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Abstract
1.	 Ecosystem heterogeneity has been widely recognized as a key ecological indica-

tor of several ecological functions, diversity patterns and change, metapopulation 
dynamics, population connectivity or gene flow.

2.	 In this paper, we present a new R package—rasterdiv—to calculate heterogeneity 
indices based on remotely sensed data. We also provide an ecological application 
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1  | INTRODUC TION

Ecosystem heterogeneity is related to a number of ecological pro-
cesses and functions such as species diversity patterns and change 
(Rocchini et  al.,  2018), metapopulation dynamics (Fahrig,  2007), 
population connectivity (Malanson & Cramer,  1999) or gene flow 
(Lozier et al., 2013). Heterogeneity has been defined in various ways 
in the scientific literature: (a) as the variation in space and time of 
qualitative and quantitative descriptors of an environmental variable 
of interest (Li & Reynolds,  1995); (b) as the horizontal component 
of habitat variation (August, 1983; Grelle, 2003); (c) as the spatially 
structured variability of the habitat (Ettema & Wardle, 2002); or (d) 
as within-habitat variability (Heaney, 2001; Hortal et al., 2009). In 
this paper, it will be considered as an umbrella concept representing 
the degree of non-uniformity in land cover, vegetation and physi-
cal factors (topography, soil, topoclimate and microclimate; Stein 
et al., 2014).

Landscape heterogeneity across different spatial extents and 
over different temporal periods can be inferred by applying algo-
rithms based on remote sensing and spatial ecology (Schimel & 
Schneider,  2019; Skidmore et  al.,  2011). Remotely sensed spectral 
heterogeneity measures of a landscape represent a valid alterna-
tive to categorical land cover maps, which, especially in the case 
of non-homogeneous and complex landscape configurations (e.g. 
mosaic of crops and semi-natural forests), might suffer from over-
simplification when investigated through land cover classes (Da Re 
et al., 2019; Rocchini et al., 2019). Heterogeneous landscapes should 
present higher spectral heterogeneity values compared to more ho-
mogeneous landscapes within the same spatial extent (Rocchini & 
Ricotta, 2007). It follows that remotely sensed spectral heterogeneity 
can be profitably used to measure landscape heterogeneity in space 
and time to convey information on ecosystem processes and func-
tioning (Schneider et al., 2017).

From this point of view, the development of Free and Open-
Source algorithms to measure and monitor (i.e. repeated measures 
over time) landscape or ecosystem heterogeneity from space 
would allow robust, reproducible and standardized estimates of 
ecosystem functioning and services (Rocchini & Neteler,  2012). 
Furthermore, their intrinsic transparency, community-vetoing 
options, sharing and rapid availability are also valuable additions 
and reasons to move towards open-source options. Considering  
the different open-source software options, the R software  

(R Core Team, 2020) is among the most widely used languages for 
statistics and modelling and different packages have already been 
devoted to remote sensing data processing for: (a) raster data man-
agement (raster package; Hijmans & van Etten, 2020); (b) remote 
sensing data analysis (RStoolbox package; Leutner et al., 2019); (c) 
spectral species diversity mapping (biodivMapR package; Féret 
& Boissieu, 2020); (d) Sparse Generalized Dissimilarity Modelling 
based on remote sensing data (sgdm package; Leitão et al., 2017); 
(e) entropy-based local spatial association (ELSA package; Naimi 
et  al.,  2019); or (f) landscape metrics calculation (landscape-
metrics package; Hesselbarth et  al.,  2019), to name just a few. 
Readers can also refer to https://cran.r-proje​ct.org/web/views/​
Spati​al.html for the CRAN Task View on analysis of spatial data.

Nonetheless, no r package currently provides a flow of func-
tions grounded in Information Theory and generalized entropy, 
incorporating abundance information for each informative value 
but also the relative numerical distance among said values. In this 
paper, we introduce the new rasterdiv r package, now available 
under the Comprehensive R Archive Network (CRAN, https://
CRAN.R-proje​ct.org/packa​ge=raste​rdiv), which provides such 
a set of functions' throughput workflow. The aim of this man-
uscript is to briefly introduce the theory under the rasterdiv 
package and to provide an ecological example demonstrating 
its ability to measure several aspects of landscape or ecosystem 
heterogeneity.

2  | BRIEF DESCRIPTION OF THE 
THEORETIC AL FR AME WORK ON 
INFORMATION-THEORY-BA SED METRIC S

2.1 | Shannon entropy

Shannon's (1948) theory, profoundly rooted in Eduard Boltzmann's 
(1872) studies, is a solid basis for calculating landscape heteroge-
neity and it has been widely used in several ecological applications 
(refer to Vranken et al., 2014 for a review).

