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D“C-Net: A Dual-branch, Dual-guidance and
Cross-refine Network for Camouflaged Object
Detection

Kang Wang, Hongbo Bi, Yi Zhang, Cong Zhang, Ziqi Liu, Shuang Zheng

Abstract—In this work, we propose a novel framework
for camouflaged object detection (COD), named D>C-Net,
which contains two new modules: dual-branch features
extraction (DFE) and gradually refined cross fusion (GRCF).
Specifically, the DFE simulates the two-stage detection
process of human visual mechanisms in observing camou-
flage scenes. For the first stage, a dense concatenation is
employed to aggregate multi-level features and expand the
receptive field. The first stage feature maps are then uti-
lized to extract two-direction guidance information, which
benefits the second stage. The GRCF consists of a self-
refine attention unit and a cross-refinement unit, with the
aim of combining the peer layer features and DFE features
for an improved COD performance. The proposed frame-
work outperforms 13 state-of-the-art deep learning-based
methods upon three public datasets in terms of five widely
used metrics. Finally, we show evidence for the successful
applications of the proposed method in the fields of surface
defect detection, medical image segmentation.

Index Terms—Camouflaged Object Detection,
Learning, Receptive Field

Deep

I. INTRODUCTION

HEN we look at an image or face to a scene, if

the discrimination between the foreground and the
background is high, we first observe the most attractive object,
that is, the salient object [1]-[4]. On the contrary, if the
discrimination between the foreground and the background is
low, it is difficult to observe the foreground object at first
sight, that is, the camouflaged object [5]-[7]. Camouflaged
objects can be roughly divided into two categories, natu-
ral camouflaged objects and artificial camouflaged objects.
Natural camouflage objects [8]-[10] refer to animals and
plants hiding in the background environment with their own
advantages (such as body shape, color, etc.) in order to adapt
to the environment and protect themselves, while artificial
ones (e.g., military camouflage clothes) occur in real daily
life. Besides, the system equipped with camouflaged detection
function has a lot of potential applications, including medical
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image segmentation [11]-[13], surface defect detection [14],
search and rescue work [15], image change detection [16], etc.
In order to improve the accuracy of the corresponding
camouflaged detection system, it is particularly important to
design a COD algorithm with state-of-the-art performance. At
present, the existing COD algorithms can be roughly divided
into traditional and deep learning-based methods. Traditional
methods [17]-[19] mainly rely on manually designed features
to detect or segment camouflaged objects. Thanks to the
rapid development of deep learning in the recent two years,
the detection accuracy of the COD algorithm has also been
effectively improved. For example, to explore the detection of
human who wears camouflage pattern in complex background
scenes, Zheng et al. [20] employed a bit of short connections
into the framework that is beneficial to predict accurate camou-
flage maps. Le et al. [21] proposed a two-stream (classification
stream and detection stream) framework for camouflage object
detection. Recently, Fan et al. [22] proposed SINet, which
simulates the human visual mechanism. Meanwhile, RF [23]
structure is used to improve the receptive field of the region
to be detected, and satisfactory results are achieved.
Considering the different contributions of low-level features

and high-level features to generate the camouflage maps [21]-
[23], and due to the high-resolution of low-level features, we
employ the third layer of the backbone as the node to simulate
the two stages of the human eye observing the camouflage
scene. The first stage is simulated to the human observation of
potential camouflage objects in the scene. The second stage is
similar to the judgment and optimization of camouflage objects
according to the prior knowledge learned in the previous
stage. These two stages constitute the DFE module. At the
same time, we introduce the bi-directional (positive attention,
reverse attention) guidance information to guide each level
after the node. Furthermore, in order to employ the shallow
low-level semantic information to supplement the high-level
semantic information, so as to make the detection results
more complete. We adopt peer-to-peer features to refine the
camouflage map generated in the previous stage by combining
two optimization strategies (self-refine attention and cross-
refinement), which constitute the GRCF module. Our main
contributions are listed as follows:

1) We propose a novel approach for COD, which consists of
two main components, namely, DFE module and GRCF
module. We carry out a series of experiments to prove the
effectiveness of our proposed model.

2) We simulate the observation process of human visual
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mechanism observing the camouflage scene in two stages,
which employs the features generated in the first stage to
extract bi-direction guidance information, and then make
the second stage prediction.

3) Benefiting from the peer features can provide some cues
about the location of target object regions, we employ a
self-refine attention unit and cross-refine unit to conduct
more accurate camouflage maps.

4) To prove the superiority of our model, we compare our
model with other 13 state-of-the-art models on three
benchmark datasets (CAMO [21], CHAMELEON [24],
CODI10K [5]). Our model acquires the best performance
basing on all five public evaluation metrics.

