednik
algebra but it is not clear how to extend o to an automorphism of AP(w). This section introduces a

combinatorial shift operator on the set of nodes that will allow us to extend o to an automorphism of A?(w).
Define a shift operation o,y on the set of nodes 4,¢ from (3.19) by

Srel) = {(r,c,l—l—l), ifl20 (mod p),

4.4
(44) (rye,l+1—p), ifl=0 (mod p).

We usually abuse notation and write 0 = o_4, as the meaning will be clear from context. Equivalently, if we
write l =ap+b+ 1, where 0 < a < d and 0 < b < p, then

(T,c,ap+b+2), 1fb7ép—17

b+1)=
o(r,c,ap+b+1) {(T7C,ap+1)7 i£h—p—1.

Let Std(25) = Uxege Std(A).

Definition 4.5. Define a map oo : P25 — PL by om(X) = {ox () |y € A}, for X € PL. Similarly, let
osta : Std(PL) —Std(22L) be given by osia(t) = to o, for t € Std(22%).

The definitions readily imply that o2 (X) € 2% if A € 2L so 0 is well-defined. Namely, the partition
o»(A) is obtained from A by a certain permutation of its components. Similarly, if t € Std(A) then
osta(t) € Std(cw(X)). As with the automorphism o = o2 of Z2, we usually omit the subscript and write
0 =09 and 0 = gstq. In this way, we think of o as:

the automorphism o of Z4

the map o4 of order p on the set Z¢ of (-partitions
the map o_y on the set .4’ of nodes

the map osiq on the set Std(22%) of standard tableaux.

This should not cause any ambiguity because the meaning will always be clear from the context. It is
not yet clear how the map o2 is related to the other three combinatorially defined maps but we will
ultimately see that the triple of maps (aj}, o%,0std) is a shift-automorphism in the sense of Definition 2.22

(see Theorem 5.4).

Example 4.6. Suppose that p = p’ = 2 and n = 4. Two standard tableaux t € Std(2[1?) and s € Std(12|2)

TP -y

Then s = ot and t = os. <&
Lemma 4.7. Suppose that v € N,f. Then res(o (7)) = eres(y).

Proof. Let v = (r,c,l) and write l = ap+b+ 1, where 0 < a < d and 0 < b < p. By the remarks after (3.29),
res(y) = ebgPa+1+¢~" which implies the result. 0
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Lemma 4.8. Suppose that x,(7) > x,(7') + k, where 7,7 € X with X\ € PL and k € {—1,0,1}. Write
vy=(r,c,l) andy = (', '), wherel = ap+b+1 andl' =ad'p+V'+1, with0 < a,a’ <d and 0 < b, b’ < p.
Then x, (0(7)) > X, (6(7')) + k unless the following four conditions hold:

/ b’ +1

a=da, 0<V <b=p—1, c—r=c =" +k and ¢"res(y’) =" res(y).

In particular, if res(y) = q®res(y’) then x, (a(7y)) > xp (0(v')) + k.

Proof. By Lemma 3.25(b), x,(c (7)) > Xp(0(7")) + 1 if a > d’, so we may assume that a = a’. Recalling the
definition of the loading x, from (3.22), if b < p—1 or b =¥’ then x,(d (7)) — Xp(7) = xp(c(7’)) — x5(7") s0
we can, and do, assume that b’ <b=p— 1.

Notice that :—;, = mlp, = % and that 2% < ﬁ since N > 2ne(¢+1) by (3.21). Using these facts for the
third and fourth inequalities,

k<Xp(T70,Z)_Xp(T’,C’,l/):C—T—C/—FT/‘F#(%_ﬁ)+T/+C/%
1
, , 1 2n
Sc_r_c+r+QFJM5—a?Iﬁ)+W
P 1 p 1 1
Seor—cArHl—g - T amn T e

§c—r—c’+r'+1—%.

Hence,c—r>c — 7' +k.
A similar calculation, replacing b = p — 1 with 0 and ¥’ with &’ + 1, shows that

xp (0(7)) —xp (c(7')) = bljl(ﬁ—;—:)—l—c—r—c’—kr’—HﬁT‘M>c—r—c’+r’—b/T+1.

Consequently, if ¢ —r > ¢/ — ' + k then x, (o(7)) > x, (¢(7')) + k.
Therefore, x, (0(7)) < xp (0(7')) + k only if ¢ —7 = ¢ — 1" + k. In this case, by the remarks following
(3.29),

v va+1+c’77"' v Vat1+c—r—k —

res(y') =€’ ¢ =¢c'q

completing the proof of the first part of the lemma.
Finally, if res(y) = ¢* res(y’) then for any 0 < b’ < p—1 we have ¢¥ res(y’) # ¥ *1res(y) since ¢ has order
p, thus x,(a(7)) > xp(a(v')). O

Remark 4.9. It follows from the proof of Lemma 4.8 that if the four conditions of the proposition are satisfied

then x, (o(7)) —xp (0(7')) < %. Hence, it can still happen that x, (a(7)) > x, (a(7")).

_ ’
ké‘b +1

q res(7),

Lemma 4.8 implies that o respects the >, partial order. More precisely, we have:
Corollary 4.10. Let A\, u € P! and suppose that X Dop. Then ocA>,op.
Proof. By Definition 3.31, A>, p if and only if there exists a bijection § : A\— p such that

res(0(7)) = res(y) and Xp(0(77)) < xp(7), for all v € A.

Let @ = 0ofoo~!. Then ¢ is a bijection from oA to op and if v € oA then res(¢’(y)) = res(y), by
Lemma 4.7, and x,(8'(7y)) < x5(7), by Lemma 4.8. Hence, cA >, op. O

Abusing notation we extend o to a map on the set of standard tableaux.

Definition 4.11. Let t € Std(\), for A € PL. Let ot:oX— {1,...,n} be the standard oX-tableau given
by ot=too~ L.

Note that the o A-tableau ot is a standard cA-tableau since ¢ just permutes the components of t. We now
extend the dominance order >, on 2! to the set of standard tableaux by defining
sD>,t if Shape(si) >, Shape(t;) foralll <k <n.
As before, write s>, tif s>t and s # t.

Lemma 4.12. Let s € Std(p) and t € Std(M), for A, u € PL. Then degot = degt and if s>,t then
os >, ot
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Proof. It is immediate from Lemma 4.8 that os>, ot if s>, t. Recall the definition of deg t from (3.42) and

observe that o induces bijections Ay (t) — Ax(ct) and Ry (t) — Ry(ot) by Lemma 4.7 and Lemma 4.8,
for 1 <k <n. Hence, degot = degt. O

The results in this section suggest that it is not unreasonable to expect that 0(Cst) = Cos,¢. Before we
can prove this we first need to extend o to an automorphism of Af; | (w) and then construct explicit diagrams
Cy for which this is true. We do this in the next sections.

4.3. Applying o2 in the diagrammatic Cherednik algebra. This section identifies the image of the
automorphism o of %{})n of Theorem 3.13 under the isomorphism of Theorem 3.49. A key ingredient is the
diagram automorphism D — D% introduced in [3], and its generalisations below, that play a crucial role
in the proof of our main results in Chapter 5.

Let a € €' be an Z-composition of n. By Theorem 3.49, there is a Z-graded R-algebra isomorphism
FE =2 E,, oAPE, o, so we now identify these two algebras. Let [a] be the orbit of v under the action of the
finite group (o), as described in (3.12). Define

A _ A — [ "
(4.13) Rin) = @ s, EBufa = @ Ew,s and A[a] - @ Ag-
sela) pela] pele]

The isomorphism ¢ in Theorem 3.13 induces an automorphism of L@[’;}. Hence, we can regard o as a
homogeneous R-algebra automorphism of Af; | (w) = Ew,[a]Af; | Eu o]+ The next result gives a more precise
description of o considered as an automorphism of Af’a ] (w), or equivalently, of A?(w).

Let 6 be the automorphism of the set of Webster diagrams that sends a diagram D to the diagram that
has the same strings but where the residues of the solid and ghost strings are multiplied by €. Note that & is
not well-defined as an automorphism of A?(w), or even as a map AP (w) — AP (w), since it is not compatible
with the exceptional defining relations (for & does not change the residues of the red strings). The next
lemma is immediate from the definitions.

Lemma 4.14. If D is any Webster diagram then (6(D))" = & (D*).

Let v be a generalised partition and a € {0,...,d — 1}. Then v is a-bounded if x,(v) < x,(0,0,ap + 1)
for all v € U. That is, all the nodes in U are to the left of the (ap + 1)th red string rgp+1. In other words,
the nodes are to the right of at most ap red strings. For example, the /-partition w is 0-bounded.

