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Summary

Acute respiratory distress syndrome (ARDS) is trenntomplication of COVID-19, requiring
admission to Intensive Care Unit (ICU). Despiteemsive immune profiling of COVID-19
patients, to what extent COVID-19-associated AR from other causes of ARDS remains
unknown. To address this question, we build 3 dshof patients categorize in COVID-
19"°9ARDS®, COVID-19“ARDS’*, and COVID-18ARDS™ and compare their immune
landscape analyze by high-dimensional mass cytgnuatrperipheral blood. A cell signature
associating S100A9/calprotectin-producing CD*8fonocytes, plasmablasts, and Thi cells is
found in COVID-19ARDS®, unlike COVID-19°°ARDS"* patients. Moreover, this signature
is essentially share with COVID-A8ARDS™? patients, suggesting that severe COVID-19
patients, whatever they experience or not ARDylayssimilar immune profiles. We show an
increase in CDIAHLA-DR"" and CD1£“CD16™ monocytes correlate to the occurrence of
adverse events during ICU stay. We demonstrate @la¢1D-19-associated ARDS display a
specific immune profile, and might benefit from gamalize therapy in addition to standard

ARDS management.



Introduction

The SARS-Coronavirus-2 (SARS-CoV-2) virus has rpadfected more than 30 million people
worldwide, requiring admission to Intensive Careit{tCU) for more than 2 million patients.
Whereas most patients exhibit mild-to-moderate dpmpg, acute respiratory distress syndrome
(ARDS) is the major complication of the coronavimisease 2019 (COVID-18} leading to
prolonged ICU stays, and high frequency of secondamplications, notably cardiovascular
events, thrombosis, pulmonary embolisms, and sstok&@he immune system plays a dual role
in COVID-19, contributing to both virus eliminatioand ARDS development.Excessive
inflammatory response has been proposed as thendeaduse of COVID-19-related clinical
complications, thus supporting intensive efforts detter understand the specificities and
mechanisms of SARS-CoV-2-induced immune dysfunctiohloreover, even if therapies such
as provided by convalescent plasma or neutraliaimigpodies at an early stage of the disease, can
lower the viral burden, this was only demonstratedpecific populations such as aged patients
over 75% and no antiviral treatment has yet been able finitily prevent the evolution of some
patients towards deregulated inflammation andcaiitrespiratory complications. The benefit of
corticosteroids in severe COVID-19 for lowering oale mortality is now widely
acknowledged:’® Conversely, steroid therapy was shown harmful timeo ARDS etiologies,
such as in influenza-associated ARBSuggesting specific biological features of COVIB- 1
related ARDS. A detailed understanding of the CO\BDspecific immune dysfunctions
underlying ARDS development and severity is thuaaor need and will hopefully help adapt
specific therapeutic strategy.

A number of high-resolution studies have recentbnoentrated on the determination of
circulating markers that can distinguish severenfrmild forms of COVID-19, providing a

tremendous amount of data describing phenotypidamctional alterations in T cell, B cell, and
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myeloid cell subset¥? In particular, CD1¥HLA-DR"", CD14°CD16™ and immature
monocytes were demonstrated as increased amorgnesai blood mononuclear cells (PBMCs)
from critically ill COVID-19 patients>?*%32%2%nterestingly, monocyte number is reduced in
COVID-19 compared to influenza patients, suggessimecific myeloid dysregulatiofi.Various
COVID 19-related alterations of lymphoid cells haalso been described, including a T-cell
lymphopenia, predictive of patient outcome, a brdackll activation including Thl, Th2, and
Thl7, an alteration of B-cell and T-cell repertsirand a strong increase of plasmablasts, most
prominent in ARDS COVID-19 patientd"?>333|mportantly, COVID-19 ARDS immune
profiling was performed using healthy donors asatml, thus precluding any conclusions on
whether reported immune alterations could be reélate COVID-19 and/or ARDS status.
Answering this question has potential to deciphbetwer ARDS induced by SARS-CoV-2 is
mechanistically different from other ARDS etiologlie

To fill this gap, we performed a high-throughputsaa@ytometry approach on PBMCs obtained
from 3 complementary series of 18 COVID*®BRDS, 18 COVID-19“ARDS, and 20
COVID-19°*ARDS™? patients, including exploratory and validation odk. We report common
myeloid cell alterations in all COVID-19 patientghich are absent from non-COVID-19 ARDS
patients. This includes in particular a strong @ase of an unusual population of activated
monocytes showing upregulated expression of CDas&yciated with major COVID-19-specific

alterations of T and B-cell compartments.

Results
Study population
Analyses were performed on a cohort 1 of 63 crysgmeed PBMC samples isolated from 42

patients included in ICU (n = 36) or infectious retard ward (n = 6). The demographic
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characteristics of patients included are providedable 1 and Table S1. All patients but one
were classified as severe at admission, requirkygen at a flow rate higher than 2 liters/min.
ARDS was defined in accordance with internationaitlglines®* Patients were classified in 3
groups: COVID-18ARDS"™® (n = 12, ARDS stages: 1 mild, 4 moderate, 7 s@y&eVID-
1P ARDS™ (n = 13, ARDS stages: 8 moderate, 5 severe), &dIB-19°*ARDS™ (n = 17,
including 11 from ICU and 6 from infectious standlavard). In the COVID-1%°ARDS™®, no
statistical differences were noticed for immund edlundance or phenotype between ICU and
standard ward patients. Within the COVID™®RDS"* group, ARDS etiologies were bacterial
pneumonia (n = 9), anti-synthetase syndrome (n,=arld unknown (n = 2) (Table S1). For 21
patients, a second blood sample obtained on dafter enrollment was studied (n = 7 for
COVID-19"°ARDS’, n = 8 for COVID-18ARDS’, and n = 6 for COVID-19°ARDS™9).
Additionally, a validation cohort (cohort 2) wast g with 16 patients with demographic data
detailed in Table S1 and Table S2. Patients weassifled in 3 groups: COVID-I$¥ARDS® (n

= 6), COVID-19°°ARDS™® (n = 5), and COVID-18°ARDS™ (n = 3); additionally, COVID-
19"°ARDS™ (n = 2) samples were included. None of our patieeteived corticosteroids at the
time of the study nor immune-modulators. The presenf SARS-CoV-2 in respiratory
specimens (nasal and pharyngeal swabs or sputuns) dedected by real-time reverse
transcription polymerase chain reaction (RT-PCR}hods. To rule out undetected infections,
negative RT-PCR samples were confirmed when passyplabsence of neutralizing antibodies.
Neutralizing antibodies were undetectable for thesdmples out of 18 COVID-1%¥ patients for
which material was available. In contrast, neutrafj antibodies were detected in 29 out of 30

COVID-19%tested. Timeline of sample collection are showRim S1.