Il. RELATED WORKS

In this section, we discuss works about camouflaged object
detection and residual attention.

A. Camouflaged object detection

In the early stage, traditional methods usually employ hand-
crafted features to detect camouflage objects or perform the
work related to camouflage objects [25]. Xue et al. [26]
proposed a nonlinear feature fusion method to evaluate the
camouflage degree of the target object. In [27], an unsuper-
vised method is used to detect camouflage objects using Gray
Level Co-occurrence Matrix based on the image block. The
model is limited when dealing with a non-uniform backbone.
Yin et al. [28] used Optical Flow to detect moving objects
with camouflage colors. Pan et al. [29] proposed a camouflage
object detection model based on 3D convexity, which can deal
with more complex backgrounds.

In recent years, to accurately distinguish the camouflaged
objects in complex backgrounds, increasing architectures ap-
ply convolutional neural networks (CNNs) to camouflaged
object detection. For example, Nie et al. [21] proposed an end-
to-end network (ANet) based on CNNs to precisely separate
the camouflaged objects from given images. In [20], Zheng
et al. presented a dense deconvolution network (DDCN) for
camouflaged object detection to effectively detect the target
object in the background of artificial camouflage. To more
accurately locate camouflage objects in complex backgrounds,
DDCN introduced the deep convolutional network to extract
the semantic feature information. When the human eyes are
performing some visual tasks (such as salient object detec-
tion [30], [31], pedestrian re-recognition, etc.), the processes
are usually carried out in two steps, namely, search and
identification. In [22], Fan et al. constructed a network (SINet)
which consists of two main components, the search module
and the identification module. The search module is mainly
used to save the feature information of various levels and
the identification module is applied to precisely locate and
distinguish camouflaged objects.

B. Residual attention

In order to make full use of the features and improve the
performance, some detection [32] or segmentation [13] tasks
attempt to introduce attention mechanisms (such as spatial
attention, channel attention and residual attention) to obtain
more complete feature clues. In [33], Chen et al. presented

a network based on deep learning for salient object detection
which introduced the reverse attention to capturing the side-
output residual features. The reverse attention mechanism can
also be applied to medical image detection. In [13], Fan et al.
introduced reverse attention to Inf-Net to accurately segment
the Coronavirus Disease 2019 (COVID-19) from CT images.
Inf-Net adopts a method that adaptively learning reverse atten-
tion among three parallel high-level features, instead of simply
integrating feature information from all levels. The residual
information can achieve saliency refinement by simple convo-
lutional parameters, meanwhile keeping the detection accuracy
unchanged. To utilize the multi-scale features effectively, Gao
et al. [34] presented a multi-scale backbone structure, namely,
Res2Net. This method constructs a bit of hierarchical residual-
like connections in a residual block which is benefiting to
extract local and global features.

I1l. OUR PROPOSED METHOD

In this section, we first describe our proposed network for
COD. Then, we enumerate each component in detail and
illustrate its effectiveness.

A. Motivation

As mentioned in related work, mostly traditional methods
use low-level handcraft features to evaluate the performance
of camouflage patterns or detect / segment camouflage objects
in simple scenarios. Because the handcraft features have the
bias of human prior knowledge, the results are not satisfactory.
Although the performance of the model based on deep learning
is much better than the traditional algorithm, most of the
previous work only focuses on the detection of camouflaged
objects in specific scenes. Therefore, the generalization ability
and application scenarios are limited. SINet has achieved
the best performance, which not only benefits from the new
standard data set proposed by the author but also the novelty
of the model design. In terms of its performance, it can be
further improved.

Generally speaking, previous models have the following
shortcomings: the bias of the handcraft features, the short-
age of data sets, the singleness of application scenarios of
model design, etc. Considering these problems, we rethink
the problem of COD and propose D?C-Net. For the COD
task, the main purpose is to detect objects that are similar
to the background. From the perspective of human visual
mechanism, it is usually difficult to find the complete cam-
ouflaged objects in the first stage (i.e. the first observation)
when we look at a scene. In order to capture a more detailed
camouflage map, we attempt to carry on the second stage on
the basis of a comprehensive analysis of the first stage. After
two stages of observation, we can obtain a relatively accurate
camouflage map. Based on this, we propose a COD framework
that imitates a two-stage observation mechanism.