Let a € {0,...,d — 1} and let &, 7’ be two a-bounded generalised partitions. Let D € #,(V,V’) be a
Webster diagram. Then D is an a-bounded diagram if all of its solid string are to the left of rop41. Further,
D is an w-diagram if ¥ = o' = w and D is 0-bounded. In particular, not all Webster diagrams of type
(w,w) are w-diagrams. By Theorem 3.49, A?(w) is spanned by w-diagrams.

Now let a € {0,...,d—1} and let , 7" be two a-bounded generalised partitions. Let D € #,(V,V’). Let s
be a solid é-string in D and let [ € {ap+1,...,¢}. Suppose that ¢"* =i and that s crosses the lth red string
r;. We pull all solid (and ghost) strings that are to the right of rqp11 to the left of rqpq1 while still staying
to the right of rq), if @ > 0, and for each crossing involving a solid ¢-string (from southwest to northeast) and
a red string (from southeast to northwest) place a dot at the position of the crossing in D. The argument
used in the proof of [3, Proposition 6.19, Figure 18] now shows that by iterating this process we get a single
diagram D¢ which is denoted by D in [3, Proposition 6.19]. When a = 0 we simply write D¢ := D%cy¢,
Moreover, by construction,

(4.15) (Dotheyeyaeye — pa.cye, whenever 0 < a < d — 2.
The following result is implicit in the proof of [3, Proposition 6.19].

Lemma 4.16. Leta € {0,...,d—1}, let U, V" be two a-bounded generalised partitions and let D € W,(vV,v'").
In AP(v,V") we have D = D%, In particular, if D is of type (w,w) then D = DY° in AP (w).

Proof. This can be proved using the argument of [3, Proposition 6.19, Figure 18]. O
Definition 4.17. Let a € {0,...,d —1}.

e The a-comb in a diagram is the set of red strings rap+1,-- -, (at1)p-
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o A diagram D is a-greedy if each solid string s either does not cross rqpi1, or s crosses all of the
SITINGS Yapt1s -+, F(at1)p N the a-comb but does not cross rai1yp41-

Note that an a-bounded diagram is a-greedy. In Example 4.23, {r1,ro} is the 1-comb and {rs,rs} is the
2-comb.

Lemma 4.18. Leta € {0,...,d—1}, let U,V be two a-bounded generalised partitions and let D € W,(V, V).
If D is a-greedy then in A2(D, ') we have &(D*¥¢) = G(D)>%¢.

Proof. Recall that the red strings ropi1, - - -, F(a41)p Of the a-comb have residues g"er+1, eqortt ... ,eP~Lghaptt,
Let s be a solid i-string in D. If s does not cross rap41, then D = D% and & (D) = 5(D)*° clearly
holds. Suppose that s crosses ryp41. By assumption, the diagram D is a-greedy, S0 s crosses ropi1,- -, f(at1)p
and it does not cross r41)p+1- If i ¢ gZqRar+1 then in D¢ the string s of D does not gain a dot, so neither
will its image in (D). On the other hand, if i = b¢er+! with 0 < b < p, if the string s gains N € N dots
when it is pulled past rgptp+1 during of the operation D — D¢, then the image of s in 6(D) also gains N
nodes at the same positions, up to isotopy, during the operation (D) +— &(D)%¥°. O

Lemma 4.18 can be thought as a commutation rule for the operations D — D*%¢ and D — (D).

Proposition 4.19. Let D € #,(w,w) be any diagram such that a solid string crosses a red string in the
a-comb only if it cross every red string in the a-comb, for 0 < a < d. Then 6(D%°) = (D)%Y in AP (w).

Proof. The result is clear if there are no solid-red crossings in D since in this case D = D®° as Webster
diagrams. Let now @ € {0,...,d — 1} be maximal such that a solid string crosses a red string of XFE;O. We
will prove by reverse induction on a € {0,...,a} that

&(Da,cyC) — &(D)a,cyc'

The initialisation a = @ follows directly from Lemma 4.18 since the assumption of D implies that D is
a-greedy. Now let a € {0,...,@ — 1} and assume that 5(D**1:%¥¢) = 5(D)*Th¥¢, The diagram D*T1:¥¢ ig
(a+1)-bounded by construction. By assumption of D, the diagram D%+1:¢¥¢ is g-greedy thus by Lemma 4.18
we have

(4.20) G (DL eveymeve) — g(potleveymeye,
By (4.15) and the induction hypothesis we deduce that

§(Datleveyacye — (5 (pjetlere)jacye — g(pjacye
thus the hereditary property follows from (4.20). The result now follows from the case a = 0. O
Proposition 4.21. Let D € #p(w,w). Then o(D) = &(DY°) in AP (w).

)

Proof. By Theorem 3.13 and Theorem 3.49, the maps & and ¢ coincide on the images of the KLR generators
in #,(w,w). Consequently, if D and E are w-diagrams then

5(DE) = o(DE) = o(D)o(E) = 5(D)&(E),

in AP. Therefore, in view of Lemma 4.16, writing D° € AP as a product of w-diagrams, the result follows
because o is an algebra automorphism of A?(w). O

4.4. Regions. Recall that the definition of the set of nodes .4,¢ implies that if (r,c,1) € A, then r — ¢ €
{—n+1,...,n —1}. The next definition allows us to write the set of nodes, and their x,—coordinates, as a
disjoint set of regions. These regions are the key to defining an explicit diagrammatic basis of AP (w) that

is compatible with o, which we will use to prove that %’Qn is a graded skew cellular algebra.

Definition 4.22. For integers 0 < a < d and —n < § < n define
N =y e My =(r,e,]),c—r=0,1=ap+b+1 with 0 < b < p},
A= 4N for Xe P,

1 ap 2n 1 (a+1)p
ad . z -2 )z Z )| CR.
X [5+e(pa+1 ) N,6+1+e<pa+1 T CR
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Example 4.23. Let { = 4,e = 3,p = 2,d = 2,n = 1, N = 61,p = (0,15). An illustration of regions in a
diagram is given by:

0,—1 0,0 0,1 1,—1 1,0 1,1
XP XP XP XP XP XP

| 1 1 | | 1l ] |
1 1 Ll 1 1 1 Ll 1
| | 1 | | | ] |
| | 1 | | | ] |
| | Ll | | | 1l |
| | Ll | | | Nl |
| | Ll | | | 1 |
| | Il | | | [l |
| | 1l | | | [l |
| | Ll | | | [l |
| | 1 | | | [ |
| | 1 | | | ] |
| | 1 | | | ] |
| | 1 | | | ] |
| | 1 | | | ] |
| | Ll | | | 1l |
| | Il | | | [l |
| | Ll | | | 1 |
| | Ll | | | Nl |
| | 1l | | | [l |
L L Ll L L L Ll L

ry ro rs rg

In this diagram the 0-comb is {ri,r2} and the 1-comb is {r3,rs}. Hence, the a-comb is contained in the
region X%, for a € {0,1}. &

The node (0,0, ap + b + 1), which corresponds to a red string, belongs to .# Y. In particular, note that
the red strings in the a-comb are precisely the red strings contained in the region X‘;;O. For the following
lemma, for any (a,d), (a’,8’) € Z2, write (a, ) <iex (@, &) if (a,d) is smaller than (a’, ) in the lexicographic
order. That is, (a,d) <iex (a’,0") if a < a’, or a =a’ and 6 < ¢".

Lemma 4.24. Suppose that 0 <a <d, —n <35 <n andy= (r,c,1) € N9,
a) Fiz 0 <a' <d and —n < 8" <n such that (a,d) <iex (a’,0"). Then X‘[’;‘s ﬂX‘[’;,"‘;/ = (. More precisely,
ifx € XZ=5 and ' € XZ/"S, then x < o’.
) We have v € A% if and only if x,(7) € Xf,"s.
¢) If v € X&° and 6 < n then z +1 € X30FL,
) If xp(7y) € XZ=5 then x,(o (7)) € XZ=5. That is, each region is stable under o.
e) If v = (r', 1) € ME, v,y € 40 and | # 1 then res(v) # res(v').
D Ify =@,y e Nt ye N and v € /0L and | #1' then res(y) # qres(y’).

Proof. Let us prove (a). If 6’ = § + 1 then IninXZ'f‘gJrl — max X;’;‘s =24 % > 0, since N > 2ne({ + 1)

by (3.21). Hence, the result follows when a = a’. To prove the result when a < a’, it suffices to consider the
case when '’ =a+ 1 and § = n = —§’. We have

=-2n—1+ l(pa-i-2 - pa-‘rl) - 2_”

e N

Hence,

2
minXZ*l’_" — maxx;’,’" >0 < pat2 — Pat1 > (2n + 1+ Nn) e.

The latter inequality holds since py12 — pat1 > (2n+ 3)e, by Definition 3.6, and 2% < m < 1by (3.21).