SARS-CoV2 induces phenotypic changes in circulatingnmune cells



To decipher the impact of SARS-CoV2 on circulatimgnune cells, we characterized PBMCs
from COVID-19*° versus COVID-19"9 patients at admission using two separate massnejty
panels exploring myeloid and lymphoid subsets, eesypely (Table S3 and Key Resources
Table). The full pipeline of analysis is depicted kig. S1. First, we performed an unbiased
discovery approach with CellCnn, a neural netwakdd artificial intelligence algorithm
allowing analysis of single-cell data and detectadncells associated with clinical stafirs®’
During training, CellCnn learns combinations of gfgs for each marker in a given panel that
best discriminate between groups of patients. The=ight combinations, called filters, can be
used to highlight the specific profiles of cellsasiated with patient status. We identified the
best-performing CellCnn filters for both the myelcand the lymphoid panels highlighting a
population of cells significantly enriched in COUI® patients as compared to COVID"i9
patients (P < 0.0001 for both panels) (Fig. 1Apj&sting these cells on tSNE maps generated
with either the myeloid or the lymphoid panels ra@ed that they fell into several distinct areas
(Fig. 1B). The cells selected by the CellCnn filber the myeloid panel showed high expression
for CD169, CD64, S100A9, CD11b, CD33, CD14, and €lb8mpared to background, while the
cells selected by the CellCnn filter on the lymghpanel showed high expression for CD38 and
CXCR3 (Fig.1B and Fig. S2). These results wereicafdd in the cohort 2 (Fig. S3), and
confirmed on a public set of data by using the Qatl analysis showing a high expression of
CD14, CD36, CD64, and CD169 cells on COVID®t®atients (Fig. S4)° As a whole, this
broad and unbiased approach reproducibly showedrtimaune markers, in particular related to

monocytes, segregated COVID"{%and COVID-19° patients.

SARS-CoV2 induces CD169-expressing monocyte subsets



To investigate circulating monocyte heterogeneiigt define consistent phenotypes, we used the
FlowSOM algorithm. This approach led to the ideadifion of 15 monocyte metaclusters from
the myeloid panel (Fig. 2A). In particular, Mo30pML, and Mo28 metaclusters were defined by
higher expression of CD16 and lower expressioni4L CD36, and CD64, corresponding to a
non-classical monocyte phenotype. Mo21 and Mo22ewdsfined by the high expression of
S100A9 and the low expression of CD36. Finally, Mi®2and Mo180 strongly expressed
S100A9, CD169, and CD36. To assess the phenotipicges in monocytes during SARS-CoV2
infection, we determined the frequencies of thes¢aplusters in each patient at admission and
performed hierarchical clustering on these vallég. 2B). The upper branch of the hierarchical
clustering included 20 COVIt5° (10 ARDS®*?and 10 ARD&™) and 1 COVID*ARDS™ patient
whereas the lower branch included 10 CONMMD(7 ARDS*®® and 3 ARD$™ and 11
COVID"*ARDS"* (chi-square = 0.001) (Fig. 2B). We then analyzexlabundance of individual
metaclusters and identified only 4 metaclustersodd as differentially represented between the
3 groups of patients (Fig. 2C and Fig. S2). Inipakar, within ARDS®® patients, Mo11 and
M181 were less abundant in COVIDP?9patients (P < 0.01 and P < 0.05, respectively)jevh
Mo243 and Mo180 were more abundant (P < 0.05 ard®01) (Fig. 2C). No differences were
detected within COVID-19° groups (ARD&*° versus ARDS (Fig. 2C). Interestingly, M0243
and Mo180 were both enriched in cells highly expireg CD169, CD64, CD36, and CD14 (Fig.
2A and 2D). Additionally, Mo22 was present onlysiome COVID patients and also expressed
CD169 (Fig. 2B). Taken together, M0243, M0180, daR2 metaclusters were highly enriched
in COVID-19*° patients when compared to COVID"9 patients (P < 0.0001), with no
difference regarding the ARDS status (Fig. 2E). ¢kxdingly, CD169 was differentially
expressed in COVID-P8° versus COVID-1%9 patients (P < 0.001) (Fig. 2E). Altogether, our

study including COVID-19 and non-COVID-19 criticalill patients suggest a specificity of
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CD169 expression in COVID-19 patients, and grealiend previous scRNAseq data showing
an expansion of CD169-expressing monocytes in COMpatients compared to healthy donors
(Fig. 2F)>?>%%We then performed the FlowSOM analysis on cohoen® validated the

enrichment of Mo243 and Mo180 in COVID9samples (Fig. S3A, S3B), these metaclusters

also presenting a trend for high CD169 expresdiam S3C).

Monocyte metacluster enrichment in COVID-19 is corelated with a specific increase of
effector memory T cells and plasma cells

To define a more global immune pattern and thdicgiship between immune cells in the context
of the SARS-CoV2 infection, we sought for corredatibetween frequencies of clusters of T-,
NK-, B-, and plasma cells (n = 136 clusters frore flgmphoid panel, Fig. S1) and the 4
monocyte metaclusters (Moll, Mo181, Mo243, and M@ X8eviously described. This analysis
identified 70 clusters with significantly correldteariations (P < 0.05) (Fig. S2). To strengthen
the relevance of these correlations, we restraimgler analysis to the 29 strongest relationships
(R>050r<-05and P < 0.01) between M0o180 @2#B (the two metaclusters enriched in
COVID-19 patients) and other immune cell subseig. (BA and Table S4). As expected, Mo180
and Mo243 metaclusters were correlated (R = 0.MIByeover, they were positively correlated
with 18 clusters of T (n = 6), NK (n = 10), and $iaa cells (n = 2), and inversely correlated with
11 clusters of T (n = 9), and NK cells (n = 2) (F&A). Among positively correlated clusters,
plasmo_183 and plasmo_198 similarly expressed CDOBBl4, and CD27, whereas plasmo_183
was high for Ki-67 and HLA-DR, corresponding toearly plasma cell phenotype (Fig. 3B). NK
cells were all marked by CD7 and T-bet expressiti§, 209 being CD&®" and NK_241 and
NK_197 displaying a Ki-67" proliferating phenotype. The related T8_147 and IR clusters