Given a sample area with N pixel values and pi relative abun-
dances for every i ∈ {1, …, N} the Shannon index is calculated as:

(1)H = −

N∑
i=1

pi lnpi,
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at the landscape scale and demonstrate its power in revealing potentially hidden 
heterogeneity patterns.

3.	 The rasterdiv package allows calculating multiple indices, robustly rooted in 
Information Theory, and based on reproducible open-source algorithms.
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When applying such indices to remotely sensed data, the image is 
divided into small chunks of the whole image, commonly defined as ‘ker-
nels’, ‘windows’ or ‘moving windows’ (see Figure 1 in Box 1). These terms 
will be used throughout this manuscript to relay the local scale of analysis.

In the Shannon index, the relative abundance of pixel values (e.g. 
reflectance values, vegetation indices) is considered. The higher the 
richness and turnover, the higher will be the equitability of values 
and thus the Shannon index.

BOX 1 Description of the moving window approach

Given a raster layer, ecologists usually split it into small chunks, called moving windows. To estimate the value of the previously 
presented indices, we first select l  an odd number, which will correspond to the length of the squared window. With this choice, we 
have a central entry in the window, that is, the 

(
l+ 1

2
,
l+ 1

2

)
 entry, which will be placed as a mask, in position (1, 1) over our raster. The 

index is therefore computed only with the values which the window covers. Notice that with this choice we will have some missing 
values, which will not contribute to the index computation. The obtained index value is stored in position (1, 1) in the output raster. 
The following step is moving the window so that its central entry is over the entry (1, 2) of the raster. The index value computed is 
stored in the corresponding position of the output raster, that is, in (1, 2). We proceed in this way until the last entry of the output 
raster is filled.

This technique, visually presented in Figure 1, is extremely popular in ecology since it is quite simple, robust and powerful to simu-
late a biological boundary. Note that this technique of computing index has a suitable algorithmic structure.

F I G U R E  1   The moving window technique for the computation of diversity indices in the rasterdiv package, redrawn from 
Rocchini et al. (2013)

Algorithm 1 Index computation with moving window
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2.2 | Rényi generalized entropy

Any point descriptor of information heterogeneity, like the previ-
ously cited Shannon's H, is not able to describe the whole potential 
spectrum of heterogeneity as it usually measures only one part or 
component of heterogeneity (e.g. richness, evenness, nestedness, 
etc.). Hence, no single measure can be used to represent such a wide 
spectrum (Gorelick, 2011; Nakamura et al., 2020).

Rényi (1970) proposed a method to generalize entropy mea-
surements in just one formula, changing one parameter, called � 
in its original formulation. Given a sample area with N pixel values 
and pi relative abundances for every i ∈ {1, …, N}, the Rényi en-
tropy index is:

Changing the parameter � will lead to different indices starting from 
the same formula (Hill, 1973). As an example, when α = 0, H0 = ln(N) 
where N  =  richness, namely the maximum possible Shannon index 
(Hmax). In practice, with � = 0, all the spectral values equally contrib-
ute to the index, without making use of their relative abundance. 
For � → 1, the Rényi entropy index will equal Shannon H, according 
to the l'Hôpital's rule (a mathematical proof is provided in Supporting 
Information Appendix 1), while for α = 2 the Rényi entropy index will 
equal the ln(1/D) where D is the Simpson's dominance (Simpson, 1949). 
The theoretical curve relating the Rényi entropy index and α is a nega-
tive exponential, that is, it decays until flattening for higher values of α, 
where the weight of the most abundant spectral values is higher with 
small differences among the attained heterogeneity maps (Ricotta 
et  al.,  2003). Besides the Rényi's generalized entropy, the rasterdiv 
package includes generalized metrics as the Hill's (1973) numbers.

2.3 | Rao's Q heterogeneity index

The previously described metrics have no dimension. In other 
words, they do not consider the relative difference among pixel val-
ues but just the presence of a different class. For example, having 
A = (1, 2, 3, 4, 5, 6, 7, 8, 9) and B = (1, 102, 103, 104, 105, 106, 107, 108, 109) 
as two theoretical arrays containing values that are different from 
each other, the Shannon index will always be maximum, that is, 
H = ln (9) = 2.197225 despite the relative numerical distance between 
pairs of values.