This completes the proof of (a)

We now prove (b). If v = (r,¢,l) € A4 then x,(y) = 6 + % (Iil - éjr—}) — ke thus Lemma 3.24 we

1 ap 2n 1 (a+1)p
S+~ par1—— ) — = <o+1+—-(pag1——->|.
+e<p+1 f—l—l) N_Xp(y)_ * +e<p+1 0+1

That is, x,(7) € X4° so (b) now follows in view of (a).

Parts (c) and (d) are clear from the definitions. For part (e), writing [ = ap +b+ 1, with 0 < b < p, we
have res(y) = gPa+119? by the remark after (3.29). Thus, writing I’ = ap + b’ + 1, with 0 < ¥’ < p, we have
b # b by assumption and so res(y’) = g+t 19" =£ res(y) since e has order p. The proof of (f) is similar. [
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The next lemma will allow us to consider generalised partitions constructed from min XZ"S.

Lemma 4.25. Let0<a<d and —n <6 <n.
a) Let vy = (r,c,ap+1) e Rx R x {1,..., 4}, wherec—r =6 and c+ 1 = 2n. Then x,(7) :minX‘[’;‘s.
b) Ifl=ap+0b+1 with 0 < b < p, then min X3° < x,(0,0,1) and min X&' +1 < x,(0,0,1).
¢) We always have IninX/‘;"s ¢ {x,(0,0,1),%,(0,0,1) — 1}.

Proof. Part (a) is clear. Part (b) follows from Lemma 3.24 and, using Lemma 4.24, we deduce part (c). O

The final result in this section proves a lemma that describes the x,-coordinates of nodes in A%Y in terms
of the x,—coordinates of the adjacent red strings.

Lemma 4.26. Let 0 < a <d and vy = (r,c,1) € A%, Then
Xp(0,0,1 — 1) < xp(7) < x0(0,0,1).

Proof. The second inequality follows from Lemma 4.25. If [ = ap + 1, then the first equality is clear by
Definition 3.6. If [ # 1 (mod p) then, since N > 2nep’(¢ + 1) by (3.21),

1 -1 r4+c 1 -2
%) = %000 1) =2 ("”‘m> TN e ("“‘m)
1

- 1 r+c
Cp o e(f+1) N
1 1 1

The last quantity is non-negative since p < ¢, proving the result. 0

4.5. Regular and singular diagrams for tableaux. We are now ready to start constructing the diagram-
matic basis of AP (w) that we will use to prove our main results. In this section we take the first step of fixing
a choice of diagrams {B}, for t a standard tableau, in accordance with Definition 3.43. We construct the
basis elements By by gluing smaller diagrams together. The next lemma studies the residues and possible
positions of strings at the top of a B¢ diagram.

Lemma 4.27. Let t € Std(X) with A € 2L and let v € A%, for 0 < a < d and —n < & < n.

(SS):  Ify' € A%? and res(y) = res(y’) and t(y) > t(v') then x,(7) < xp(7').

(SG):  Ify € A¥%~! and res(y) = qres(y’) and t(y) > t(v') then x,(7) < xp(y') + 1.

(GS):  Ify € A¥*L and gres(y) = res(y') and t(y) > t(v') then xp(v) +1 < xp (7).

(SR): If6=0and~' € H#*Y corresponds to a red string with res(y) = res(y’) then x,(7y) < xp(Y').
(GR): Ifé=—1and~" € 40 corresponds to a red string with qres(y) = res(y’) then xp(7)+1 < x5(7).

Proof. Write v = (r,¢,1) and 7/ = (r',¢,1). For (SS), which stands for “solid-solid”, since 7, € A®°
we have c —r = ¢ —r' = §, so ¢"™ = ¢" since res(y) = res(y’). If b’ € {0,...,p — 1} are such that
I—b—1=10—VY —1 = ap we deduce that e’ = " and thus b = ¥’ since ¢ has order p and thus [ = ['.
Thus, since t is standard, the box corresponding to v is higher than the box corresponding to 7'. Therefore,
r+ce>71 4,50 x(7) =% (V) = % < 0 as desired.

For (SG), which corresponds to solid-ghost positions, 7,7’ are necessarily in the same component of A.
Hence, since t(7y) > t(7') we have r+¢ > r' + ¢ and thus x,(7/) + 1 —x,(7) = TJFC_TT/_C/ > 0. The (GS) case,
or ghost-solid case, is similar.

Finally, the solid-red (SR) case is deduced from the solid-solid (SS), and (GR) is deduced from (GS),
using the convention that t(y’) := 0. O

Recall the definition of a generalised partition, from (3.28) and the definition of a regular diagram
from Section 4.1. In order to make the inductive arguments below clearer, we write w, = (1™]0]...|0), in-
stead of w, and let XZ=5(n) be the interval XZ=5 defined in Definition 4.22, for any 0 < a < d and —n < § < n.
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Definition 4.28. Let A € 2! and fix a standard tableau t € Std(X). Set v, = t=1(k), for 1 <k < n, and
let ay, 0y be the integers such that vy, € ng,ék (k). Define Uy, == min Xf,k"s’“(k) and let Uy be a generalised
partition such that

xp(D4) = {Des |1 < k <nl.

The inequalities min XZ*‘;(n) < min XZ=5(n—1), for any a and J, together with Lemma 4.24 and Lemma 4.25,
ensure that Uy satisfies the requirements of (3.28) and hence is a generalised partition.

For the rest of this section we fix a partition A € % and a standard tableau t € Std(\) together with
the associated notation from Definition 4.28.

Proposition 4.29. There exists a regular diagram B{*® € W,(A, D) such that B{*® contains a solid string
si of residue res¢(k) that starts at si(0) = Dy and ends at sp(1) = Xxp(Yk), for 1 <k <n.

Proof. We argue by induction on n = |A| to show that such a diagram B{® exists for any A € 22! and
t € Std(A). The base case n = 0 is immediate because in this case t is the empty tableau and we can define
B{°® to be the diagram with no solid (and ghost) strings.

Now suppose that n > 0 and let s be the (standard) tableau obtained from t by removing the (removable)
box v, = t~1(n). Let p = Shape(s) € 2% _,. By induction, there exists a regular diagram B;*® € #,(u, Us)
that satisfies the conditions of the proposition.

Define B{°® to be the diagram obtained by adding the solid string s, of residue res¢(n) to the diagram
B:°® together with its ghost, where the string s,, is given by

Ui, ifo<t<l—e
sp(t) = =R
®) LWl —t) +xp(m)(t—1+¢)), fl—e<t<1,

where € is sufficiently small. That is, the solid string s,, is vertical for 0 < ¢t < 1 — € after which it is an
almost horizontal line connecting the points (V¢ ,,1 —€) and (xp(7n),1).

By induction, B{*® has the required endpoints, so it remains to show that B{°® is regular. By construction,
the string s,, does not cross any other strings when 0 <¢ < 1 — € because min Xg"s(n) < min Xg’é(n —1). By
definition, v, = (r,¢,1) € Xg"s, where for convenience we write a = a,, and § = §,,. By Lemma 4.24, when
1 — € <t <1 the solid string (resp., the ghost string corresponding to) s, crosses:

e any solid string s,/ € B®® for v/ € p®° with x,(v') < Xp(7n);
e any ghost (resp. solid) string corresponding to s, € B;*® for o/ € u®°~1 (resp. 7/ € p®°*1) with
xp(V) +1 <xp(m) (resp. xp(v) <xp(7) +1);
e any red string starting at (x,(0,0,ap+ V" +1),1) with 0 <V < b if § = 0 (resp. § = —1), where
be{0,...,p—1}issuch that l =ap+ b+ 1.
Since ¥ = 7, is the box with the highest label in t, if v € p then have t(vy,) = n > t(y’). Therefore, by
Lemma 4.27, all of the crossings above are regular. Hence, B{*® is regular and the proof is complete. ]

An example of a diagram B{°® can be found in Figure 1 and Figure 2. Now Definition 4.28 and Proposition 4.29
immediately imply the following result.

Lemma 4.30. FEach string of B{°® is contained in a single region.
We now define the second part of the diagram By.