B. Overview of Our Proposed Network for COD

As shown in Fig. 1, our proposed network consists of two
main parts, Dual-branch Features Extraction (DFE) module
and Gradually Refined Cross Fusion (GRCF) module. In the
DFE module, we incorporate a two-stage observation strategy.
Inspired by [22], [23], we take C'onv3 as the bifurcation point.
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Fig. 1. Overview of our proposed network for COD, which consists of DFE module and GRCF module. In the DFE module, we simulate the
mechanism of human vision and design a two-stage detection network. Details of component HAREW can be found in Fig. 2. The components in
GRCF moudle see section D. Gradually Refined Cross Fusion and Fig. 3 for details. In the GRCF module, we propose a progressive cross refine

mechanism for two-stream information.

The rounded rectangle with a pink background (consists of
Conv4_1 and Conv5_1) indicates the first stage observation,
and the light yellow rounded rectangle (consists of Conv4_2
and Conv5_2) indicates the second stage observation. In each
stage, in order to provide more accurate information and a
larger receptive field, we introduce RF structure on the basis
of comprehensive consideration of feature reuse. The design of
the RF [22] structure is theoretically consistent with our visual
mechanism (the process from coarse to refine when detecting
objects). Next, we employ PDC [23] components to aggregate
features of different levels in parallel to generate the camou-
flage maps of the first stage. Compared with the first stage,
in the second stage, we employ more refinement operations to
optimize the detection results, including holistic attention and
residual attention guidance. We integrate these operations into
the Holistic Attention-Reverse-Weighted addition (HAREW)
module. In the GRCF module, inspired by the conventional
UNet [35] structure, we use the local information of the peer
layer (from DFE) and the high-level information of the GRCF
module to generate the final camouflage map.

The differences between our model and SINet [22] are
as follows: 1) Our proposed model (D?C-Net) adopts a U-
Net structure, while SINet does not. 2) In the first stage
of the DFE module, we only used three RF modules (low-
level information is not considered), while SINet used four.
3) The first stage and second stage of the DFE module are
symmetrical, and two-direction guidance information is added.
4) D2C-Net includes a self-refine attention unit and a cross-
refine unit, while SINet does not.

C. Dual-branch Features Extraction

From [23], we can know that C'onv3 can maintain clear
object boundary information. Compared with the first two
layers, this layer contains less redundant information. There-
fore, we also employ Conwv3 as the bifurcation point for
two-stage prediction. As shown in Fig. 1, in the first stage,
the position and shape of camouflaged objects are roughly
detected. In order to refine the results of the first stage, we
allow more refinement operations in the second stage, such as
attention mechanism and guidance information. In particular,
given an input X “*#*W (C, H and W represent the number
of channels, height, width of the input image, respectively.),
we can obtain a rough feature map of the corresponding level,
which is represented by F;, (¢ = 1,...,5). When ¢ = 4,5, the
output feature maps of the first stage are represented by F; 1,
and the output of the second stage is represented by F; 5.

In the first stage, considering that features of different levels
contain various information and in order to make full use
of the features of all levels after the bifurcation point, we
employ dense concatenation to aggregate the features of the
last three levels. We aggregate the current level with the higher
level. Specifically, when ¢ = 3, we first use upsampling to
resize the feature maps of the fourth and fifth layers to the
same resolution as the third layer. Second, we aggregate the
three-level feature maps in the channel direction through the
concatenation operation (the output it denoted by C3 1), and
then feed it into the RF module, the output of RF is denoted by
Rs3. When ¢ = 4,5, we generate R4 and R in the same way.
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Next, we employ the partial decoder to combine the features

R;, (i = 3,4,5) to generate the first stage camouflage map

S1. The process can be expressed by the following formula:
S1 = PDC(Rs, R4, R5) €))

where PDC(-) denotes the partial decoder, the details of
PDC(-) can be found in [23].

Since the camouflage maps in the first stage are coarse, we
need to detect the camouflage scene again and further optimize
S1. This is also consistent with the process of our human visual
mechanism looking for camouflaged objects in camouflage
scenes. As shown in Fig. 1, in the second stage, the overall
structure of the network is roughly the same as in the first
stage and the output is denoted by S2. The difference is that
we enhance the camouflage map of the corresponding level
by introducing guidance information from camouflage maps
of the first stage. The guidance information includes forward
holistic attention guidance and reverses attention guidance,
which is defined as HAREW module.

Specifically, our HAREW module contains two inputs (the
guidance information from S; and the features from the
current convolution layer) and two outputs (one for the con-
volution layer of the next level, and one for the concatenation
operation into the RF structure). As shown in Fig. 2, HAREW
contains three parts (holistic attention, residual attention guid-
ance and weighted addition).