exhibited a CD45RA'CDA5RAP“CCD7°"CD27°"Thef'"CD38"" effector phenotype. Few
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T4 clusters were positively correlated with Mo18@ 80243, among them T4_106 displayed an
effector memory proliferating phenotype (Ki'?CD45RA®CCR7*“CD45RG""CD27"" and
CTLA4""PDI""N T4 25 was also marked by an effector memory ptype
(CD45RA®CCR7°"CD45RA®Y and displayed a CD2YCD127°CCRE*CxCRI*CD16F%
Th17 profile (Fig. 3B). Conversely, some T4 clusteere inversely correlated with Mo_180 and
Mo_243, in particular clusters T4_6, T4 20, and 34,_all three corresponding to naive cells
(CD45RAM'CD45RAPCCR7T", and T4 59 expressing a Th2 phenotype (C¥B4wWe then
compared the abundance of these 29 lymphoid ctustarelated with Mo180 and Mo0243 and
highlighted the 22 differentially represented lyrojuh clusters between the three groups of
patients (P < 0.05) (Fig. 3C and Fig. S2). Onlyuaters of CD4 T cells, and 2 clusters of CD8 T
cells were at lower abundance in COVIDX¥ARDSP* patients compared to COVID-
19"°9ARDS * patients. As previously discussed, T4 _6, T4 2@, B4 34 corresponded to naive
cells, whereas within the effector memory cells, Ténd T4_45 were CD1%%, T4 24, T8 99,
and T8_113 were CD12%" and T4 59 was CCR®". Conversely, 13 clusters were enriched in
COVID-19*ARDS** compared to COVID-18ARDS’® including: i) CTLA4""pp1"o"
effector memory activated CD4 Tcells (T4_106); Tihet'®" Thi-like CD8 effector phenotype
(T8_146, T8 147, and T8_161); iii) cytotoxic mat@®16°CD56°"CD7"* Thef*CD127"¢
NK cells (NK_209, NK_241, NK_242, and NK_244) with particular proliferating Ki-67°"
NK cells (NK_241); and iv) proliferating plasmahbisqplasmo_183) and mature plasma cells
(plasmo_198) (Fig. 3B and Fig. 3C). Of note, nostdu was differentially expressed between
COVID-19ARDS’* and COVID-18“ARDS™? groups (Fig. 3C and Fig. S2). Then, to explore
the whole immune profile and define relationshipthwgroups of patients, we performed
correspondence analysis (CA) using, as a varidideabundance of the myeloid (n = 4) and the

lymphoid (n = 22) clusters differentially expressegtween groups of patients (Fig. 3D). CA was
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developed to analyze frequency tables and visuadiralarities between patients and co-
occurrence of cell subsétsThe first and second dimension of the corresporeleanalysis
explained 80.5 % and 13.5 % of the difference, eesgely (Fig. 3D). The top-ten cell
populations accounting for the difference betwee@VIP** and COVID®Y patients were
Mo243, Mo180, T8 146, NK 244, and T8_161 being eased and Mol181, T4 6, Moll,
T8 99, and T4_45 being decreased in COViDAltogether, these subsets corresponded to an
increase in inflammatory monocytes (CDYB9CD64""), Thet'™" Thi-like CD8 T cells, and
mature NK cells and a decrease in naive T4 celts effector memory T4 and T8 cells.
Interestingly, only the first dimension of the aspondence analysis segregated COVID-
1PARDS from COVID-19*ARDS’* (P < 0.001) and no statistical differences waséou

between COVID-1¥ARDS’** and COVID-19ARDS™I (Fig. 3D).

Evolution of immune cell clusters between DO and Dih COVID-19 patients defines high-
risk clinical grade

We performed mass cytometry analysis for 21 paiemtday 7 of hospitalization, including 7
COVID-19"ARDS’®, 8 COVID-19*ARDS’®, and 6 COVIB“ARDS™ patients, in order to
follow up the kinetic of PBMC phenotypic alterat®rihe 42 samples (21 at day 0 and 21 at day
7) were parsed by correspondence analysis using,vasiable, the abundance of myeloid and
lymphoid clusters (Fig. 4A). The first and secorithehsions of the correspondence analysis
explained 85.1 % and 9 % of the differences acquietween DO and D7. The first dimension
captured the difference between DO and D7 onlyCloWID-19"ARDS (P < 0.01) (Fig. 4A).
Because of the limited number of samples, onlgadmwas observed for COVIBSARDS™? (P =
0.062). The top-five enriched populations accounfor the differences between DO and D7 for

COVID-19*ARDS’* patients were Mo11, Mo181, T8 113, T4 34, and NK, Torresponding
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to an enrichment in non-classical monocytes (CHYCD16"9"CD64°CD36°"S100A9""), in
M-MDSC-like (HLA-DR°"S100A9'%"), in effector memory CD12%" T8 cells, in T4 naive
cells, and in Ki-679" proliferating NK cells. These 5 cell subsets wietegrated in an immune
score combining their fold change between DO andTo/define the relevance of this immune
score in discriminating COVID-19 patients with widaable prognosis, we built a clinical score
as the sum of events occurring during ICU stayoftivoembolic, ICU-acquired infection, septic
shock, renal failure, and deaths) (Table 1). Istngly, both the clinical and the immune scores
were found correlated in severe COVID-19 patientsgspectively of their ARDS status
(Spearman R = 0.71; P = 0.006) (Fig. 4B). Finallg, analyzed changes between DO and D7 of
genes involved in IFN pathway. We found and upragoh ofIFNARL andIFNAR2 during time

in COVIDP*ARDS® (Fig. S5A). Conversely, evolution of IFN type Irdat genes|8G15,
IF127, IF144L, RSAD2, andIFIT1) revealed a specific downregulation in COVARDS
samples. Interestingly, both IFNAR score and typE-N score, obtained by combining the
expression of IFN receptors and targets, respdgtipeesented a trend of correlation with the
immune score (Fig. S5B), and the type | IFN scoas wignificantly correlated with the CD169

expression (Fig. S5C).

Discussion

Immune response to COVID-19 infection has been ntéceintensively studied at both
transcriptomic and proteomic levels. However, natstlies focused on either the lympHdid2*
or the myeloid compartment$?*?3and only few performed a wide analysis of the ulating
immune landscap®;'®?**?43*thus precluding the definition of complex pattemisimmune

parameter alterations associated with COVID-19 sigver physiopathology. Moreover, these

studies were designed to identify differences irmime cell subsets frequencies between
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COVID-19 patients and healthy donors, and eventualirelated with the severity of the disease,
but did not include severe non-COVID-19 patientscastrols, although critically ill patients
were previously largely demonstrated to display imm reprogramming’ ARDS is a major
adverse event occurring during ICU stay, leadingricoverall mortality rate of 40 % to 60 %.
Whether COVID-19 associated ARDS is clinically anidlogically similar to other causes of
ARDS remains controversial:*® To address this point, we characterized for thgt fime, by
mass cytometry, the immune landscape in COVID-E®@ated ARDS compared to other
causes of ARDS. We demonstrated that an increaseDd6%°° monocytes, correlated with
specific changes of T, plasma, and NK cell subskiBnes COVID-19-associated ARDS and is
not found in bacteria-associated ARDS, suggesting C®VID-19 specific immune
reprogramming.

