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Abstract—Fundamental in-body limitations on achievable ra-
diation efficiency could provide decision-making assistance to
engineers working on antennas for implantable bioelectronics. In
this study, proof-of-concept conformal microstrip antennas are
proposed based on these theoretical foundations. In particular,
maximizing the effective aperture and loading the antenna with
materials having the permittivity higher than that of surrounding
tissues is a promising solution for increasing the radiation
efficiency. The operating frequencies are tuned to operate within
the optimal range for deep-body implantation: 434, 868, and 1400
MHz. The achieved radiation efficiencies at these frequencies are
0.4%, 2.2%, and 1.2%, respectively, when simulated in a �100-
mm spherical phantom with muscle-equivalent electromagnetic
properties. The radiation performance at each frequency is com-
pared to the fundamental limitations and closely approach them.
Prototypes are characterized for the experimental validation.

Index Terms—biomedical applications, conformal antenna,
implantable, in-body, ingestible, microstrip antennas.

I. INTRODUCTION

Implantable bioelectronics is an emerging technology hav-
ing many promising applications in medicine, clinical re-
search, and basic science [1]. Establishing robust communi-
cation between in-body bioelectronics and external equipment
is challenging because of extremely low radiation efficiencies
η < 0.1%. The main reasons are power dissipation in tissues
(due to attenuation and strong tissue–air wave-impedance con-
trast) as well as the miniature size of the radiating elements [2].
Efficient in-body antennas would also help minimizing errors
in path loss characterization in vivo [3], [4].

A range of antennas with different configurations and oper-
ating frequencies has been already proposed for bioelectronic
capsule applications [5]–[10]. Robustness to heterogeneous
and uncertain electromagnetic (EM) properties of surrounding
tissues was considered in [11]–[14] and a reconfigurable cap-
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Fig. 1. (a) Miniaturized conformal-patch antenna design and dimensions of
the capsule (units: millimeters). An example optimized for the 868-MHz band
is shown here; detailed antenna dimensions individually optimized for all
operating frequencies are given in [21]. (b) Simulated and measured reflection
coefficients |S11|.

sule antenna with no nulls in radiation pattern was proposed
in [15]. Impact of dielectric loading on radiation efficiency
was studied in [16]–[18]. Dielectric loading by materials
such as alumina or zirconia have been studied for in-body
antenna applications in [19], [20]. Effects of loading by higher
permittivity materials were considered in [21]. Such materials
have a potential of maximizing the tissue-loading effect while
reducing losses in the near-field [22], [23].

In this study, we apply the fundamental in-body limitations
[18], [23] to study the design of a superstrate-loaded (εr ≈
80) capsule-conformal antenna. The design is tuned to three
different operating frequencies spanning the optimal frequency



range for in-body applications: 434, 868, and 1400 MHz [24].
The radiation efficiencies at these frequencies are compared to
the fundamental limitations and closely approach them. This
proof-of-concept antenna design remains simple and conforms
to the inner wall of a 1-mm-thick ceramic shell. The theoretical
effect of shell thickness on the efficiency is studied as well.

II. MINIATURIZED CONFORMAL-PATCH DESIGN

The antenna designs conform to the inner surface of the 29×
�9 mm capsule (Fig. 1a). The shell is made of biocompatible
low-loss ceramic with εr ≈ 80 close to the maximum value
encountered in a human body [25]. The proposed antennas
are of a cylinder-conformal microstrip type and are designed
to operate similarly to a half-wave patch [21]. The radiating
edges are spaced out between two extremities of the cylinder,
and such a configuration allows for the improved aperture
efficiency that leads to higher achievable efficiency [18].

The miniaturization is achieved in part using dielectric load-
ing by surrounding tissues and the ceramic superstrate. An H-
antenna technique was used to further miniaturize the antenna
[26]. The final design consists of two radiating elements linked
by a high-impedance microstrip (Fig. 1a). For the 434-MHz
design, the high-impedance microstrip had to be meandered
to increase its physical length.