As mentioned above, we need to use the information from
the first stage to make a guiding prediction for the second
stage. In this way, we can obtain more accurate camouflage
maps than the first stage. First, we employ holistic attention
to expand the coverage area of the initial camouflage map in
order to improve the effectiveness of the initial camouflage
map. The whole process can be expressed by the following
formulas:

EG,u+ = MAX (N (GConv (0 (VS71),k))) (2)

HAout = mul (EGout7 Fl) (3)

where o(-), mul(-), V represent the sigmoid function,
element-wise multiplication and down-sampling, respectively.
GConv(-) represents the typical Gaussian convolution oper-
ation with kernel £k = 32 and zero bias, which can provide
the effect of Gaussian blur, to obtain more effective cam-
ouflage maps. N(-) represents the normalization. M AX ()
represents the maximum function that aims to enhance the
initial camouflage map S;. EG,,; and H A,,; represent the
enhanced camouflage maps and the output of holistic attention,
respectively. This process can be called forward guidance
prediction.

Next, we introduce a reverse attention mechanism to op-
timize forward camouflaged object detection by erasing the
camouflage area of the current prediction, the network can
explore more complementary details. This is consistent with
the human visual mechanism that repeated optimization and
confirmation. In particular, we can obtain the reverse attention
weight by the following formula:

Re=1-0(V5) 4

Then, we use reverse attention weight to refine the output of
holistic attention.

Weighted Addition

Holistic Attention T

® ® &

Element Sigmoid Element Reverse
multiplication function addition attention weight
Fig. 2. The detail of our HAREW module. Re, Wy and W5 can be found
in, Eq. (4), Eq. (8), Eq. (9), respectively.

Wra = mul(H Ay, Re) (5)

where Wg 4 represents the result generated by reverse atten-
tion guidance. This process can be called reverse guidance
prediction.

In the process of prediction, we can not guarantee that
all pixels are predicted correctly, in order to minimize the
influences of this phenomenon, we use weighted addition to
fully integrate the forward guidance process and the reverse
attention guidance process. The process can be expressed by
the following formulas:

W, = PCS(HAqyu) (6)
Wy =PCSWga) (7
Wa
MW ®
=W, )

HAREW 5t = mul(H Agye, W1) + mul(Wga, Wa) (10)

where PCS(-) represents the operation with Pooling —>
Conv —> Softmax, HAREW,,; represents the output of
the HAREW module.

D. Gradually Refined Cross Fusion

After the above process, we can obtain a relatively accurate
camouflage map than the last stage. In order to further opti-
mize the detection results of the previous stage, we employ the
UNet structure to incorporate local information to refine the
camouflage map S5 generated by the DFE module. Unlike
the traditional UNet structure [35], we first optimize the
camouflage map Sy generated by the decoder through the
self-refine-attention unit (SRA). The features of the peer layer
are further optimized through the cross refinement unit (CR).
By combining two optimization strategies, accurate detection
results can be obtained. SRA and CR are the main components
of the GRCF module, namely SRA-CR.

As shown in Fig. 3, F; represents the features from peer
layers. As for SRA unit, we first adjust the channel dimension
to 256 with a 3 x 3 convolution layer (the output is denoted
by SR,;) and then perform parallel operations through two
independent convolutions with the same kernel size (3 x 3).
In order to capture more complete information to the greatest
extent, we multiply the output of one of the convolutions with
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SR, Then, the output is fused with the result of the other
convolution unit by element-addition. In addition, considering
that not each pixel is representative in the channel dimension,
we introduce a new channel attention, that is, to maximize the
feature through the max function in the channel dimension,
namely, max-attention. The function of SRA can be expressed
by the following formulas:
SRmia = mul(Convg (SRori), SRori) + Convy(SRori)
(11)

SRAout - SRm“i + MA(SROM) (12)

where C'onv, and C'onuvy all represent the convolution layers
with the kernel size is 3. SR,,;q represents the output with-
out max-attention, M A(-) represents the function that max-
attention, and the output of SRA unit is denoted by SRA ;.

SRA-CR

X ®©

Concatenation
operation

Element Element
multiplication addition
Fig. 3. The detail of SRA-CR module.

Inspired by [36], we propose a CR unit to merge the
local information F; (i = 3,4,5) of the peer layer with the
generated camouflage map. The process can be expressed by
the following formulas:

CR11 = RBConv(SRAyut) (13)
CRyy = RBCon(F;) (14)
CR12 = mul(Conv(CR11),CRay) (15)
CRg2 = mul(Conv(CRa1),CR11) (16)
CRyur = Concat(CRyz, CRas) (17)

where CR1; (j = 1,2) and C'Ry; represent the intermediate
output, and RBConv(-) denotes the operation with Conv
— > BN — > Relu. Concat(-) represents the operation with
concatenation.

