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ABSTRACT: 9,10-Dihydroacridines are frequently encountered as key scaffolds in OLEDs. Yet, accessing those compounds from 

feedstock precursors typically requires multiple steps. Herein, a modular one-pot synthesis of 9,10-dihydroacridine frameworks is 

achieved through a reaction sequence featuring a selective ortho-C alkenylation of diarylamines with aryl alkynes followed by an 

intramolecular hydroarylation of the olefin formed as intermediate. This transformation was accomplished by virtue of the 

combination of hexafluoroisopropanol and triflimide as a catalyst that triggers the whole process. 

In the past decade, 9,10-dihydroacridines have emerged as 

privileged structural motifs in chemistry owing to their 

remarkable electronic properties. They are now extensively 

used in the field of materials science as electron-donor units, 

notably for organic light-emitting diode (OLED) devices. 

Hence, they have been employed as an integral part of 

fluorescent emitters, thermally activated delayed fluorescence 

(TADF) materials or hole-transport materials.1 Moreover, they 

have recently proven particularly effective in other areas such 

as photocatalysis,2 detection of explosives,3 and medicinal 

chemistry.4 Yet, despite the wealth of reports regarding their 

utilization, the development of efficient and versatile synthetic 

methods to access those building blocks from readily available 

precursors remain strikingly sparse,5 representing a serious 

impediment to broadening their range of applications. 

Currently, their preparation usually requires multi-step 

synthesis from anilines, which are furthermore not always 

commercially available (Scheme 1a).1j On this basis, most of 

the applications reported tend to be limited to simple 9,10-

dimethyl and -diphenylacridines. As an alternative, the group of 

Stephan described, in 2017, an elegant approach to access 9,10-

dihydroacridines following a one-pot sequence featuring an 

ortho-C-alkenylation of an anilines with an aryl alkyne and a 

subsequent hydroarylation of the styrene intermediate in the 

presence of a phosphonium dication catalyst (Scheme 1b).5c The 

selective ortho-C-alkenylation of the aniline with the alkyne is 

the key of the process;6,7 however, the applicability of this type 

of reactivity is still underdeveloped when compared to the 

ortho-C alkylation of anilines with olefins.8 It might be 

explained by the formation of a sp hybridized carbenium center, 

which is a sluggish electrophile compared to its sp2 carbenium 

counterpart generated from alkenes.9 As a result, the scope 

exhibited by this reaction sequence proved to be limited. In this 

context, we questioned whether we could address the 

limitations of this transformation by employing 

hexafluoroisopropanol (HFIP) as a solvent.10 In the past years, 

HFIP has become a prominent solvent in organic synthesis due 

to its combination of atypical properties, including strong H-

bond donating ability, low nucleophilicity, redox stability, and 

mild acidity.11 It allowed us to achieve reactions that were 

unlikely to take place in traditional organic solvents,8k,10d,12 

emphasizing that, when HFIP was associated with a Lewis acid 

or a Brønsted acid, the acidity of the corresponding combination 

could be considerably boosted to even activate unreactive 



 

Scheme 1. Strategies to access 9,10-dihydroacridines. [P]+ = [(PhO)P(2(N-Mepy))Ph2]
2+. 

 
 

substrates such as highly deactivated styrenes. Recently, we 

applied this principle to the ortho-C alkylation of anilines with 

alkenes,8k which relies on a concerted-like mechanism that is 

fostered by the presence of HFIP and prevents common 

regioselectivity issues associated with this type of process 

(Scheme 1c). While rather efficient and general, this 

transformation is still fraught with a few limitations in terms of 

reactivity. For instance, electron-rich styrenes or triarylamines 

preferentially led to para-adducts due to a facile protonation of 

the olefin moiety under the reaction conditions. Following this 

work, we assumed that this strategy could be transposed to aryl 

alkynes to afford the target 9,10-dihydroacridines. We 

hypothesized that, since the protonated alkynes (vinyl 

carbocations) are less reactive than protonated alkenes, a 

concerted mechanism pathway would be predominant, by-

passing the above-mentioned limitations. This strategy would 

thus enable a straightforward and modular synthesis of 9,10-

dihydroacridines so that the properties of the corresponding 

organic materials could be easily tuned, enabling new 

applications for this class of compounds. Herein, we disclose 

our findings regarding this reaction sequence to produce an 

array of structurally varied 9,10-dihydroacridines in good to 

high yields and with an excellent functional group 

compatibility. Moreover, we show that the developed 

conditions also allow the preparation of xanthenes and 

thioxanthenes. 

We started our investigations by examining the reaction 

between 1-ethynyl-4-(trifluoromethyl)benzene 1a (highly 

deactivated aryl alkyne) and diphenylamine 2a in HFIP (See the 

Supporting Information for more details). We established that 

using Brønsted acid HNTf2
13 as catalyst proved to be optimal to 

deliver the target 9,10-dihydroacridine 3aa in 86% yield after 

16 h at 80 °C (Equation 1).14 A survey of the reaction 

optimization revealed that HFIP is crucial for the reaction 

outcome as another fluorinated solvent such as trifluoroethanol 

(TFE) yielded the product 3aa in a low yield (5%); only traces 

of 3aa were observed in common solvents such as 1,2-DCE, 

toluene and nitromethane. Gratifyingly, the reaction worked 

smoothly on a larger scale (5 mmol), furnishing 3aa in 81% 

yield (1.37 g). An issue regularly mentioned with the utilization 

of HFIP is its cost, but it is important to stress that, because of 

its low boiling point, it can be easily recovered by distillation,15 

counterbalancing this issue. 