Proposition 4.31. There exists a diagram Bfing € Wp(Vy,w) with solid strings sy, . ..s,, and corresponding
ghost strings g1, .. .,&n, such that:
a) The string s has residue res¢(k), starts at x,(k,1,1) and ends at Uy, for 1 <k <n.
b) In particular, the string s crosses a red string in Xf,’o fora e {0,...,d— 1} if and only if it crosses
all the red strings in X;’,’O.
¢) If si crosses s; then (ak,dx) # (aj,0;). If si crosses g; then (ak, k) # (a;,0; +1). If gi crosses s,
then (ak, o + 1) # (a;,6;).
d) If sy crosses the red string in XZ*O then vy, & A*0. Similarly, if g crosses the red string in X;’,’O then
Vi §§ )\a,fl.
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Proof. Again we argue by induction on the number of solid strings n > 0. When n = 0 the result is vacuously
true so suppose n > 0. Let s be the (standard) p-tableau obtained from t by removing the (removable) box
Yo = t71(n), where p € 2 | is the (-partition obtained from XA € £ by removing v, € A%, By
induction, there exists a diagram B8 ¢ Wp(Vs,wn—1) that satisfies the conditions of Proposition 4.31. As
in the proof of Proposition 4.29, define B{™™® ¢ Wp(Vt, wn) to be the diagram obtained from B by adding
the solid string s,, of residue res¢(n), and its ghost, going vertically from (x,(n,1,1),0) until almost the top
of the diagram after which s, goes almost horizontally to the point (¢ ,,1). More explicitly,

ol 1,1), H0St<1-,
Sn = ~ .
D 2 bpn )= ) 4 1 +0), - <t

for some sufficiently small €.

Note that x,(n,1,1) € XJ'="(n) and x,(n,1,1) < x,(¢,1,1) for any 1 < ¢ < n. By definition, 6, > 1 —n.
Hence, by Lemma 4.24(a), x,(n,1,1) < Dy, = min X% (n). In particular, by induction, the diagram Bme
satisfies (a). Recalling that x,(n,1,1) < x,(0,0,1) for any I € {1,...,¢}, we deduce that if d,, # 0 then s,
satisfies (b), and if §,, = 0 then s, also satisfies (b) by Lemma 4.25(b). By the same argument, s,, crosses no
solid or ghost strings ending in XZ"*‘;" and similarly for the ghost string g, ending in X;’,"*‘;"“, so (c¢) holds.
Finally, condition (d) follows from Lemma 4.25 and the explicit construction of s,,. O

An example of a diagram B}°® can be found in Figure 1. Composing the diagrams B{°® and B;"®
from Proposition 4.29 and Proposition 4.31 we can now define a diagram By satisfying the conditions of
Definition 3.43.

Definition 4.32. Let By == B{*B{™® € #,(A,w).
Proposition 4.33. The diagram By € #p(A,w) satisfies the assumptions of Definition 8.43.

Proof. By construction, for 1 < k < n the diagram By has a solid string s, of residue res¢(k) from (x,(),1)
to (Dii(1), 3) and from (Dgy(y), 3) to (xp(t(7),1,1),0) = (x¢(7),0), so By satisfies Definition 3.43(a). The
diagram By has no dots so it satisfies Definition 3.43(b). To prove that By satisfies Definition 3.43(c), it
suffices to show that B does not have a generalised double crossing. By Lemma 4.30, the crossings in B;®
are between strings that belong to the same region, while by Proposition 4.31, the crossings in B{™® are
between strings that end in different regions. Hence, B does not contain any generalised double crossings. [

An illustration of Definition 4.32 is given in Figure 1 and Figure 2 for { = 4,e = 3,p = 2,d = 2,N =

241, p = (0,33),t = (@’&M@)

4.6. Orbit diagrams. Recall from Section 4.2 that o is an automorphism of order p that acts on Z¢ and
Std(M), for A € 2L, This section uses the diagrams from Definition 4.32 to construct diagrams indexed by
orbits of tableaux under o. Ultimately, this will make easier to compute the image under o of the diagrams
of the cellular basis.

Lemma 4.34. Let I C R be an interval that is neither empty nor a singleton. We can find a map fr :
NE =T such that if y € 4% and v € ¥, for 0 < a < d and —n < 6,8 < n, then

fi(y) < fI(VI) <~ Xp(V) —044 < Xp('V/)'

Proof. This is obvious because we can define f7(y) :=x,(y) — 0, where v = (r,¢,) with ¢ —r = ¢ and then
suitably renormalise f} so that it has the required properties. g

Corollary 4.35. Let I C [0, 1] be an interval that is neither empty nor a singleton. We can find two maps
f1.91: NF = T so that for any (a,d) and any v, € AL with v € N *° we have

fin) < f1(Y) = 91(7) > 91(7) = %0(7) <x(7), ifye N,

fi) < f1(4) = 91(7) > 91(7) = %p(7) +1<x(?), ify et
Proof. The existence of f; follows directly from Lemma 4.34. The existence of g; follows from the existence
of the map 1 — f1_7. O
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reg
Bt

sing
Bt

FIGURE 1. An example of a diagram B, = B{*®B{® (the distance between ry and rs was
shorten for expository means)

0,0
Xo

r ro

FIGURE 2. Focusing on the orange rectangle of Figure 1

For each XA € [ let ox € {1,...,p} be the order of A under the action of (o) on 2} and let 2%, be a
fixed set of representatives in 2% under the action of o. The integer oy divides p, so px = % e{l,...,p}is

an integer. The cyclic group Z/paZ = (c°*) generated by 0°* acts on the set Std(A) of standard A-tableaux.
Let Stdy () be a fixed set of Z/pxZ-orbit representatives with respect to this action.

Let A € 2! and fix k € {1,...,p — 1}. Define a decomposition of A = )\[Lk} L )\[Ig} by

A= 15 e A xp(0") < xp(7)}
={y=(rc)eX[l=ap+b+1,0<a<pandp—k<b<p},
(
)

k
Mg = {1 € Alxp(0"7) > %o (1)}
={y=mcl)eArll=ap+b+1,0<a<pand 0<b<p-—Fk}.

In other words, the nodes in )\[Lk] and )\5? move to the left and right, respectively, after applying o*. In the

Example of Figure 3, we have 1,73 € )\[Ll] and v, € )\[Iy.
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Now fix a real number H € (0,1). Several applications of Corollary 4.35 show that there exist families of

real numbers (:Ciyk])veA, (y'[yk])’)le}\[k] and (zf[,k])’yek[k] such that:
R R

e For any 7,7 € )\[LH with v/ € A4 ®9 we have

H
? < x[f] < H,
s a,’ / (k] [k]
if v € A then x,(7) <xp(7) = z3" </,
if v € AL then x,(7) + 1 < x,(7) <= x[vk] < x[k]
e For any 7,7 € )\[Ig} with 7/ € A4 *° we have
k
0< {E[V] < 5,
1
xp(O,O,l—i—k—l)—NS < xp(0,0,1+k —1), where v = (r,¢,1),
H <M<,

if v € A4*° then Xp(7) < xp(7') = x[k] > :c[ M and y[k] < y[j] and z,[yk] > zgf],

if v € A %971 then Xp(7) +1<x,(7") = x[vk] > x[v/] and ygk] < y[j] and zﬂ[yk] > zgf]

Given two points (x1,y1) and (x1,y2), with zo > x1 and y1 < ya, let (z1,y1) ~ (22,y2) be the straight
line string that:
{goes from (z1,y1) to (z2,y2), if y1 # yo,

goes from (z1,y1) to (v2,y2 +¢€), if y1 = yo,
where € is sufficiently small.

Definition 4.36. Let A € 25, and 1 < k < p. Let BKC] € Wp(o" X, X) be the Webster diagram with the
following solid strings:

o For any v € }\[Lk], there is a solid string of residue res(y) given by
(xp(7),0) ~ (xp(7), 2l1) ~ (xp(0"), alfT) = (x(0), 1).
o Forany vy € }\E%], there is a solid string of residue res(”y) given by
(xp(7)50) ~ (xp(7), &) ~ (Yl &)~ (yl, 24) o (xp(09), 20) ~ (p(0%), 1),

An illustration of a diagram B Kg lis given in Figure 3. Note the following result, which follows from Lemma 4.24.

Lemma 4.37. FEach string of BKC] is contained in a single region.

The next result describes all of the crossings the diagrams Bj k] , for A € #°. Examples of crossings are
depicted in Figure 4.

Proposition 4.38. Let)\egan and1 <k<pand fixr 0 <a<pand —n <0 <n. IfyeXlets, be the
solid string in B&] that starts at x,(y) and let g, be its ghost. Let ri,...,r; be the red strings in B[k]

a) The diagram BKC] € Wp(ak)\, A) does not contain any genemlised double crossings.

b) If vy € )\Bg] NA®Y then s, crosses s, and g, for ally' € )\[Lk] NA% and v" € )\[Lk] N~ and g,
crosses sy, for all " e )\[Lk] NAX®OFL Moreover, all of these crossings are reqular and every crossing
between the solid and ghost strings in BKC] is of this form.