E. Loss Function

Binary cross entropy loss (BCE) is widely used to measure
the difference between the prediction and label, which pays
more attention to the pixel-level error and does not consider
the correlation between each pixel. IOU loss is often used
in segmentation tasks, which aims to optimize the global
structure. Inspired by [37]-[39], we employ weighted BCE

loss and weighted IOU loss as the combined loss, which can
be defined by the following formula:

L = Loy + Lpcr (18)

Compared with the standard BCE loss and 10U loss, LY,
and L.y (the definitions can be found in [37], [38]) pay
more attention to hard samples. We employ the same param-
eter definition and setting as [37], [38], and the effectiveness
has been proved. In this paper, we adopt deep supervision
for the three stages, and their locations are shown in Fig. 1.
Therefore, the final loss can be expressed by the following
formula:

Loy = Lsi1 + Lsa + Lgs (19)

Lgy, Lgo and Lgs represent the loss between the output of
each stage and GT, respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we will describe the benchmark dataset in
the COD field, the evaluation metrics, experimental setting,
comparisons with other models, and ablation study in detail.

A. Datasets

CAMO [21] was proposed in 2019 as the first dataset
for camouflaged object segmentation, which consists of 1250
images and is divided into two categories (artificially cam-
ouflaged objects and naturally camouflaged objects). 1000
images are used for training and the rest for testing.

CHAMELEON [24] is collected from Google using the
keyword Camouflaged Animal, which contains only 76 images
and manually object-level labels.

CODI10K [22] is the latest and largest data set for cam-
ouflaged object detection, with pixel-level annotation. The
dataset contains 10K images, divided into five superclasses,
and 6000 images were randomly selected for training and the
rest for testing.

B. Evaluation Metrics

F-measure [40] is widely used to evaluate the similarity of
the two images (the output generated by the model and the
corresponding GT of the input), which can be formulated as:

(82 +1) PR
B2P + R

According to [41], B2 is set to 0.3 to balance P and R, where
P represents precision and R denotes recall.

S-measure [42] is to measure the structural similarity
between the prediction map and the corresponding label, which
can be defined as:

Fy = (20)

S=aS,+(1—-a)S, 21

where S, represents structural similarity measurement based
on object-level, and S, represents a region-based similarity
measurement. According to [42], we set « as 0.5.

E-measure [43] is proposed for binary map evaluation, and
takes into account local information and global information,
defined as:

., woa
EZWXHZZ%?M(UUW) (22)

rx=1y=1
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where ¢ras (x, y is the corresponding pixel) represents the
enhanced alignment term, which is used to capture image-
level statistics and pixel-level matching. W and H represent
the width and height of the images that we input, respectively.

MAE is to measure the average absolute difference between
the output by the model and the ground-truth of input. MAE
is a pixel-level error evaluation index, defined as:

H W

o SIS () — G (2,)

z=1y=1

MAFE = (23)

where H and W represent the heigh and width of the input.
S denotes the generated map, and G denotes the ground truth.

PR curve is drawn with Precision and Recall as variables.
Recall is the transverse coordinate and Precision is the vertical
coordinate. We can employ different thresholds to divide the
foreground and background of generated maps, and then we
can calculate the corresponding Precision score and Recall
score. Finally, we can draw a PR curve to describe the
performance of the model by combining the obtained scores.

C. Experimental Setting

We employ Res2Net [34] as our backbone and the pa-
rameters are pre-trained on ImageNet [53]. Our proposed
model was implemented on Google Cloud Platform in Py-
torch toolbox, and an NVIDIA Tesla P100 was utilized for
acceleration. We train our proposed model on the dataset
of CAMO+CODI0K (contains 4040 images), which comes
from https://github.com/DengPingFan/SINet. For training, the
spatial resolution of input images is resized into 320%*320. Our
model employs Adam as optimizer with the initial learning rate
0.001 and the batchsize is set to 12. The code will be available
at https://github.com/MS-KangWang.

D. Comparison with start-of-the-art (SOTA)

As far as we know, there is almost no publicly available code
in the field of COD, so we select several classic depth models
as the comparison model, which contains PiCANet [44],
UNet++ [45], ANet [21], BASNet [46], CPD-R [23], HTC
[47], MSRCNN [48], FPANet [49], PoolNet [50], EGNet-R
[51], GCPANet [52], SCRN [36], SINet [22]. The selection
criteria are the same as SINet [22], including achieving SOTA
performance in the special field, classical architectures and
recently published. As for camouflage maps, parts of compared
models are from https://github.com/DengPingFan/SINet, and
parts are retrained and tested based on the open-source code
(based on the recommended parameters).