In remote sensing, this is a critical point since contiguous zones 
of a satellite image might have similar (but not strictly equal) reflec-
tance values. For instance, the variability of a homogeneous sur-
face like a woodland patch or a water area, would be overestimated 
within the landscape matrix if spectral distances among values are 
not considered in the calculation.

The Rao's Quadratic heterogeneity measure (hereafter Rao's Q; 
Rao, 1982) can be applied to overcome this issue, considering both relative 
abundances and spectral distances among pixel values in the calculation.

Given the values of different pixels i and j, the Rao's Q considers 
their pairwaise distance dij as:

Accordingly, an array with different but spectrally near values 
will convey a high Shannon's H but a low Rao's Q. Conversely, an 
array with different and distant spectral values will convey both a 
high Shannon's H and a high Rao's Q.

Given a 3 × 3 pixels matrix M: 

where � is the reflectance value for every pixel in a single 8-bit band 
(256 possible values), a pairwise distance matrix Md is derived for all 
pixel values:

Then, according to Equation (3), Rao's Q is obtained as the sum of 
every pairwise distance multiplied by the relative abundances of all 
the pairs of pixels in the analysed image d × (1∕N2). Strictly speaking, 
Rao's Q can be defined as the expected difference in reflectance 
values between two pixels drawn randomly with replacement from 
the evaluated set of pixels.

It is possible to construct the distance matrix for several dimen-
sions (layers) to consider multiple bands at a time and calculate Rao's 
Q in a multidimensional (multi-layer) system.

To illustrate the benefit of the functions provided in the rasterdiv 
package, we apply it on an ecological study case in the following 
section.

3  | APPLIC ATION: THE ECOSYSTEM 
HETEROGENEIT Y OF THE ÖTZI ARE A

To show the capabilities of the rasterdiv package, we decided to 
focus on one of the geologically and biologically most diverse 
mountain regions worldwide: the Similaun and Ortles glaciers in 
Italy. This region is not only important for its rich geobiodiver-
sity but also for its fascinating archaeological history, also due 
to an incredible anthropological discovery of the early nineties: 
the famous Ötzi Tyrolean iceman (Keller et al., 2012). The study 
area we are focusing on for applying the rasterdiv package is 

(2)H
�
=

1

1 − �
× ln

N∑
i=1

p�
i
.

(3)Q =

N∑
i=1

N∑
j=1

dij × pi × pj.

M =

⎛
⎜⎜⎜⎜⎝

�1 �2 �3

�4 �5 �6

�7 �8 �9

⎞
⎟⎟⎟⎟⎠
,
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included between the Ortles and the Similaun glaciers, in the 
Alps of northern Italy (Figure  2). Below, we provide a step-by-
step tutorial which can be reproduced for any area and by every 
researcher worldwide. The only required input data are satellite 
images.

We used Copernicus Sentinel-2 data at a spatial resolution 
of 10 m (Figure 2) acquired on May 9th 2020. Once the satel-
lite image was downloaded from the Copernicus Open Access 
Hub (https://scihub.coper​nicus.eu/), we computed NDVI and, 
for the purposes of this research, rescaled it to an 8-bit radio-
metric resolution. Hence, NDVI values were used as the input 
information (values) to compute the ecosystem heterogene-
ity indices described in the former section. More specifically, 
based on the NDVI raster grid used as input object, we ran a 
set of functions provided in the rasterdiv package and written 
in Box 2.

We applied the code written in Box 2, using a moving window 
of 9 × 9 pixels, to both (a) the Similaun glacier upper area, mainly 
covered by alpine conifer woodlands (dominated by Picea abies, 
Larix decidua, Abies alba) and rocks, and (b) to the valley bottom (Val 
Venosta), a human-dominated landscape devoted to agricultural 
areas and small urban villages.

Concerning the Similaun glacier area, the Shannon index showed 
medium to high values everywhere, including areas with almost ho-
mogeneous rock cover (i.e. alpine habitat) as well as areas with ho-
mogeneous tree cover (i.e. coniferous forest habitat) (Figure 3). This 
is due to the fact that Shannon's H does not take into account the 
distance among pixel values but only the relative abundance of each 
value within the moving window of 9 × 9 pixels. In this case, NDVI 
values showed subtle differences among each other, especially in 
homogeneous areas and even when rescaled at 8 bit (namely 256 
possible integer values).