 

We next examined the scope of this transformation (Scheme 2), 

first evaluating a variety of terminal aryl alkynes (1aa-1ua) in 

reactions with diphenylamine 2a. In this respect, the tested aryl 

alkynes bearing moderate and strong electron-donating and -

withdrawing groups at the para-position were all tolerated and 



 

Scheme 2. Scope of 9,10-dihydroacridines and other heterocycles. 

 



 

provided the corresponding 9,10-dihydroacridines 3aa-3ka in 

high yields, ranging from 73 to 98%. Of note, in the case of 

strong electron-withdrawing groups such as nitrile and nitro (1c 

and 1d), the reaction had to be conducted at 120 °C to reach 

complete conversion of the alkyne starting materials. In the case 

of strong electron-donating groups such as methoxy and amine 

(1j and 1k), the reaction proceeded faster than the previous 

examples (6 vs 16 h), providing the target products 3ja and 3ka 

in 86 and 79% yield, respectively. The use of highly electron-

poor alkynes such as 3,5-bis(trifluoromethyl)phenyl derivative 

required to increase the catalyst loading to 10 mol% to afford 

9,10-dihydroacridine 3la in 83% yield. The presence of an 

ortho-substituent was also well tolerated (3ma, 87%). The 

reaction sequence was not limited to phenyl group but could be 

also extended to a naphthyl or thienyl group, delivering both 

3na and 3oa in 80% yield. More importantly, the 

transformation occurred also for internal alkynes incorporating 

alkyl substituents (e.g., adducts 3pa and 3qa were generated in 

73 and 70% yield), albeit at a slower rate than the reactions 

involving terminal alkynes. Gratifyingly, dialkynes 1s-1t and 

trialkyne 1u were readily accommodated in the reactions to 

provide multiple-9,10-dihydroacridine-bearing compounds in 

high yields (71-89%). On the other hand, bis-alkyl alkynes 

proved to be not competent precursors for the reaction, 

essentially leading to decomposition of the substrate with only 

traces of the target product 3ra detected. 

We then explored the scope with respect to the diarylamine 

component (2b-2n), using representative aryl alkynes 1c (R = 

CN) and 1g (R = H) as benchmark precursors. In the case of 

2,7-substituted 9,10-dihydroacridines (3cb-3cj, 3gd, 3gf and 

3gi), the reaction demonstrated a broad functional group 

compatibility from both symmetrical and dissymmetrical 

diarylamines to provide the products in medium to high yields 

(57-95%). Both electron-donating and -withdrawing 

substituents were amenable to the reaction; notably, bromide 

substituents were easily introduced to generate products 3ce, 

3ci and 3gi (57-68%), which constitute useful platforms for 

further derivatizations. In addition, 4,5-substituted 9,10-

dihydroacridines such as 3ck could be generated in 73% yield. 

N-alkyl diarylamines such as 1l also underwent the reaction 

process in high yields (up to 85%), employing both terminal and 

internal alkynes (3al, 3cl, 3gl and 3pl). By incorporating a 

naphthyl moiety, we could prepare complex polycyclic 

structures (3cm, 3cn and 3gn) in yields ranging from 61 to 87%. 

Triarylamines, notably triphenylamine 2o, displayed a 

satisfying reactivity with respect to this process to form the 

products in medium to high yields (41-93%), regardless of the 

electronic demand of the aryl alkyne and its nature (terminal or 

internal). Another key feature of this method is that the reaction 

of diphenyl sulfide 2r in place of 2a yielded the corresponding 

thioxanthene 3cr in 83% yield. In the same vein, the reaction 

with diphenyl ether 2s underwent the diarylation to give 

xanthene 3gs in 67% yield. However, it should be stressed that 

diphenyl ether is less reactive than diarylamines and diphenyl 

sulfide as it was ineffective with highly deactivated aryl alkyne 

such as 1c (10% yield after one week at 120 °C). Regarding the 

limitations of this approach, we noticed that the use of meta-

substituted diarylamines (2s and 2t) and triarylamines with non-

identical aryl groups led to the formation of a mixture of 2 

regioisomers that could not be separated in some cases by flash 

column chromatography. 

To further illustrate the synthetic utility of this method, we 

carried out few post-functionalizations. As stated above, the 

reaction sequence with dissymmetrical diarylamines occurred 

with ease to return the corresponding products in high yields. 

Those results could be used to our advantage to generate 

densely functionalized 9,10-dihydroacridines such as 4 

incorporating four different aryl units, following a Ullmann C-

N cross-coupling.16 It also represents a simple way to 

circumvent the reactivity issue mentioned with triarylamines. 

Additionally, we executed a Pd(II)-catalyzed C-H activation to 

convert 3ma into pentacyclic compound 5 in 94% yield.17,18 

In summary, we have developed an efficient protocol for the 

assembly of 9,10-dihydroacridines and related heterocycles 

from inexpensive precursors through the cooperation of HFIP 

and a Brønsted acid catalyst. The wide array of substrates 

tolerated validates the utility of this transformation as a means 

to provide a rapid access to molecules that could find 

applications in the field of materials science and photocatalysis. 

In addition, the viability at scale of this method was also 

demonstrated. 
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