1) Quantitative Evaluation: As listed in TABLE I and TA-
BLE II, our model achieves the best score in all datasets under
four public map quality evaluation indicators. Specifically, for
the current largest camouflaged object dataset COD10K, the
F'mean score of our model achieves the highest score of
0.720, which is 0.086 (13.56%) higher than second ranked
model. Besides, M AE also decreases by 0.014 (27.45%).
For its subset, our D2C-Net achieves the best performance
compared to any other model. As for the other two datasets,
CAMO and CHAMELEON, our model achieves still different
degrees of improvement compared with other models. Overall,
our D?C-Net achieves SOTA performance.

2) Qualitative Evaluation: As shown in Fig. 4, in order
to highlight the performance of our proposed model, we
make a series of more detailed visual contrast experiments,
and provide the corresponding visual contrast maps. The red
rectangle in Fig. 4 marks the difference between the detection
results of different models and the corresponding GT. From
the figure, we can see that the detection result of our model is
closer to GT. In other words, our model performs better than
other comparative models. Specifically, from the first row and
the second row, we can see that the results of our model are
almost identical to GT. However, the other models are missing
in varying degrees or the detection results of camouflage
objects are not complete. In the fourth row, our model can
detect the camouflaged object completely, while SINet [22]
can only detect the boundary of the target roughly. Although
SCRN [36] and GCPANet [52] can detect the main part of
the target, the edge of the object is not clear and has a serious
trailing phenomenon. In addition, as can be seen from Fig.
5, the overall performance of our model is better than other
models. In general, our model can detect camouflage objects
more accurately than other models, whether in the target body
or its boundary, which may benefit from our optimization
strategy (gradually refined cross fusion, see section III D for
details).

We also provide some examples of artificial camouflage
objects. From Fig. 6, we can know that our model can
detect camouflage objects more accurately than SINet. This
also proves that our model can achieve good performance on
artificial camouflage objects.

E. Ablation Study

In this section, in order to prove the effectiveness of each
component in our model, we have conducted experiments
on three benchmark datasets. The details are summarized as
follows.

From TABLE III, we can see that the performance of the
model can be further improved when combining different
components, especially on COD10k (the largest data set at
present). Compared with model B, although the performance
growth of the model C is not obvious on the CAMO dataset
(small dataset), it has been improved on other datasets. From
the overall comprehensive performance (D), this is the best
compared with any stage. Comparing with the backbone on
COD10K dataset, the mean F-measure of our model increased
0.079 (12.32%), and MAE score decreased 0.011 (22.92%).

We also provide intermediate results in different stages to
prove the effectiveness of our proposed model. As shown in
Fig. 6, when we only employ the backbone (A) to extract
features and the output of the last layer is upsampled as the
final camouflage maps, our network can roughly lock the
position of the camouflaged object. However, shadow exists
at the edge of the generated camouflage maps of model
(A), which is unsatisfactory. Next, when we combine the
structure of the first stage (B) as illustrated in Fig. 1, the
detected coverage area of camouflage maps is more accurate.
However, there are still some objects that are wrongly detected
or incomplete, such as the fifth row and third row. Then,
we introduce dual-guidance information, and through the
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TABLE |
QUANTITATIVE COMPARISON BETWEEN OUR MODEL AND OTHERS UNDER FOUR PUBLIC IMAGE QUALITY EVALUATION INDEX, WHICH CONTAINS
S-MEASURE (S), MEAN ABSOLUTE ERROR (M AE), MEAN E-MEASURE (E) AND MEAN F-MEASURE (Fy), 1 DENOTES THAT THE HIGHER THE
BETTER AND | DENOTES THAT THE LOWER THE BETTER. THE BEST SCORES WERE MARKED RED, FOLLOWED BY AND BLUE. THE
EVALUATION CODE IS FROM HTTPS://GITHUB.COM/DENGPINGFAN/CODTOOLBOX/.