F I G U R E  2   The Ötzi area in the northern Italian Alps, used for building an ecological example of the application of the rasterdiv package 
starting from a Copernicus Sentinel-2 image, represented by an RGB space in natural (red, green and blue) and false (near infrared, red and 
green) colours. Coordinates are in the UTM (WGS84, zone 32N) reference system

5,200,000

5,160,000

5,120,000

600,000 630,000 660,000 690,000 600,000 630,000 660,000 690,000

5,200,000

5,160,000

5,120,000

BOX 2 Code used under rasterdiv

https://scihub.copernicus.eu/
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Low heterogeneity values were found in areas with snow cover; 
in that case, the values of the neighbouring pixels are the same and 
they lead to a low Shannon's H for the focal pixel centered on the 
moving window. The saturation of high values of heterogeneity 
was apparent when considering Rényi's entropy at low alpha values 
(Equation 2). This is related to the aforementioned (see Section 2.2) 
negative exponential curve relating the value of this index with re-
spect to alpha, shown in Ricotta et  al.  (2003). The result is a map 
with saturated values of heterogeneity. This effect is softening 
when increasing the alpha parameter. The rasterdiv package allows 
accounting for several indices at a time to avoid heterogeneity sat-
uration effects, for instance by considering distance among pixel 
values besides relative abundance of each value. More specifically, 
running the Rao's Q function coded in rasterdiv allows to circumvent 
this issue of saturated values of heterogeneity (refer to the bottom 
line of Figure 3). In the Similaun glacier area, the homogeneous cover 
of spruce forests is better reflected by the Rao's Q index as it better 
contrasts against the geological heterogeneity of the upper alpine 
belt. Maximum Rao's Q values were found at the interface between 
water (i.e. alpine lakes) and the surrounding vegetation and rocks, 
representing an interesting ecotone area (see the upper right corner 
of the last panel in Figure 3).

The rasterdiv package, thanks to a combination of functions 
rooted in Information Theory, thus helps to reveal hidden spatial pat-
terns of heterogeneity, and allows measuring ecosystem heteroge-
neity related to both biotic and abiotic components. By doing so, the 

rasterdiv package better discriminates among ecosystem features 
and functions constituting the landscape.

In the valley area (Val Venosta), this phenomenon was even more 
pronounced (Figure  4) due to the higher spatial heterogeneity of 
the landscape matrix under study with patches of small agricultural 
fields mixed with water bodies (e.g. the Adige river in the middle of 
the valley), resulting in very high values for both Rényi (α = 0) and 
Shannon indices. Low to medium values on the north- and south-
facing slopes indicate grasslands and broadleaf forests. Again, the 
Rao's Q index helped to better discriminate among these areas and 
among different land uses. Indeed, by relying on the relative numer-
ical distance among the 8-bit-NDVI pixel values, it can differenti-
ate between areas with low to medium heterogeneity values (blue 
and light blue colours in Figure 4), that is, grasslands and broadleaf 
forests, and areas with medium to high heterogeneity values, that 
is, upper mountain rocks at the interface with the treeline and with 
alpine lakes, as well as riparian vegetation besides the Adige river in 
the lower part of the valley.

With this study case focusing on a very heterogeneous area in 
the Alps, we illustrated two main critical components of the ras-
terdiv package: (a) how it allows users to measure multiple indices 
simultaneously and (b) how it can help detecting otherwise hidden 
patterns of heterogeneity in the landscape.

For the sake of clarity and to avoid a catalogue-like article, we 
did not present all the indices that can be calculated by the raster-
div package. Instead, we decided to showcase a few, to illustrate to 

F I G U R E  3   The first row of the figure represents the area under study, namely the Similaun glacier as a subset of the study area in 
Figure 2. NDVI is shown in the natural range but it was rescaled to 8-bit before heterogeneity computation. Then, different metrics were 
applied: the Rényi's entropy index, the Shannon's H (corresponding to the Rényi's entropy with α = 1) and the Rao's Q. Coordinates are in the 
UTM (WGS84, zone 32N) reference system
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ecologists the high potential of the rasterdiv package for applica-
tions in landscape ecology, macroecology, biogeography and the 
analysis of spatiotemporal dynamics in general. We refer to the man-
ual of the package (https://CRAN.R-proje​ct.org/packa​ge=raste​rdiv) 
and its vignettes to find additional metrics and examples related to 
the package.

4  | DISCUSSION

In this paper, we provide an ecological overview of new r pack-
age rasterdiv. The overarching rationale for proposing this new 
r package is to present a set of methods and ready-to-use func-
tions for calculating landscape heterogeneity metrics from 
space (e.g. satellite images), as well as from airborne or ground-
based devices, to monitor and analyse, among other things, bio-
diversity change, habitat fragmentation and land use and cover 
changes.