¢) Ify = (r,¢,1) € )\yg] N0 then the solid strings s, crosses the red string r; if and only if | < j < l+k.
Moreover, the crossing of sy with r; is singular and all of the other solid-red crossings involving s
are regular. The remaining solid strings from )\E];] do not cross any red strings.
d) Ify = (r,¢,l) € A%ﬂ]ﬂ)\a*’l then the ghost string g crosses the red string rj if and only if | < j < l+k.
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a,—1 a,0
X Xa

Xp(0y3) —Xp(0M) [~ %p(072)
i —]

vl

R ——

Xp(73) T T
Xp(72) Xp(71)

F1Gure 3. Hlustration of a diagram Bg\l )

e) If vy = (r,¢l) € )\[Lk] N> then s, crosses the red string r; if and only if | —p+k < j < 1. Moreover,

]

all these crossings are reqular. The remaining solid strings from )\[Lk do not cross any red strings.

N Ifvy=(r,cl) € )\[Lk] NA®~! then the ghost string g, crosses the red string r; if and only if |—p+k <
]

j <l. The remaining ghost strings from )\[Lk do not cross any red strings.

Proof. All the results follow directly from Definition 4.36 and Lemma 4.24 because:

o ifye )\[}? and 7 € )\[LH then v and +' belong to different components of X, so if v and 7’ belong to

the same A%% then res(y) # res(y’) by Lemma 4.24;
o ify=(rcl) e )\[Lk] NA%0 then | = ap+b+1 with p—k < b < p and res(y) = ¢ # ¢&—i = res(r_;)
forallie {1,...,p—k}sinceap+1<l—i=ap+(b—i)+1<ap+(b—-1)+1.

O
Xg’_l XZ,O
Xp(071) Xp(072)
| -~
: c)
LU 9
e N
o 7 :
xp(73) Xp(72) %p(71)
FIGURE 4. Illustration of Proposition 4.38 for a diagram Bg\ll
Corollary 4.39. There exists a generalised partition U% and diagrams B@’Sing € Wp(ok X, 0%) and B@’reg €

Wo(U5,A) such that BKC] = BKC]’SingBKC]’reg, and any crossing in BKC] between a solid or ghost string from

)\[Ig] and a red string is contained in B@’Sing. In particular, the diagram B@’reg
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Proof. Following Definition 4.36, define the diagram B[ I7¢8 ¢4 be the subdiagram of BKC I that is below the
line y = H and, similarly, define BKC] S8 6 be the subdiagram that is above this line. By Corollary 4.39,

these two diagrams satisfy the requirements of the corollary. O
Let A € 2L, let t € Std,(A) and fix k € {1,...,p — 1}. Recall that we constructed a regular diagram

B{®® in Proposition 4.29. The diagram Bf]’ngBfeg is non-zero but, in general, it can contain generalised

],

double crossings. However, B[k "® and B{°® are both regular diagrams so, by Proposition 4.2, there is a

~k -~

regular diagram B Kc ]t’mg € W, (V¢, V) that does not have any generalised double crossings such that
(4.40) BYres = BUIre i in AP (D, By).

¢ ns and let 1 < k < p. Suppose that a solid i-string in B[k] ree
crosses a red j-string. Then j = €%, where 0 < ¢ < k. In particular, there are no solid-red cmssmgs mn

Bgﬁ]{reg when k = 1.

Lemma 4.41. Let t € Std, (), where X € 2%

Proof. By Proposition 4.38(d), the only solid-red crossings in B[k]’ “ are between a solid string s, for

v=(rcql) e )\[Lk] NA*?, and the red strings iy, —p, ..., 1, which all belong to X%°. By Proposition 4.29

and Lemma 4.26, in B{*® the solid string s, crosses only the red strings ropt1,...,r—1. Since v € )\[Lk] we

have I +k —p > ap + 1. Therefore, since B} [k ] € has no generalised double crossings, the only crossings that
remain are for the red strings rop1,. . rl_Hg_p_l. If £ =1 this set is always empty since [ — p < ap, thus
we now assume k > 2. We also assume [ + k — p > ap + 1, since the latter set of red strings is empty if
l+k—p=ap+1. We now writel =ap+b+1with 0 < b < p. Sincel+k—p >ap+1wehaveb+k—p > 0.

Set a = ¢"e»+1, then the red strings have residues o, ea, gbth=r=la. As i = res(y) = e’ these residues
can be written as e %, e, ..., ¥ P~1i or as eP~ bz 5” b+1 ...,e" 1 since ¢ has order p. As0<b<p
the result follows. O

Remark 4.42. The statement of Lemma 4.41 also holds for ghost-red crossings.

Lemma 4.43. The diagram BKC]’SingBHC]{reg has no generalised double crossings.
k] sing
],

and By [k]’reg has a generalised double crossing, so it
i

Proof. By construction, neither of the diagrams B}

suffices to prove that any crossing that appears in B} (K] sing 30 g not appear in By [k rcg. By construction, the

Webster diagram By k] _ BKC ) Smngfc I8 has no generalised double crossings, thus 1t suffices to prove that any

1, ];reg

k . k K, .
crossing in B[ € does not appear in BL8, since Bg\ § B&] "EB{®. As B{® is regular, we only need

to consider the regular crossings in B [k]’bmg. By Proposition 4.38(c), the only regular crossings in B@’Sing

are crossings of the solid strings s, for v = (r,¢,1) € A[Jizd N A%V with the red strings r;41,...,rn4k—1. On
the other hand, by Proposition 4.29 and Lemma 4.26 the corresponding solid strings in B;{® only cross the
red strings ry for I’ < . This completes the proof. O

5. A SKEW CELLULAR BASIS FOR %’;})n

We are finally ready to define the basis of A?(w) that we need to prove our main results. Recall from
Section 4.3 that & is the automorphism on the set of Webster diagrams that multiplies the residues of all
solid and ghost strings by & and recall the definitions of the diagrams By, B{°® and B from Section 4.5.
For the readers’ convenience, we summarise the relationships between the d1fferent d1agrams we defined in
the last chapter:

B{*® € #p(X,Dy) (Proposition 4.29)
B ¢ #, (D, w) (Proposition 4.31)
B = B{®B{™ ¢ #,(\,w) (Definition 4.32)
BKC] = BKC]’SmgBKC]’mg € #p(a" A, N) (Definition 4.36 and Corollary 4.39)
B = BIIreBiee € P (oF, D) (4.40)

42



5.1. A particular cellular basis of Z2. To show that %’Qn is a skew cellular algebra we first show that %4
has a shift-automorphism. To do this we first use the diagrams defined in Chapter 4 to define a particular
basis of {Cs¢} of 2 = AP(w) that is compatible with Definition 3.43 and then show that 0(Cs¢) = Cy(s)0 (1),
for all pairs (s,t) of standard tableaux of the same shape.

Definition 5.1. Suppose that X € 2L, t € Stdy(A) and 0 < k < p. Set

s _ [T (BXTEBLE) € WA B, i kA0,
okt B:eg, ka _ 0,

so that C255 € Wp(o" X, D). Define
Cory = C5E 06" (Bfing) € Wp(of A w).

Notice that the diagrams {C,x(|0 < k < p} are in a single Z/pZ-orbit under 6. By definition, C; =
Ca’kt|k?:0 = B{.

Lemma 5.2. Let A € ¢

on’

te Stds(A) and 0 < k < p. Then the diagram C5§ is regular.

Proof. If k = 0 then C{*® = B{*® and the result follows from Proposition 4.33, so we can assume that k > 0.

By definition, since & is compatible with the concatenation of Webster diagrams we have C75% = " (BKC] ’Sing) o

Gk (Bgi]t’mg). It suffices to prove that both &* (Bf]’smg) and 6% (Bgi]t’mg) are regular. By Proposition 4.38(c),

],sing (k]

the only crossings in BKC are solid-red (and ghost-red) where the solid string s, for v € AR’, has residue

i and the red string has residue €% for 0 < ¢ < k. So, the only crossings in &* (B@’Sing) are solid-red (and

ghost-red) where the solid string has residue €¥i and the red string has residue %. In particular, 5" (B@’Sing)

is a regular diagram since 0 < c < k < p.
By definition, the diagram B[f ]t’reg is regular, so to prove that 6* (B[;C ]t’reg) is regular it suffices to consider

the solid-red crossings in B@{reg. By Lemma 4.41, if a solid ¥i-string crosses a red j-string in &* (By]{reg)

then j = sc/i, where 0 < ¢/ < k. All of these crossing are regular, so the lemma is proved. O

Proposition 5.3. Let XA € g’ﬁ)n, t € Stdy(A) and 0 < k < p. Then the diagram Cyi¢ satisfies the
assumptions of Definition 3.43.

Proof. When k = 0 the result is just Proposition 4.33, so we can assume that 0 < k < p. By construction the
diagram C,x has no dots and a solid string of residue €” res(y) = res(c¥~) from (x(7),0) to (x,(c*7), 1), for
all v € A. Hence, C, satisfies parts (a) and (b) of Definition 3.43 and it remains to verify (c). That is, we
need to show that C,«¢ does not contain a generalised double crossing. By Lemma 4.43 and Proposition 4.31,

respectively, neither of the diagrams C75& and " (Bfing) contains a generalised double crossing. Therefore,

it suffices to prove that the diagrams C58 and 6* (Bfing) do not have any crossings in common.