CAMO CHAMELEON CODIOK

model ST MAE] 1275 Fal ST MAET EyT Fal ST MAET] 1275 Fal
2018-CVPR-PICANet [44] 0.609 0.156 0.584 0419 0.769 0.085 0.749 0,615 0.649 0.090 0.643 0411
2018-DLMIA-UNet++ [45] 0.599 0.149 0.653 0.461 0.695 0.094 0.762 0.557 0.623 0.086 0.672 0.409
2019-CVIU-ANet [21] 0.682 0.126 0.685 0.541 * * * * * * * *
2019-CVPR-BASNet [46] 0.618 0.159 0.661 0475 0.687 0.118 0.721 0.528 0.634 0.105 0.678 0.417
2019-CVPR-CPD-R [23] 0.726 0.115 0.729 0.613 0.853 0.052 0.866 0.752 0.747 0.059 0.770 0.581
2019-CVPR-HTC [47] 0.476 0.172 0.442 0.206 0517 0.129 0.489 0.236 0.548 0.088 0.520 0253
2019-CVPR-MSRCNN [48] | 0.617 0.133 0.669 0527 0.637 0.091 0.686 0.505 0.641 0.073 0.706 0.478
2019-CVPR-PFANet [49] 0.659 0.172 0.622 0.464 0.679 0.144 0.648 0.450 0.636 0.128 0.618 0375
2019-CVPR-PoolNet [50] 0.702 0.129 0.698 0.563 0.776 0.081 0.779 0.632 0.705 0.074 0713 0.500
2019-ICCV-EGNet [51] 0.732 0.104 0.768 0.647 0.848 0.050 0.870 0.750 0.737 0.056 0.779 0.573
2020-AAAIL-GCPANet [52] 0.749 0.111 0.745 0.630 0.850 0.056 0.846 0.733 0.766 0.057 0.773 0.599
2020-ICCV-SCRN [36] 0.745 0.105 0.743 0.644 0.866 0.046 0.869 0.770 0.788 0.625
2020-CVPR-SINet [22] 0.771

Ours 0.774 0.087 0.818 0.735 0.889 0.030 0.939 0.848 0.807 0.037 0.876 0.720

TABLE Il

QUANTITATIVE COMPARISON BETWEEN OUR MODEL AND OTHERS UNDER FOUR PUBLIC IMAGE QUALITY EVALUATION INDEX, WHICH CONTAINS
S-MEASURE (S), MEAN ABSOLUTE ERROR (M AE), MEAN E-MEASURE (E,) AND MEAN F-MEASURE (Fy ), T DENOTES THAT THE HIGHER THE
BETTER AND | DENOTES THAT THE LOWER THE BETTER. THE BEST SCORES WERE MARKED RED, FOLLOWED BY AND BLUE. AMPHIBIAN,
AQUATIC, TERRESTRIAL AND FLYING ARE THE SUBCLASSES OF COD10K.

Model Amphibian Aquatic Terrestrial Flying
ST MAFE]  E,T 1% ST MAE]  EsT Fot ST MAFE] E,T Fo T ST MAE]  EsT Fot

2018-CVPR-PiCANet [44] 0.704 0.086 0.689 0494 | 0.629 0.120 0.623  0.423 | 0.625 0.084 0.628  0.359 | 0.677 0.076 0.663  0.440
2018-DLMIA-UNet++ [45] 0.677 0.079 0.725 0496 | 0.599 0.121 0.659 0418 | 0.593 0.081 0.637  0.340 | 0.659 0.068 0.708  0.455
2019-CVPR-BASNet [46] 0.708 0.087 0.741  0.535 | 0.620 0.134 0.666  0.431 | 0.601 0.109 0.645 0.350 | 0.664 0.086 0.710  0.454
2019-CVPR-CPD-R [23] 0.794 0.051 0.823  0.659 | 0.739 0.082 0.770  0.606 | 0.714 0.058 0.735  0.516 | 0.777 0.046 0.796  0.616
2019-CVPR-HTC [47] 0.606 0.088 0.596  0.365 | 0.507 0.129 0.494  0.223 | 0.530 0.078 0.484  0.196 | 0.582 0.070 0.558  0.308
2019-CVPR-MSRCNN [48] | 0.722 0.055 0.784  0.613 | 0.614 0.107 0.685 0.464 | 0.611 0.070 0.671 0417 | 0.674 0.058 0.742  0.522
2019-CVPR-PFANet [49] 0.690 0.119 0.661 0460 | 0.629 0.162 0.614  0.404 | 0.609 0.123 0.600  0.323 | 0.657 0.113 0.632  0.393
2019-CVPR-PoolNet [50] 0.766 0.064 0.769  0.598 | 0.689 0.102 0.705  0.507 | 0.677 0.070 0.688 0.442 | 0.733 0.062 0.733  0.534
2019-ICCV-EGNet [51] 0.788 0.048 0.837  0.660 | 0.725 0.080 0.775  0.597 | 0.704 0.054 0.748  0.509 | 0.768 0.044 0.803  0.607
2020-AAAI-GCPANet [52] 0.819 0.048 0.840  0.681 | 0.766 0.075 0.779  0.635 | 0.734 0.058 0.736 0.533 | 0.790 0.045 0.795  0.627
2020-ICCV-SCRN [36] 0.817 0.043 0.836  0.697 0.787  0.649 0.051 0.756  0.566 0.812  0.656
2020-CVPR-SINet [22] 0.758 0.073 0.743 0.798
Ours 0.848 0.032 0911  0.783 | 0.805 0.053 0.873  0.744 | 0.773 0.039 0.848  0.657 | 0.835 0.027 0.902  0.755
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Fig. 4. Visual comparison of our proposed model and others on three benchmark datasets. The first column, the second column and the third
column represent the input image, Ground Truth(GT) and our model results, respectively. From the figure, we can see that our results are closest to
GT. In addition, the completely black results in the figure indicate the corresponding model does not detect any objects.

combination (C) of holistic attention and residual attention redundant background is suppressed and the missing details
guidance, we can further modify the detection results. As are completely supplemented. Finally, when combined with
can be seen from the sixth and seventh rows of Fig. 7, the GRCF module (D), it makes full use of some supplementary
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Fig. 5. The PR Curves of our model and others on three benchmark datasets.