The amplification of CD16%° circulating monocytes has already been highliginettie context
of COVID-19°%*%47 and is reminiscent of other inflammatory condisofound in viral
infections, such as with Human Immunodeficiencyugiror Epstein-Barr Virus, in which the
CD169 sialoadhesin is induced in an IFN-dependeahrmar on the surface of circulating
monocyte$?*° Consistent with the inflammatory response, we shbthat the accumulation of
CD169°° monocytes in COVID-18° patients is positively correlated with an increasfe
plasmablasts and mature plasma cells, Thl-like EfiEtor T cells, cytotoxic mature NK cells,
and activated CD4 effector memory T cells displgyanCTLA4""PD1"" phenotype. CD16E°
activated monocytes were detected in mild diséhsed were proposed to rise rapidly and
transiently in patients with COVID-19, in assoaiti with a high expression of IkNand
CCL8™ This could be due to the transient nature of themocytic population, either losing
CD169, being short-lived, or being recruited ingsties as CD18% macrophages, as suggested

by the high expression of CCR2 on M0243 and Mo1l8€ two monocyte subsets identified here
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in COVID-19 patients, and the local inflammationdalung tissue destruction mediated by
monocyte-derived macrophages in severe cases oBS2d¥2 infections®>! Interestingly, we
also found an upregulation of cytoplasmic S100A®imnocyte subsets specifically amplified in
COVID-19 patients irrespectively of their ARDS stsit These data suggest that, in the early
stage of the disease, monocytes could contributeh& burst of circulating calprotectin
(S100A8/S100A9), recently proposed to contributehi® secondary cytokine release syndrome
described in severe COVID-19 and attributed to mogitils >* Despite phenotypic alterations, our
data revealed a specific alteration of the respomggpe | IFN in COVID-18" versus COVD-
199 ARDS patients after short stay in ICU, with an egrlation of IFN receptors without
induction of IFN target genes. These results am@mscent of the demonstration that deficiency
of type I IFN pathway is associated with poor outedn COVID-19 patientd*?

Whereas a seroconversion score was recently assbcveith huge modifications immune
parameters reflecting B, T, and NK cell functiomion-ICU COVID patients: our ICU patients
clearly stand at a later stage of the disease, @&thout of 29 already carrying neutralizing
antibodies at DO. It is thus highly unlikely thaetdifferential evolution of monocytic markers
identified between DO and D7 in our study couldabiebutable to seroconversion.

Within severe COVID-19 patients, we detected naifiicant differences between ARESand
ARDS™ immune profiles, indicating a specificity of théignotype induced by SARS-CoV2
infection, irrespectively of the respiratory conggliions. While most published studies showed
differences between mild and severe COVID-19 degasome of their conclusions might be
obscured by the fact that ARDS by itself, mechdn¥eatilation, and/or nonspecific treatments
might impact immune parametersA strength of our study comparing two groups ofese
COVID-19 patients with or without ARDS is to highlit features directly related to the viral

infection rather than to its respiratory complioas or their treatment. Importantly, our cohort
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was homogeneous regarding treatment with in paatiauo immunosuppressive therapy at the
time of sampling.

The small size of our cohort did not allow us tagmint a mortality prognostic factor based on
our phenotypic data. However, we identified a dped¢mmune pattern associated with the
occurrence of the major adverse clinical evento(ttbosis, nosocomial infection, septic shock,
acute renal failure, and death) described in CO¥®and combined as a clinical score. In
particular, an increase of non-classical C¥4@D16° monocytes (Mo11), and CDIZHLA-
DR M-MDSC-like (Mo181), both not expressing CD169% anarkers of adverse events. This
suggests that besides the early increase of CI¥l&®nocytes in all COVID-19 patients
associated with T-cell dysfunctions, the immunatagiresponse to SARS-CoV2 infection
features multiple alterations of monocytic subsetkecting the severity of the disease. Consistent
with these data, it was shown that CEPB4LA-DR'" cells were increased in critical COVID-19
patients’>2656%8yhile CD14°"CD16° monocytes, able to migrate to the lung, were cateel
with the length of stay in ICE?***° Altogether, our study correlates the accumulatbmon-

classical monocytes and M-MDSCs occurring durirggfitst days of ICU to adverse events.

Limitations of Study

Besides the low number of included patients, oudythas some limitations. By focusing on
severe patients with and without ARDS, we canndtanzonclusions about phenotypic changes
in mild and moderate diseases. The analysis wdstdeenefit from comparison with other virus-
associated ARDS. We thus analyzed a published etadddlu-like illness and COVID patients,
analyzed by mass cytomeffylnterestingly, by using CellCnn, we were able @it a filter
that accurately discriminate flu-like illness frad®VID samples, suggesting immune differences

between both diseases (Fig. S4). Moreover, sineenidss cytometry was conducted on PBMCs,
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we lack information on the neutrophil lineage, whappears affected in COVID-19 dise&5¢.
would also be interesting to link these data withsitu data from lung tissue samples and
bronchoalveolar lavages. Unfortunately, at the tohthe study, bronchoalveolar fluid collection
was not allowed in our institution for patients pee for SARS-CoV2. However, our detailed
analysis of circulating immune cells shows that imm@& monitoring of severe COVID-19 patients
brings interesting prognostic biomarkers indepetigast their clinical classification in ARDS®
versus ARDS™® Moreover, we demonstrated that at the biologieaél, COVID-19 associated
ARDS is different from other causes of ARDS, andmibenefit from personalized therapy in

addition to standard ARDS managem&rif
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Fig. 1: SARS-CoV2 induces specific phenotype of culating immune cells

CellCnn analysis performed on single cells from loige(top) and lymphoid (bottom) panels on
39 samples at admission (Day 0) (COVID®f9n = 9] and COVID-1%° [n = 30]). (A)
Frequencies of cells discovered by the best-peifayr@ellCnn filter in COVID-19°9 (blue) and
COVID-19’* (orange) patients for each panel. Mann-Whitnetsteg**P < 0.0001. (B) Cells
defined by the best-performing CellCnn filters ehment shown on tSNE and representative

markers for each panel (CD14 and CD38 [see additimarkers in Fig. S2]).