Recall that C™5 = &% (BRI BIE5) in (0" X, By), where BYL™® = BUI™sprs ¢ pp(ok,py).
By Lemma 4.30 and Proposition 4.38, any crossing in C;i’i is between two strings (solid, ghost or red)

that begin in a same region Xf,>5. On the contrary, by Proposition 4.31 any two strings in B{"® that end in
a same region X;’;‘s do not cross, hence do not cross in &% (B,fing) either. This completes the proof. O

Now we can apply Proposition 5.3 to Definition 3.43, Definition 3.44 and Theorem 3.47 to get a particular
Z-graded cellular basis {Cs} of Z2. This particular Z-graded cellular basis will play a key role in the proof
of our main result in the next section.

5.2. Main results: proof of skew cellularity. We are now ready to prove our main theorem from the
introduction, which says that %’Qn is a graded skew cellular algebra. As a consequence, we deduce that the
(ungraded) Iwahori-Hecke algebras of type D are cellular algebras, under weaker assumption than in the
literature.

We can now state the main technical result of this paper, which implies all our main results. Recall
from Definition 2.22 that a shift automorphism of a graded cellular algebra A is a triple of maps ¢ =
(0a,0p,0sta), that satisfies three requirements, the most important of which is that o4 (cst) = o,y (s)
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for all 5,t € T()\) and A € P. Recall that definitions of the map o2 from Theorem 3.13 and the maps o4
and ogtq from Definition 4.5. The graded cellular structure that we consider on %’,’1\ is the one described
in Section 3.4, with the graded cellular basis obtained from Proposition 5.3.

Theorem 5.4. The triple of maps o = (0'71}, ow,0std) @S a shift automorphism of %{}

Proof. First, note that by Corollary 4.10 we know that o4 is a poset automorphism of (£ ,>,). By
Definition 2.22, we need to show that:

a) If s € Std(A) then ospa(s) € Std(o2(A)) and deg(osa(s)) = deg(s).

b) If 5,t € Std(A) then Ozn (cst) = Cogea (s)osea(t)-

c) If 5,t € Std(N), for A € L%, then ok, ,(t) = t if and only if o&,4(s) = s, for k € Z.
The first requirement in part (a) is immediate from Definition 4.5 and the second requirement, that the fact
that ogtq is homogeneous follows from Lemma 4.12. Part (c) follows because all tableaux have order p under
the action of ostq. It remains to check part (b). That is, we need to show that

0 (Corsgit) = Coriigoitiy, for any A € 2 st € Std,(\) and k,l € Z/pZ,

o,n’

Equivalently, we need to show that o (C;kEngt) = C’i1, Coit1y. By Definition 5.1 and Lemma 4.14,

* =k sing) * reg \ * _ reg ~1 sing
Oy = 5F (BEo8)" (C18)" Core = i 6' (B™)

* _ ~k+1 sing * reg * _ oreg <141 sing
Clny = 551 (BE)™ (78, )", Corery = Ciff, &1 (B™).

By Lemma 4.30 and Lemma 4.37, any string in (C5°®)"C{*® € #,(Us, U;) stays inside a single region. More-
over, by Lemma 4.25, any solid or ghost string of (C5°#)"C{*® € #,(Us, 1) in the region X% starts (and
ends) at the left of all the red strings in X%, for 0 < a < d. By Definition 5.1 and (4.40), this is also true in

the two diagrams (C;ek’i )* C7%% and (C;i’cils)* C*%1,- As both of these diagrams are regular by Lemma 5.2,

we can apply Proposition 4.2 to find two regular Webster diagrams D25 and D5, ..., that do not
contain any generalised double crossings such that in AL (U kg, Uyiy)
reg _ reg \ * ~reg reg _ reg * ~reg
Daks,alt - (Caks) Calt and Dak+15,al+1t - (Cak+15) Oo'l+1f

and all of the solid and ghost strings in any region X;’;O are to the left of all of the red strings in X;’;O. Since

D¢ | is a regular diagram that has no crossings involving red strings, the diagram (D™ ) is also
ots,o't ofs,olt
regular. Hence, the diagrams (D)% ) and D5, ..., satisfy the assumptions of Corollary 4.3, and so
G(DE, 1) = D5 gy i AL (Ugrg, Ugry). We have proved so far that
C _ =k (Bsing * Dres ~ Bsing
oksolt = 0 5 ) oks,olt O ¢ )
_ ~k+1 sing) * ~ reg ~l+1 sing
Ca.k+l57o.l+1t =0 (35 g) g (Dakg,alt) g (Bt ) .

Consequently,
(5.5) & (Corooii) = Corrig gitiy.

Recall that in D¢ all of the solid and ghost strings that start or, equivalently, end in X% are to the

oks,olt
left of all of the red strings in X%°. Similarly, since (Bﬁing) Bi™® ¢ #,(w,w), all the solid strings begin

and end to the left of all red strings. Moreover by Proposition 4.31(b), in this diagram any solid string that
crosses a red string in X;’;O must cross all of the red strings in XZ*O, for 0 < a < d. Thus, we can apply
Proposition 4.19, which gives

5- (C;{;:ﬂJ’lt) = 5- (Caksxalt)cyc :
Combining (5.5) with Lemma 4.16 and Proposition 4.21, we find that

— (e _
g (Cgkgﬁgkt) = Cgk+1gﬁgl+1t = Ca.k+1570l+1t,

as desired. O
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Remark 5.6. A very particular case of Theorem 5.4 can be found in [3, Example 7.5]. Namely, for { = e = 2
and the 2-charge obtained from (0, 1), the basis elements are of the form

Cs,s = e(i) Cos,os = 6(—i)
et = yze(i) Cotot = Yoe(—1)

Cot,t = Yre(i) Chot = Yre(—1)
Cyu = y%e(i) Cou,ou = yge(_i)

where s (resp. u) is the only element in Std(12|0) (resp. Std(2]0)), i€ {(1,—1),(—1,1)} and the tableau t is
a particular element of Std(1]1). Recall that o fixes y1,y2,91 and that o (e(j)) = e(—j).

We can now prove our Main Theorem from the introduction.

Corollary 5.7. Assume that R contains a primitive p-th root of unity and p - 1g is invertible in R. The

algebra %ﬁ*n is a graded skew cellular algebra. In particular, if 2-1g € R* then %’é\d&n is graded cellular.

Proof. This is an immediate consequence of Theorem 5.4, Corollary 2.32 and Theorem 2.28 applied for the
graded cellular algebra Z2. Note that ¢ has order p indeed. O

Combining the last result with Proposition 2.21 yields:
Corollary 5.8. The graded decomposition matriz of L@Qn is unitriangular.

We now explicitly describe the graded skew cellular datum of Z2, , following the construction given in

P,
Theorem 2.28. Recall that Wﬁyn is any set of representatives for the action of (¢4) on 22¢. We endow c@ﬁﬁn
with the partial order &>, so that at>, b for a,b € c@ﬁ)n if and only if there exists A € a and p € b such that

A, . Define
(5.9) PL = PL o X LJoAL,

a,p,n

where oy is the size of the orbit of A under the action of (c4). The order >, extends to an order of c@ﬁ)p)n

with the rule (X, k) >,(p,1) <= A1, p. Let ¢ be the involution on &% . given by (A, k) — (X, —k). For
(A1) € P8, let Stdg (A, k) == Stdg(X). For (A, k) € 25, ,, and s,t € Std, (X, k), define

pa—1

(k) ._ kjox—
Dst = Z g™ AO’A(OE,UJ"’At)a
Jj=0
where

p—1
A= Zak and px = %.
k=0
In particular, note that or(A) = pa, since p = pp = p, so #&A) = p% = oy and ey = ¢°*. Finally, define the
map

D: Stdy (A, k) x Stdy (X, k) — Z2, ; (s, 1) > DW)

p,n
and let (5" be the identity map on Std, (A, k). Then
(5.10) (2L ynrtsStds, D, deg),

is a graded skew cell datum for %;\m. In particular, Z2 has cell modules C’g\k), and simple modules the
non-zero quotients Dg\k) = Cg\k)/rad Cg\k), for (\,k) € 2L, .-

Note that the graded skew cell datum for %ﬁ*n restricts to give a graded skew cell data for the blocks

%’;})a and that the graded decomposition matrix of %’;})a is unitriangular, for o € Z.
Recall from Definition 3.7 that Z = {%¢" |0 < j < p and 0 < i < e}. Define

z = Z irte(i) € Z#2.

ieZn
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Lemma 5.11. The element z € Z% is homogeneous of degree 0, invertible and o(z) = ¢z.