Fig. 6. The performance comparison on artificial camouflage objects.

TABLE Ill
THE ABLATION STUDY OF OUR PROPOSED NETWORK ON THREE
DATASET. A, B, C AND D REPRESENT THE MODULE BACKBONE,
A+STAGE1, B+STAGE2 AND C+GRCF, RESPECTIVELY.

Ablation Study A B C D
ST [ 0758 0760 0760  0.774
CAMO ML | 0098 0097 0094  0.087
Fat | 0697 0706 0705 0735
ST [ 0857 0881 0888  0.889
CHAMELEON /| 0044 0035 0032 0.030
Foal | 0784 0826 0841  0.848
ST 0772 0793 0801  0.807
CODIOK ML | 0048 0043 0038  0.037
Fat | 0641 0687 0702  0.720

texture information provided by peer-to-peer features, so that
the detection results are further improved. As can be seen
from the last column in Fig. 7, the camouflage maps of the
final model (D) are closer to GT.

We conduct further analysis (as listed in TABLE 1V) of
our method and SINet (published COD model with the best
performance) from the aspects of model size (number of
parameters) and inference speed (frames per seconds). Since
there is a trade-off between model complexity and perfor-
mance, we would like to emphasize that, by introducing a two-
stage, dual-guidance and cross-refine network based on human
visual mechanism, our method outperforms all the counterparts
by a large margin (see Table I and Table II for details), which
indicates that the main purpose of this work has been fulfilled.
Of equal importance, although little discussed in this work,
is the integrated solution considering both the accuracy and

Mgl ‘Bt
B30 D

OI

Image

V]

Fig. 7. Visual comparisons of D2C-Net in four stages. A, B, C and D
denotes the backbone, A+stage1, B+stage2 and C+GRCEF, respectively.

TABLE IV
COMPARISON OF ALGORITHM EFFICIENCY.

X Frames per second
Model | Parameters | —=33r5—CHAMELEON CODIOK
SINet | 48946851 | 29.28 2935 29.75
Ours | 55020186 | 17.35 17.00 1693

efficiency, which is going to be the main focus of future work.
V. POTENTIAL APPLICATIONS

Camouflaged object detection can be applied to a bit of
fields, such as surface defect detection, medical segmentation,
wildlife monitoring/detection and underwater biological detec-
tion. In this section, we have carried out some experiments to
verify the possibility of our model applied to other fields (the
first two applications). As shown in Fig. 8, we can see that
our model achieves satisfactory detection results.

On the one hand, when a system is equipped with a
camouflaged object detection function, the system can detect
whether there are defects on the rail surface. The red box in the
figure indicates the defect location and detection results. On
the left of the blue line in Fig. 8, we can see that the location
of the flaw can be well detected. On the other hand, we apply
our model to the polyp segmentation, and the detection results
are shown on the right of the blue line in Fig. 8. It is worth
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Fig. 8. Potential applications. (a), (b), (c) represent input images, GT
and the output of our model, respectively. The left side of the blue line is
the rail surface defect detection, and the right is the polyp detection.

mentioning that, our training sets do not contain images related
to rail defect detection and polyp segmentation.

VI. CONCLUSION

In this paper, we propose a novel model for COD detection,
which contains the DFE module and the GRCF module. In
the DFE module, we use two stages to detect camouflaged
objects to simulate the human visual mechanism. The first
stage can be understood as a rough prediction, while the
second stage is to make an accurate guidance forecast on the
basis of the first stage. In the GRCF module, we optimize the
detection results of DFE by using peer-to-peer characteristics
through two strategies: self-refine attention and cross-refine
unit. Compared with others, our model can achieve the SOTA
performance when we combine the proposed module. Besides,
in order to prove the effectiveness of our model, we carry on a
series of experiments on three datasets. From the experimental
results, we can see that the performance of our model is
gradually improved when combining different modules. In
all, the effectiveness and superiority of our model have been
proved. Furthermore, we hope that our model can be applied to
more fields, such as industrial defect detection, medical image
segmentation and detection.
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