Fig. 2: CD169 monocytes are enriched in SARS-CoV#@fected patients

(A) Heatmap of the 15 monocyte metaclusters definegl &#lowSOM analysis(B) Relative
abundance of metaclusters among monocytes for patlant and hierarchical clustering of
COVID-19"ARDS"™ (n=12, green), COVID-FFARDS*® (n=13, blue), and COVID-
1P*ARDS™ (n=17, red).(C) Abundance of metaclusters differentially exprestetdween
groups, among singlet cell analyz€D) Expression of the corresponding markers (meanlmeta
intensity) for background (gray), Moll and Mol8Xafwge), and Mo243 and Mol180 (blue)
metaclusters(E) Abundance of Mo22, M0180, and M0243 and expresefo@D169 (Box and
Whiskers with 10 and 90 percentilelF) UMAP from scRNAseq of COVID-19 patients
(COVID-19) and healthy donors (healthy) highligigtitt D14 and CD169 expression (data
obtained from Wilk et &%) Kruskal-Wallis test with Dunn’s multiple compasis correction, *P

< 0.05, *P < 0.01, ***P < 0.001.

Fig.3: Monocyte metaclusters enriched in COVID-19 e correlated with effector memory T

cells and plasma cells
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(A) Correlation between M0180 and M0243 and lymphaidters (see heatmap for all lymphoid
clusters and markers in Fig. S2) from all patiatt®0 (COVID-19*ARDS*° [n=12], COVID-
1P“ARDS® [n=13], and COVID-1¥°ARDS™ [n=17]. Only strong correlations (Spearman R
> 0.50r R <-0.5and P < 0.01) are shown (sesiatlificant correlations [P < 0.05] in Fig. S2
and Table S4)B) Heatmap showing marker expression for the lymplbhidters (Spearman R >
0.5 or R < -0.5 and P < 0.001) strongly correlatéth Mo180 and Mo0243 (see heatmap for all
clusters and markers in Fig. S2L) Abundance of lymphoid clusters differentially eagsed
between groups, among singlet cells analyzed. Hiddkallis test with Dunn’s multiple
comparison correction, *P < 0.05, *P < 0.01, *%0.001 [see all clusters in Fig. S2(D)
Two first dimensions of correspondence analysi®@aigtng for 84 % of the association between
immune clusters differentially expressed betweeugs (n= 4 monocyte- and n=22 lymphoid-
clusters), and patients. For clarity, patients anthune cells are shown on 2 different plots.
Dimensions 1 and 2 coordinates are compared betgerips of patients. Kruskal-Wallis test

with Dunn’s multiple comparison correction, ****P &0001.

Fig. 4: Evolution of immune cell subsets between Dénd D7, defines high-risk clinical grade
COVID-19 patients

(A) Two first dimension of correspondence analysisoanting for 94.1% of the association
between immune clusters differentially expressetivéen groups (n= 4 monocyte and n=22
lymphoid clusters), and patients for which a follaw of 7 days was available (COVID-
19"°9ARDS’**[n=7], COVID-19*ARDS"**[n=8], and COVID-1$ARDS"*[n=6]). For clarity,
patients and immune cells are shown on 2 diffepéoiis. Dimensions 1 and 2 coordinates were

compared between DO and D7 for each group of fdatiéiilcoxon matched-pairs signed rank
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tests, **P < 0.01(B) Spearman correlation between immune and clinicalesfor COVID-18%

patients (ARD®*[n=8] and ARDS*[n=6]).
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Table 1: Patients’ characteristics for the cohort 1

COVID-19™¢ COVID-19P% COVID-19P%
ARDSP*® ARDSP*® ARDS™?
Patients DO/D7, n 1217 13/8 17/6
Age, median (IQR) 62 (48.2-66.7) 59 (53.5-67.5) (85-67)
Male, n (%) 7 (58) 10 (77) 12 (71)
ICU/Clinical ward, n 12/0 13/0 11/6*
SAPS II, median (IQR) 445 (29.2-59.2) 33 (19.5539. 22 (13-28)*
Length of stay in ICU, median (IQR) 11.5 (4.5-18.7) 15 (11-54) 2 (1-2)**
Length of stay in Hospital, median (IQR) 18 (7-30.5 22 (15-62.5) 9 (7.5-13)
Comorbidities
BMI, median (IQR) 26.4 (19.5-28.4) 28.6 (25-32) P®2.3-32.1)
Chronic cardiovascular disease, n (%) 1(8.3) 323 1(5.8)
Diabetes, n (%) 2 (16.7) 3(23) 1(5.8)
Chronic respiratory disease, n (%) 1(8.3) 0(0) (0)o
Chronic kidney disease, n (%) 0(0) 2(15.4) 0(0)
Cancer, n (%) 3(25) 0(0) 0(0)
Severity criteria
Maximal O, (L/min), median (IQR) 10 (7.5-15) 14 (9.2-15) 35p
Invasive ventilation, n (%) 12 (100) 13 (100) 0(0)
PaG/FiO,, median (IQR) 116.5 (75.2-161.9) 106 (95.5-240) 3 @118.5-340.3)
Events occurring during follow up
Thromboembolic, n (%) 4 (33.3) 4 (30.8) 1(5.8)
ICU-acquired infections, n (%) 2 (16.7) 7 (53.8) (0]
Septic shock, n (%) 3 (25) 2(15.4) 0 (0)
Renal failure, n (%) 5(41.7) 8 (61.5) 0 (0)
Deaths, n (%) 4 (33.3) 1(7.7) 0 (0)

*: all patients except 1 required O, at > 2 L/mn at admission; **: For patients in ICU; n: number; IQR: interquartile range; SAPS I

simplified acute physiology score
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KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE IDENTIFIER