The importance of computing continuous spectral heterogene-
ity measures from satellite-borne or airborne sensors to better dis-
criminate among the various components in the landscape has been 
highlighted in several studies (Doxa & Prastacos,  2020; Godinho 
et al., 2018; Karlson et al., 2015; Ribeiro et al., 2019). Nevertheless, 
caution is recommended when making use of continuous remotely 
sensed data, and the radiometry of pixel values should be carefully 
considered before applying such measures. For instance, relying on 
float (decimal) precision data such as the NDVI (which ranges from 
−1 to 1) may lead to a high neighbouring heterogeneity which could 

actually be the effect of data binning rather than the effect of an eco-
logical underlying pattern. In general, an 8-bit image (and therefore 
composed of 256 integer values/classes) is preferable when applying 
spectral heterogeneity measures. In this paper, we used an 8-bit NDVI 
layer rescaled from Copernicus data. However, one might even rely 
on a multispectral system reduced to a single 8-bit layer through by 
means of the first component of a principal component analysis or 
any multidimensionality reduction technique (Féret & Boissieu, 2020).

Most metrics based on Information Theory can accommodate 
only one layer at a time when relying on indices using abundance 
information only (in the shown example, the Rényi entropy index and 
Shannon's H). However, the rasterdiv package includes accounting 
for pixel values distances, such as the Rao's Q index, which can inte-
grate multiple layers of ecological information such as multiple bands 
of satellite images or physical and biotic data (e.g. vegetation cover, 
soil pH, topography).

In general, remotely sensed data are simplifications of more com-
plex systems depending on the radiometric and spectral properties 
of one or more images. From an ecological point of view, the spectral 
space of an image might be associated with the Hutchinson's hyper-
volume which orders geometrically the variables shaping species' 
ecological niches (Blonder, 2018; Hutchinson, 1959). Hence, calcu-
lating heterogeneity in such a space could provide important infor-
mation about species niches variability or at least on the landscape 
variability shaping species distribution (Rocchini et al., 2018).

Future local and global changes are expected to impact eco-
system heterogeneity. Since remotely sensed data nowadays 
allow us to rely on relatively long and standardized time series, 

F I G U R E  4   The first row of the figure represents the area under study, namely the Val Venosta, a subset at a lower elevation with respect 
to the Similaun glacier of Figure 3, and thus with higher human impact. NDVI is shown in the natural range but it was rescaled to 8-bit 
before heterogeneity computation. Then, different metrics were applied: the Rényi's entropy, the Shannon's H (corresponding to the Rényi's 
entropy with α = 1) and the Rao's Q. Coordinates are in the UTM (WGS84, zone 32N) reference system

https://CRAN.R-project.org/package=rasterdiv
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applying different measures of heterogeneity to multi-temporal 
stacks would enhance the power to estimate and potentially fore-
cast ecosystem heterogeneity shifts in space and time. This will 
be an invaluable tool to allow targeted and efficient monitoring 
and planning practices. For instance, due to the unprecedented 
rate of climate change, the adaptation of species to climate change 
is a benchmark in ecology (Stein et al., 2014). The rasterdiv pack-
age might also be particularly useful when aiming at calculating 
climate-related heterogeneity, which is likely to shape ecosystem 
heterogeneity patterns that species have adapted to. This could 
be directly done running the functions on remotely sensed climate 
data (Metz et al., 2014; Senner et al., 2018; Zellweger et al., 2019), 
which are expected to drive several ecological functions at differ-
ent spatial scales.

5  | CONCLUSION

Measuring heterogeneity from space to understand ecologi-
cal patterns and processes acting across the landscape and over 
different time periods is crucial to guide effective management 
practices, especially in the Anthropocene epoch, in which human 
intervention is leading to rapid environmental changes (Randin 
et al., 2020).

The proposed rasterdiv package is a powerful tool for mon-
itoring spatial and temporal variation of ecosystems' properties 
(Rocchini et al., 2018), given the intrinsic relationship (sensu Laliberté 
et al., 2019) between the spatial variation of ecosystems and that of 
the spectral signal from pixel values (Rocchini et al., 2019). No single 
measure can provide a full description of all the different aspects of 
ecosystem heterogeneity. That is why the rasterdiv package offers 
multiple approaches to disentangle the complexity of ecosystem 
heterogeneity in space and time through calculations deeply rooted 
in Information Theory and based on reproducible Free and Open-
Source algorithms.
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