III. NUMERICAL RESULTS

CST Microwave Studio 2018 was used to analyze and
optimize the antennas [27]. Detailed description of the numer-
ical approach is given in [28]. Fig. 1b shows the impedance
characteristics of the proposed antennas in muscle-equivalent
environment. As for the radiation performance, the maximum
simulated gains G are –28, –16, and –16 dBi, and the radiation
efficiencies η are 0.4%, 2.2%, and 1.2% for the 434 MHz,
868 Mhz, and 1.4-GHz designs, respectively. Fig. 2a shows
the full patterns.

Fig. 2b gauges the proposed designs against the maximum
achievable efficiencies of corresponding theoretical TM10 and
TE10 sources in a �100-mm spherical muscle-equivalent phan-
tom [18]. The theoretical sources have been calculated with the
following parameters corresponding to the proposed designs:
L = 18 mm, R = 3.5 mm, and T = 1 mm. Owing to heavy
dielectric loading, the 434-MHz design exceeds η of the TM10
source. However, at this frequency, higher η can be achieved
using a magnetic TE10 source. The 868-MHz antenna is the
most efficient among the three designs: it surpasses max (η) of
TE10 and closely approaches TM10. The radiation efficiency
of the 1.4-GHz design is below max (η) of both TM10 and
TE10. Its increased directivity D = 4 dBi results in elevated
power dissipation in the near field of the antenna [23].

Fig. 3 shows the theoretical effect of a lossless (i.e.
σ = 0 S·m−1) shell thickness T the maximum achievable
efficiency η (fopt). The radiation efficiency is linearly
proportional to T for both source formulations although the
effect is stronger for TM10 due to the reduction of losses in
the predominantly electric near field of this source type.

Fig. 2. Radiation performance of the proof-of-concept conformal-patch 
antenna individually optimized for three different operating frequencies. 
The inset shows the antenna prototype. (a) Simulated and measured 
radiation patterns in the 100-mm spherical phantom with muscle-
equivalent properties.(b) Radiation efficiency comparison of the 
proposed designs with the maximal achievable efficiencies of theoretical 
TM10 and TE10 sources. The efficiency of theoretical sources was 
calculated using the methodology given in [18].
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Fig. 3. Maximum achievable efficiency η (fopt) as a function of capsule 
shell thickness. The source dimensions are L = 18 mm, RC = 3.5 mm.



IV. EXPERIMENTAL VALIDATION

The proposed antennas were manufactured on the 101.6-
µm-thick Rogers 3850HT substrate and then inserted into a
28×�9 mm ceramic shell TCI Ceramics “K-80,” εr = 80 [29].
Detailed prototyping procedure is given in [21]. To mimic the
tissue properties, we prepared corresponding liquid muscle-
equivalent phantoms for each fd. We used a water–sugar–salt
formula [30] to achieve target EM properties. EM properties
were validated using SPEAG DAK-12 probe.

Fig. 1b shows good agreement in terms of |S11|. The
resonance frequency deviation of about 7% for the 434-MHz
design could be due to relatively low precision manufacturing
methodology (laser ablation). Radiation performance was mea-
sured in a fully anechoic chamber as detailed in [21]. The ra-
diation was measured in the azimuth plane for θ ∈ [90◦, 270◦]
due to the positioner angle limitations (see [19]). Fig. 2a shows
the far-field characterization results. The radiation patterns and
maximum gain values are consistent with the simulated ones.

V. CONCLUSION

We studied the proof-of-concept design of in-body
dielectric-loaded conformal-patch antennas. The results are
consistent with the theoretical findings on fundamental in-body
radiation limitations. In addition, the results demonstrate in
practice that electric antennas could achieve higher efficiencies
than the magnetic ones provided they operate close to an
optimal frequency for a given implantation depth [24]. Note
that the magnetic antennas show better theoretically achievable
efficiency when operating well below the optimal frequency
range (Fig. 2b, TE10). Future work on this subject includes ex-
ploring higher permittivity materials as well as implementing
the developed approach into multi-band in-body antennas.
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