Antibodies

CD11c (3.9), Purified BioLegend Cat# 301602, RRIB:814172

CD33 (WM53), Purified BioLegend Cat# 303402, RRIB:A314346

CD209 (9E9AB8), Purified BioLegend Cat# 330102,
RRID:AB_1134253

CD14 (M5EZ2), Purified BioLegend Cat# 301802, RRIB:/814184

CD123 (6H6), Purified BioLegend Cat# 306002, RRIB:814576

CD21 (Bu32), Purified BioLegend Cat# 354902,
RRID:AB_11219188

CD192 (K036C2), Purified BioLegend Cat# 357202,
RRID:AB_2561851

CD163 (GHI/61), Purified BioLegend Cat# 333602,
RRID:AB_1088991

CD36 (5-271), Purified BioLegend Cat# 336202,
RRID:AB_1279228

CD86 (IT2.2), Purified BioLegend Cat# 305402, RRB; 314522

CD169 (7-239), Purified BioLegend Cat# 346002,
RRID:AB_2189031

CD274 (29E.2A3), Purified | BioLegend Cat# 329719,
RRID:AB_2565429

CD254 (MIH24), Purified BioLegend Cat# 347501,
RRID:AB_2044062

CD106 (EPR5047), Purified| Abcam Cat# ab134047,
RRID:AB_2721053

CD3 (UCHT1), Purified BioLegend Cat# 300402, RRIB:A314056

CD49a (TS2/7), Purified BioLegend Cat# 328302,
RRID:AB_1236385

gp38 (REA446), Purified Miltenyi Biotec Cat# 1307017,

RRID:AB_2653261

CD80 (2D10), Purified BioLegend Cat# 305202, RRIB:/814498

CD34 (581), Purified BioLegend Cat# 343502,
RRID:AB_1731898

CDla (HI149), Purified BioLegend Cat# 300102, RRIB: 314016

CX3CR1 (2A9-1), Purified BioLegend Cat# 341602,
RRID:AB_1595422

CD32 (FUN-2), Purified BioLegend Cat# 303202, RFB: 314334

CD54 (HA58), Purified BioLegend Cat# 353102,
RRID:AB_11204426

CD195 (J418F1), Purified BioLegend Cat# 359102,
RRID:AB_2562457

CD206 (15-2), Purified BioLegend Cat# 321102, RRAB: 571923

S100A9 (A15105J), Purified| BioLegend Cat# 600302,

RRID:AB_2721747
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CD45RA (HI100), Purified BioLegend Cat# 304102, RRAB_314406

CD172a (15-414), Purified BioLegend Cat# 372102,
RRID:AB_2629807

CD68 (Y1/82A), Purified BioLegend Cat# 333802,
RRID:AB_1089058

CD11b (ICRF44), 2098Bi Fluidigm Cat# 3209003,
RRID:AB_2687654

CD8a (RPA-T8), Purified BioLegend Cat# 301053,
RRID:AB_2562810

CD4 (RPA-T4), Purified BioLegend Cat# 300502, RRB: 314070

CD25 (BC96), Purified BioLegend Cat# 302602, RRIB:814272,

CD38 (HIT2), Purified BioLegend Cat# 303502, RRIBA314354

CXCR3 (G025H7), Purified | BioLegend Cat# 353733,
RRID:AB_2563724

FoxP3 (259D/C7), Purified BD Biosciences Cat# 56004
RRID:AB_1645589

CD7 (CD7-6B7), Purified BioLegend Cat# 343111,

RRID:AB_2563761

Gata-3 (TWAJ), Purified

Thermo Fisher Scientific

t#£44-9966-82,
RRID:AB_1210519

CCR7 (G043H7), Purified BioLegend Cat# 353237,
RRID:AB_2563726

CCR6 (G034E3), Purified BioLegend Cat# 353427,
RRID:AB_2563725

CD27 (0323), Purified BioLegend Cat# 302802, RRIB:814294

CD10 (HI10a), Purified BioLegend Cat# 312223,
RRID:AB_2562828

CD117 (104D2), Purified BioLegend Cat# 105814, RRAIB 313223

CCR4 (L291H4), Purified BioLegend Cat# 359402,
RRID:AB_2562364

CD161 (HP-3G10), Purified | BioLegend Cat# 339919,
RRID:AB_2562836

CD185 (J252D4), Purified BioLegend Cat# 356902,

RRID:AB_2561811

RORgt (AFKJS-9), Purified

Thermo Fisher Scientific

Cat# 14-6988-82,
RRID:AB_1834475

CD294 (BM16), Purified BioLegend Cat# 350102,
RRID:AB_10639863
LAG-3 (7H2C65), Purified | BioLegend Cat# 369202,
RRID:AB_2616877
CTLA-4 (L3D10), Purified BioLegend Cat# 349902,
RRID:AB_10642827
PD-1 (EH12.2H7), Purified | BioLegend Cat# 329941,
RRID:AB_2563734
Tim-3 (F38-2E2), Purified BioLegend Cat# 345019,
RRID:AB_2563790
CD127 (A019D5), Purified | BioLegend Cat# 351337,
RRID:AB_2563715
Bcl-6 (k112-91), Purified BD Biosciences Cat# 56052
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RRID:AB_10713172

T-bet (4B10), Purified BioLegend Cat# 644825,
RRID:AB_2563788

CD45R0 (UCHL1), Purified | BioLegend Cat# 304239,
RRID:AB_2563752

CD56 (HCD56), Purified BioLegend Cat# 318302, RRB: 604092

Ki-67 (Ki-67), Purified BioLegend Cat# 350523,
RRID:AB_2562838

CD44 (BJ18), Purified BioLegend Cat# 338802,
RRID:AB_1501199

CD45 (HI30), 89Y Fluidigm Cat# 3089003,
RRID:AB_2661851

CD326 (9C4), Purified BioLegend Cat# 324229,
RRID:AB_2563742

CD19 (HIB19), Purified BioLegend Cat# 302202, RRAB: 314232

HLA-DR (10.1), Purified BioLegend Cat# 307602, RRAB_314680,

CD31 (WM59), Purified BioLegend Cat# 303127,
RRID:AB_2563740

CD16 (B73.1), Purified BioLegend Cat# 360702,
RRID:AB_2562693

CD64 (L243), Purified BioLegend Cat# 305029,

RRID:AB_2563759

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

EQ Four Element Calibratiorn]
Beads

Fluidigm

Cat# 201078

Antibody Stabilizer PBS Candor Bioscience Cat# B810
Bond-Breaker™ TCEP Thermo Fisher Scientific Cat# 77720
Solution

Cell-ID™ Intercalator-Ir Fluidigm Cat# 201192B
Cell-ID™ Cisplatin-198Pt Fluidigm Cat# 201198
Cell Acquisition Solution Fluidigm Cat# 201240

Critical Commercial Assays

Transcription factor staining
buffer set

Miltenyi Biotec

Cat# 130-122-981

Maxpar® X8 Multimetal Fluidigm Cat# 201300
Antibody Labeling Kit
Preamp Master Mix Fluidigm Cat# 100-5580

Reverse Transcription MasteFluidigm

Mix

Cat# 100-6298

TagMan Universal PCR
Master Mix (2X)

Life Technologies

Cat# PN 4304437

96.96 DNA Binding Dye
Sample/Loading Kit—210 IFQ

Fluidigm
S

Cat# BMK-M10-96.96-EG

Deposited Data

CyTOF data

Chevrier et al, Cell Reports Medicir@l 2

DOI:
10.1016/j.xcrm.2020.100166
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ScCRNAseq sata

Wilk et al, Nat Med, 2020

DOI: 108/86831591-020-0944

CyTOF data Schulte-Schrepping et al, Cell, 2020 :00I1016/j.cell.2020.08.00[L
CyTOF data This paper DOI: 10.17632/xg9k72r5rt.1
CyTOF data This paper DOI: 10.17632/c29frc3y6s.1
Clinical data This paper DOL0.17632/5n8df8jvk4.1