Proof. First, recall from Section 3.1 that e is finite thus Z is finite and z is well defined. We have degz = 0
since dege(i) = 0 for all i € Z". Using the fact that {e(i) : i € Z"} is a complete set of orthogonal
idempotents we find that z is invertible in 22 with inverse Z(il in)ETn i1€e(i1,...,i,). Finally, we have

.....

o(z) = S ile(ein,. .. ein)
= S (e ) e, in)

which completes the proof. 0
Corollary 5.12. The automorphism o is e-splittable in the sense of Definition 2.39.

Hence, all the results in Section 2.4 now apply to %’;}n Note that multiplication by z induces an analogue
of Lemma 5.11 for the blocks Z2 of %2, so the results in Section 2.4 also apply to the blocks L@ﬁ*a of L@ﬁ*n,
for [a] € I .

By Theorem 3.14, all the results concerning the skew cellularity of %{:n, over a ring R containing €, can
be deduced from 7, , (g, QV¢) over the field K, which contains € by assumption. For example, the following

holds:

Corollary 5.13. The algebra %)n(q, QV¢) is a graded skew cellular algebra. Moreover, if p = 2 then
H.0(q, QVE) is a graded cellular algebra.

Geck [11] has proved that the Iwahori-Hecke algebra of a finite Coxeter group is always an (ungraded)
cellular algebra. By Corollary 5.13, the Iwahori—-Hecke algebras of the Coxeter groups of types A,,_1, B, =
Ch, Dy, and I5(n) are graded skew cellular algebras. (These Coxeter groups are the complex reflection groups
of types G(1,1,n),G(2,1,n),G(2,2,n) and G(n,n,2), respectively.)

The Iwahori-Hecke algebras of types A, _1 and B,, are graded cellular algebras by [18]. For the algebras
of types D,, and I>(n), Geck’s proof of the cellularity of the Iwahori-Hecke algebras %, (D,,) assumes that
¢'/? € K. The following corollary generalises Geck’s result to the graded case and removes the assumption
that ¢'/? € K.

Corollary 5.14. Suppose char K # 2. The Iwahori-Hecke algebra 76,(Dy,) of type D,, is a Z-graded cellular
algebra.

Proof. The Coxeter group of type D,, is the complex reflection group of type G(2,2,n) in the Shephard—Todd
classification. The result thus directly follows from Corollary 5.13 for d = 1. O

It is an interesting open question whether the algebras %{})n are graded cellular algebras when p > 2 (and
n>2ifp=1{).

5.3. Adjustment matrices. As a final application we use the bases in this paper to describe “adjustment
matrices” for the Hecke algebras of type G (¢, p,n), which relate decomposition matrices in different character-
istics. For the Iwahori-Hecke algebras of finite Coxeter groups Geck and Rouquier used Lusztig’s asymptotic
Hecke algebra to show that adjustment matrices exist whenever the Iwahori-Hecke algebra is defined over a
field of “good characteristic”, which depends on the root system of the underlying Coxeter group; see [12, Ta-
ble 1.4 and Theorem 3.6.3]. When p = 1 we recover the results of [8, §5.6] but, even in the ungraded case,
these results appear to be new when p > 2.

Throughout this section fix A as in Section 3.2. If R is an integral domain let %{:;ﬁ be the quiver Hecke
algebra over R with weight A. Similarly, if M is an %ﬁ*;lR—module then we write M = MP® to emphasize
that M is an R-module. By Corollary 5.7, if R contains a primitive pth root of unity and p € R* then
%’;});ﬁ is a skew cellular algebra with cell modules C;\k)’R, for (A, k) € 2L By Theorem 2.17, if R is a

o,p,n*
field, the graded simple %’Q;ﬁ—modules are shifts of the non-zero quotients Dg\k)’R = C’g\k)’R / rad C’ik)’R, for
(Nk)e ZL .
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Fix a field F' of characteristic ¢ > 0 that contains a primitive pth root of unity er. In particular, this
implies that ¢ does not divide p. The subfield F, . = Z/cZ(er) of F is a splitting field for the p-th cyclotomic
polynomial ®, over Z/cZ. By [25, Theorem 2.47], the field F, . is the finite field with ¢" elements, where
r > 0 is minimal such that ¢" =1 (mod p).

Let 7 : Z[e] — Fp, be the unique ring homomorphism determined by m(¢) = ep. Then p = kerw is a
prime ideal of Z[e] and the localisation O = Z[e], of Z[e] at the prime ideal p is a discrete valuation ring
with maximal ideal pO. The next result follows from elementary properties of localisation.

Lemma 5.15. The residue field O/pO of O is isomorphic to F ..

Consequently, if M© is an L@ﬁho—module then, by base change, M e = F, . @0 M© is an %ﬁhFP‘C—moduIe
and M = F ®p, M 2 F @0 M€ is an %’ﬁ;f—module.

Remark 5.16. By Theorem 2.17 every field is a splitting field for the algebra %2, , so there would be no loss

P
of generality in assuming that F' = F}, ..

Let Q = Frac(O) = Q(e) be the field of fractions of O. By Definition 2.6, Cg\k)’g ~ O ®o Cg‘k)’o and
Cg\k)’F ~FRo Cg\k)’o, for (A, k) € 2L Now recall from (2.13) that

o,p,n*
rad Cg‘k)’o ={ye Cg‘k)’o | (b()‘k) (x,y) =0 for all x € Cg‘k)’o}

and that Dg‘k)’o = Cg\k)’o/ rad Cg‘k)’o by Definition 2.16.
Lemma 5.17. Let (A k) € c@ﬁﬁpﬁn. Then Dg‘k)’o is an O-free graded L@Q;F—module. Moreover, Dg\k),g =

Q®o Dg\k)’o as graded ,%’ﬁ;zg-modules.

Proof. Let {Dik) |t € Std, (A, k)} be the standard basis of the cell module C’ik)’o. Since rad C’g\k)’o is a
pure O-submodule of Cg‘k)’o, Dg‘k)’o is free as an O-module. The final claim that Dg\k)’g =20 ®o Dg‘k)’o is

immediate because rad C’g\k)’Q = Q9 ®Rerad Cg‘k)’o since Q is a field of fractions of O. O
Let 2L 0 ={(Ak)e ZL .| Dg‘k)’g # 0}. For convenience, set

EPF = FooDPC  for (A k) e 2!

a,p,n’

In general, if (A, k) € 2, , then the ZA;F-modules D" and EYF, and rad C{V"" and Foorad 03¢,
are not isomorphic. In particular, the t%’;});f -module E&k)’F is not necessarily irreducible.
Suppose that R is a field and let M7 be an %’Q;lR—module. Recall from (2.20) that if (u,!) € gzﬁypynﬁo and

then the graded decomposition multiplicity of DEP’R in M is
(M7 DR, =" (M DD (s)| 1t e NJt, ¢,
ElSY/

For (A, k) € 2%, and (u,1), (v,m) € 2L, o define graded decomposition numbers

d = [Og\k)g : fo)’g]t,

o

k) (o) (1)
k),F

dB gy () = OV - DD,

o) = B D,

"
Let Dg(t) = (d%)k)(”)l)(t)), Dp(t) = (d{;7k)(#7l)(t)) and Ap(t) = (afﬂ)l)(mm)(t)) be the corresponding
matrices, where (X, k) € 2% . and (u,l),(v,m) € ZL . o Then Dg(t) and Dp(t) are the graded

decomposition matrices of %Z"});IQ and %{})hF , respectively. The matrix Ap(t) is the graded adjustment
matrix for these two algebras.

Let Rep %’Q;? and Rep %’;};LF be the Grothendieck groups of finitely generated graded e%’ﬁ*;lg— and %’Q;f -
modules, respectively. Both Grothendieck groups are free Z[t,t~!]-modules where t acts by grading shift.
If M is a module for one of these algebras let [M] be the image of M in the corresponding Grothendieck
group.
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Lemma 5.18. There is a unique abelian group homomorphism d%: Rep%’ﬁ;? — Rep%ﬁf such that
k), k), k), k),
d2[C9) = [CF) and d@2(DY2) = (BT, for (A k) € 2L, ..