Oligonucleotides

IFIT1: interferon induced
protein with tetratricopeptide
repeats 1

TagMan® Assays, ThermoFisher Scientifi

c Hs030278a9_

IFNARL1: interferon alpha an
beta receptor subunit 1

fagMan® Assays, ThermoFisher
ScientificThermoFisher Scientific

Hs01066116_m1

ISG15: ISG15 ubiquitin-like
modifier

TagMan® Assays, ThermoFisher
ScientificThermoFisher Scientific

Hs01921425_s1

IF127: interferon alpha
inducible protein 27

TagMan® Assays, ThermoFisher Scientifi

c Hs01086813_

IFI44L: interferon induced
protein 44 like

TagMan® Assays, ThermoFisher Scientifi

c Hs00915287

RSAD?2: radical S-adenosyl
methionine domain containin
2

TagMan® Assays, ThermoFisher Scientifi
9

c Hs003698iB_

IFNARZ2: interferon alpha an
beta receptor subunit 2

TagMan® Assays, ThermoFisher Scientifi

c  Hs0102265D_

ELF1: E74-like factor 1 (ets
domain transcription factor)

TagMan® Assays, ThermoFisher Scientifi

c Hs00152844

Software and Algorithms

CellCnn, ScaiVision platform Scailyte AG versior @.

R https://www.cran.r-project.org v3.6.3
Premessa (R package) https://github.com/ParkerICl/premessa |premessa 0.2.6
VISNE (Cytobank) Amir et al,Nat Biotechnol (2014) NA

FlowSOM (Cytobank) Van Gassen et al, Cytometry A (2015) [NA

Rstudio https://rstudio.com/ v1.2.5033

pheatmap (R package)

https://cran.r-project.org/package=pheatnj

@p.0.12 (CRAN)

Cytobank

Kotecha et al., 2010
https://www.cytobank.org

https://doi.org/10.1002/
0471142956.cy1017s53

Kaluza

Beckman Coulter

v2.1.00002

Prism (software)

https://www.graphpad.com

v8

RESOURCE AVAILABILITY

Lead contact
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Further information and requests for resources readents should be directed to and will be

fulfilled by the Lead Contact, Mikael Roussel (mgkaoussel@chu-rennes.fr)

Material Availability

The study did not generate new unique reagents.

Data and Code Availability
Additional  Supplemental ltems are available from ndeley Data at

http://dx.doi.org/10.17632/xg9k72r5rt.1, http://dgi.org/10.17632/c29frc3y6s.1, and

http://dx.doi.org/10.17632/5n8df8jvk4.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients

This study was performed in the infectious diseatgmrtment and intensive care unit (ICU) at
Rennes University Hospital. The study design wagr@apged by our ethic committee (CHU
Rennes, n°35RC20 9795 HARMONICOV, ClinicalTrialszgtwlentifier: NCT04373200) and
informed consent was obtained from patients in @aoace with the Declaration of Helsinki.
Patients with malignancy, HIV-infected patientsd gratients with preexisting immune disorders
or receiving immunosuppressive agents were excludéw presence of SARS-CoV-2 in
respiratory specimens (nasal and pharyngeal swagsubum) was detected by real-time reverse
transcription polymerase chain reaction (RT-PCR) thods (TagPath COVID-19,
ThermoFisher).

Cohort 1: Peripheral blood was collected in tubes contaidittgum heparin from COVID-

19"°ARDS’*, COVID-19*ARDS’®, and COVID-18ARDS™? patients. Peripheral blood
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samples were drawn at DO and D7. PBMC were isolatad whole blood using ficoll before
cryopreservation. All patients provided written dnmhed consent. The following data were
recorded: gender, age, preexisting chronic kidnegase and acute kidney failure during the ICU
stay®® preexisting chronic heart failufé,Body Mass Index (BMI), SAPS Il at admissith,
duration of mechanical ventilation, length of haapstay, and outcome (alive or dead) on day 7,
day 30 and day 90. The occurrence of nosocomiatiiun, defined following CDC criteria as
previously describelf. was also recorded during hospital stay. For eatiemt, a clinical score
was built to summarize the occurrence of advensécal events frequently encountered during
hospitalizatior?*® Each of the following events: thromboembolic egemosocomial infection,
septic shock, acute renal failure, and death cograis one point, the score varies from 0 (no

adverse events) to 5. Patients’ characteristicedbort 1 are reported in Table 1 and Table S1.

Cohort 2: Same inclusion criteria were applied to cohort BlyQpatients at DO were included.

Patients’ characteristics for cohort 1 are repometable S1 and Table S2.

METHODS DETAILS

Mass cytometry analysis

PBMC from patients were thawed. Briefly, cells wstained 5 minutes in RPMI supplemented
with 0.5 pM Cisplatin Cell-ID™ (Fluidigm, San Fraasco, CA) in RPMI 1640 before washing
with 10% FCS in RPMI 1640. Cell pellets were resmjed in 80l of 0.5% BSA in PBS. Then
60 ul of each surface staining cocktail, lymphoidryeloid, were added to 40ul of resuspended
cells. After staining, cells were washed in 0.5%AB8 PBS before fixation/permeabilization
with the transcription factor staining buffer s#lilienyi, Bergisch-Gladbach, Germany). Then

60ul of each surface staining cocktail, lymphoidmyreloid, were added to 40ul of resuspended
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cells in Perm Buffer. The panel of antibodies stdld in Table S3 and in Key Resources Table.
After intracellular staining, cells were washeddgvbefore staining in DNA intercalator solution
(2.5% Paraformaldehyde, 1:3200 Cell-ID™ Intercatdto(Fluidigm, San Francisco, CA) in
PBS). Samples were cryopreserved at -80°C untiliaitegpn on Helios™ System (Fluidigm, San

Francisco, CA).

Antibodies and reagents

Purified antibodies for mass cytometry were obtdim@ carrier/protein-free buffer and then
coupled to lanthanide metals using the MaxPar adjibconjugation kit (Fluidigm Inc.)

according to manufacturers recommendations. Fotlgw the protein concentration
determination by measurement of absorbance at 88@nd titration on positive controls, the

metal-labeled antibodies were diluted in Candor PBffibody Stabilization solution (Candor

Bioscience, Germany) for long-term storage at.4Antibodies used are listed in Table S3 and

Key Resources Table.