Proof. Since O is a discrete valuation ring, for any %{})hg—module M€ there exists an %{,\)ho—module MO, a
full O-lattice, such that M2 = Q ®p M®. Define M = F ®o M®. The choice of O-lattice is not unique
but [M*] is independent of the choice of O-lattice; compare with [10, Proposition 16.16]. Hence, we define

d2[M9Q] = [MF]. By Definition 2.6, if (v,m) € P . then dQ[C’(k)’Q] = [Cg‘k)’F]. Moreover, we have
dg [Dg‘k)’g] = [E; W | because E(k) C D( e by Lemma 5.17. Finally, this establishes the uniqueness of
dg since {Dg\k)’Q | (A k) € L, .0} is a basis of Rep 222 O

Let :Z[t,t7'] — Z[t,t~'] be the unique Z-linear map such that tk = t=% for k € Z. Observe that
dim, M* = dim; M if M is a graded module. Hence, we can extend ~ to a map of the Grothendieck
Rep %{})ng and Rep 20" by setting [M] = [M™*].

Proposition 5.19. Let (Nk)e 2L, and (u,1) € 2L, . Then
a) o‘(ul ul)()
b) O‘(A ) (,0) ( ) 75 O only if (A, k) =p(p, 1),
) a0 (1) = Ay (B)-

Moreover, D,(f)’F # 0 if and only if (u,l) € f@(,p 0"

Proof. By construction, F ®¢ rad C’g\k)’o is an %{})hF -submodule of rad Cg‘k)’F, so parts (a) and (b) are
immediate from Proposition 2.21. For part (c¢), in Rep %ﬁ;f we have

k),F
BT = 3 ol @DDT).
(w,)eFt

o,p,n,0
Taking duals and using Proposition 2.19 this becomes

(k),Fy _ —I),F
EXT= X ofinua WD)
(p,) e ¢

o,p,n,0

On the other hand, [Eg‘k)’F] = d%[Dg‘k)’Q] = d%[Dg‘k)’Q] = d%[Dg\_k)’Q] = [Eg\_k)’F], where the second last
equality comes from the same argument used in the proof of [10, 16.16] and Proposition 2.19, and the last
equality from Lemma 5.18. This proves (c).

Finally, we prove that D F' £ 0 if and only if (A, k) € P, .0 First, observe that if D B0
then rad C)‘k) S O(k) " implying that rad O(k) @y C M2 Hence, D(k) € £ 0 and ANk) € PL 0
Conversely, if (A, k) € 2L, o then Dg\k) "€ £ 0 so that Eg\k) * £ 0. Hence, Eg\k) £ 0 by part (a). O

We can now prove the main result of this section.

Theorem 5.20. Suppose that F is a field of characteristic ¢ that F contains a primitive pth root of unity
ep. Let (A k) € 2f and (p,1) € 25, 0. Then

F F
ABpen®=" D AR wem O myn ©-
(v,m)c o2t

&,p,m,0

That is, DF(t) = DQ(t)AF(t).
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Proof. Using Lemma 5.18, and Proposition 2.21 twice,

k), k),Q
S By OIDDT] = (0] = aQle 9
()Pt

o,p,n,0

= d%( Z d(Q)\,k)(u,m) (t) [El(/m)’g])

(u,m)eﬁafr%mo
_ Q m),F
= Z d()\,k)(u,m)(t)[El(/ »F]
(V7m)€‘@£,p,n,0
_ Q F I),F
= Z A k) (,m) () Z Ay () DD
(V7m)€‘@§,p,n,0 (u,l)e(@g’p’n’o
_ Q F I).F
= > (X e ®afmn®) DD,
(u,l)e@ﬁ’p’n’o (u,m)eﬁaﬁ,p,n,o

Since {[D,(f)’F] | (,1) € PL 0} is a basis of Rep Z2;F, the result follows by comparing the coefficient of

pn

[Dﬁ)’F] on both sides of this equation. O

Let F be a field of characteristic zero that contains a primitive pth root of unity ¢ and let z%’;fn(q, Qve)
be a Hecke algebra of type G(¢,p,n) over F. Similarly, let %ﬁl(q, QV¢) be the corresponding Hecke algebra
over the field F', which contains a primitive pth root of unity ep. By Theorem 3.14, z%’;fn(q, QVe) = %ﬁ;f, SO
Dp = Dp(1) is the decomposition matrix of S}, (¢, Q¥), where Dp(1) is the graded decomposition matrix
of %Z"}_;LF evaluated at t = 1. By Theorem 2.17(b), every field is a splitting field for %{:hg, and %ﬁ;f =

F® Q;@ﬁ,’?, so Dg(t) is the graded decomposition matrix of L%’Q;f. On the other hand, 77, (¢, Q") = %ﬁ;f

by Theorem 3.14, so Dy = Dg(1) is the decomposition matrix of #7, (¢, Q"¢). Finally, set Ap = Ap(1).
Hence, by Theorem 5.20 we obtain the following.

Corollary 5.21. Suppose that F is a field of characteristic 0 containing a primitive pth root of unity € and
that F' is a field of characteristic ¢ > 0 that contains a primitive pth root of unity ep. Then the decomposition
matrix Dp of f%ff;l(q, QV¢) factorises as Dp = Dy Ap.

Remark 5.22. This section does not really use the machinery of skew cellular algebras. Rather the results
in this section follow from the fact that the skew cellular basis of Corollary 5.7 is defined over the ring Z[¢],
which makes it easy to apply standard modular reduction arguments. The existence of adjustment matrices
usually requires a delicate choice of modular system. The beauty of using KLR algebras is that we can work
over Z[e], which makes this result almost trivial.

5.4. Graded simple modules. Let F' be a field. The algebra %ﬁf is a skew cellular algebra by Corollary 5.7,

o {Dg\k)F<s> | (A k) € L. 0and s € Z} is a complete set of pairwise non-isomorphic graded simple mod-

ules by Theorem 2.17 (and Proposition 5.19). The aim of this section is to explicitly describe the set f@f;’p’nyo.

By definition, 22 = {(\, k) € 2¢ |D§\k)’F # 0}, where 2L = P X Z[oraZ and Z¢  is a

o,p,n, a,p,n o,p,n o,n o,n
fixed set of representatives in 2% under the action of o .
For A € 2 let CL be the corresponding cell module and DY = Cf/rad Cf be a graded simple Z2-F-
module (or zero). By Corollary 5.12, a,’} is e-splittable, so we can apply Theorem 2.48 to deduce the
following:

Lemma 5.23. Suppose that F is a field. Then 25, o ={(A\ k)€ 2, .| DX #0}.

The simple Z2F-modules have been independently classified by Bowman [3] and Kerschul [21]. To state
their result we first need some new notation.

Let <4 be the total order on the set of nodes #,f where A <, B if x,(A) < x,(B). Extending notation
from Section 3.4, for i € 7T let

AiA) = {A € AN |res(A) =i} and  Ry(A) = {4 € R(A) | res(A4) = i}

49



be the sets of addable and removable i-nodes of A € 2%, If A € A;(A) UR;(N\) define
da(A) =#{B € A;(\)|A <x B} —#{B € R;(\) | A <x B}.
Given a second node C with A < C set
dG5(A) = #{B € Ai(A)|A <, B <. C} — #{B € Ri(A\)|A <, B <, C}.

A good i-node of A is a removable i-node A € R;(A) that is minimal node with respect to <y such that
da(A) <0 and d5(X) < 0 whenever A <, C and C € R;(X).

Definition 5.24. If n > 0 then the set of p-Uglov (-partitions of n is
%pl}n ={Xxe PLIX=pU{A} where A is a good i-node of X for some i € T},
where %pI}O = .

For our particular choice of x,-coordinate function, a special case of the results of Bowman [3] and
Kerschl [21] is the following:

Theorem 5.25 (Bowman [3, Theorem B] and Kerschl [21, Main Theorem]). Suppose that F is a field. Then
{Dx(s)| X € %P, and s € L} is a complete set of pairwise non-isomorphic graded simple 225 -modules.

Hence, by Lemma 5.23 we obtain:

Corollary 5.26. Suppose that F is a field. Then 2%, = {(Ak) € ZL, . Ix € %7}, That is,
(DS (s) | (A k) € 2%

o ps N E %pj}n and s € Z} is a complete set of pairwise non-isomorphic graded simple
BN -modules.
p.n

INDEX OF NOTATION

Symbol Description Page
Q@ An Z-composition of n 19
[a] The o-orbit of a 33
AP A rational Cherednik algebra 26
AP A block of AP 26
AP (w) The w-weight space of AP 29
Al = Dpcio A5 33
B{*® A regular diagram indexed by t 37
Bie A singular diagram indexed by t 37
By The diagram B{°¢B;"# 38
B The diagram BY)*" Bi¥lres 40
Byl The diagram BY™8BI°8 ¢ AP(DF b)) 42
(G The set of Z-compositions of n 19
Cst Cellular basis element of AP 28
€ A fixed pth root of unity 18
Eo An idempotent in AP 29
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A An /-partition of n 22
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2 The set F% , X Z/oAL 45
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op A poset automorphism of P 7
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Std(A) The set of standard tableaux of shape A 27
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5,1 Standard tableaux 27
v A generalised partition 24
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