Quantitative real-time polymerase chain reaction

Total RNA was extracted from PAXgene blood RNA kipiagen, Valencia,CA) using a
Hamilton Microlab STARIlet Automated Handler (Atlantab Equipment, Beverly, MA). cDNA
was then prepared using Reverse Transcription Madte (Fluidigm Sunnyvale, CA) and gene
expression preamplification was performed with dgim Preamp Master Mix and Tagman
Assays (Invitrogen, Thermo Fisher Scientific IngriBbad, CA, USA). After loading the reaction
chambers using the integrated fluid circuit (IFCY Ebntroller from Fluidigm, the realtime PCR
was performed in a BioMark HD system (Fluidigm CotpSA) using single probe (FAM-MGB,

reference: ROX) settings and GE 96x96 standardrefopol. Data processing took place using
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the Fluidigm real-time PCR analysis software (\.3). For each sample, the cycle threshold
(CT) value for the gene of interest was determiaad normalized to the housekeeping gene
ELF1. The relative level of expression of each genesirh patient at D7 compared to DO was
assessed using the 2-ddCT method. For all DO samiple relative level of expression of each
gene was assessed by 2-dCT method Type | IFN respsmore was determined as Log2 of the
mean of the following genedSG15, IFI27, IFI44L, RSAD2 and IFIT. IFNAR score was

considered as Log2 of the mean of the followingegeli-NARL andlFNAR2.

Detection of SARS-CoV-2 neutralizing antibodies

The viral strain (RoBo strain), which was cultui@dVero-E6 cells (ATCC CRL-1586), used for
the nAb assay was a clinical isolate obtained feomasopharyngeal aspirate of a patient HOS at
the University Hospital of Saint-Etienne for sevet®©VID-19. The strain was diluted in
Dulbecco’s modified Eagle’s medium—2% fetal calfiuse in aliquots containing 100-500 tissue
culture infectious doses 50% (TCID50) per ml. Eaelum specimen was diluted 1:10 and serial
twofold dilutions were mixed with an equal volumi®Q uL each) of virus. After gentle shaking
for 30 min at room temperature, 150 of the mixture was transferred to 96-well micratels
covered with Vero-E6 cells. The plates were theacgdl at 37°C in a 5% CO2 incubator.
Measurements were obtained microscopically 5-6 d&gs when the cytopathic effect of the
virus control reached ~100 TCID50/1%Q. The serum was considered to have protected the
cells if >50% of the cell layer was preserved. Tieatralizing titer is expressed as the inverse of

the higher serum dilution that protected the cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass Cytometry Preprocessing
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After acquisition, intrafile signal drift was noriieed and .fcs files were obtained using CyTOF
software. To diminish batch effects, all files wer@malized on EQ Beads (Fluidigm Sciences)

using the premessa R package (https://github.cak€R&1/premessa). Files were then uploaded

to the Cytobank cloud-based platform (Cytobank,)Iri@ata were first arcsinh-transformed using
a cofactor of 5. For all files, live single celleme selected by applying a gate on DNA1 vs.
DNAZ2 followed by a gate on DNA1 vs. Cisplatin, thieeads were removed by applying a gate
on the beads channel (Cel40Di) vs. DNA.1 Normalizemhsformed and gated values were

exported as FCS files.

CellCnn analysis

Identification of a Covid-19-specific cell-identitsignature was carried out using the CellCnn
algorithm® implemented in Pytorch in the ScaiVision platfofversion 0.3.6, © Scailyte AG).
Briefly, this is a supervised machine learning alyon that trains a convolutional neural network
with a single layer to predict sample-level labeting single-cell data as inputs. Data from each
CyTOF panel was analyzed separately, in each casg all measured protein markers to train a
series of CellCnn networks with varying hyperpartaree Each sample was given a label
corresponding to the Covid-19 status of the pafimmh which the sample was drawn (positive or
negative). To generate input data for training Ceil, sub-samples of 2000 cells, termed multi-
cell inputs (MCIs), were chosen randomly from eaemple independently. For each training
epoch, 2000 MCls from each label class (Covitler Covid-19°9 were presented to the
network in random order. During training, 30 % bétsamples were set aside for validation,
chosen in a stratified manner to maintain the iredgproportions of each class. 50 independent
networks were generated for each CyTOF panel usypgrparameters randomly chosen from

the following options: i) number of filters: (2, 8, 7, and 10), ii) top-k pooling percentage: (1, 5
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10, 20, and 30), iii) dropout probability: (0.340and 0.6), iv) learning rate: (0.001, 0.003, and
0.01), and v) weight decay: (0.00001, 0.0001, 0.0011, and 0.1). Training was performed with
a batch size of 50. Adam was used as an optimkiagfna2015adam}, with a betal coefficient
of 0.999 and a beta2 coefficient of 0.99. Each nétwvas trained for a maximum of 50 epochs,
or until the validation loss no longer decreasedlfd consecutive epochs. At the end of training,
the weights from the epoch with lowest validatiosd were returned. Representative filters were
determined by clustering the filters from all neti® achieving> 90 % accuracy on the
validation samples, then choosing the filter intealuster with the minimum distance to all other
filters in that cluster. For both CyTOF panels,irrge representative filter showing the largest
positive association with the Covid®® label class was used to calculate cell-level rfilte
response scores. Thresholds were set on the ri@sgonse scores to select Covid-19-associated
cells by calculating the relative frequencies oesied cells in each sample at 100 different
thresholds for each filter, then performing a ltigisegression to predict sample labels. For each
threshold, the data was first split in a stratifrednner into a training set, comprising 60 % of
samples, and a test set, comprising 40 % of samples logistic regression was performed on
the training set, and the accuracy of resultingdigt®ns was calculated on the test set. This
procedure was performed 10 times, with randomlysehdraining/test splits, and the mean of the
resulting accuracies for each threshold was cakedlaFor the lymphoid panel, one threshold
(9.63) achieved the highest accuracy and was stteaBnal threshold. For the myeloid panel,
multiple thresholds achieved the same level of ey the lowest of these (4.96) was set as the
final threshold. The relative frequencies of cellgach sample with filter response scores greater
than or equal to the respective thresholds weraulzed and compared using a Wilcoxon rank-

sum test.
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VISNE, FlowSOM, and hierarchical clustering

We first performed a dimension reduction for botmels (i.e. myeloid and lymphoid) and all
cleaned-up 63 files were first analyzed using viShi&sed upon the Barnes—Hut implementation
of t-SNE. Equal downsampling was performed, basedhe lowest event count in all files
(lymphoid panel) or on the maximum total events\wa#d by Cytobank (myeloid panel). For the
myeloid panel, the following parameters were ugeplexity = 45; iterations = 5000; theta =
0.5; all 37 channels selected. For the lymphoiceptre parameters were as follows: perplexity =
45; iterations = 7500; theta = 0.5; all 36 chanselected.

Then we applied a clustering method using the Floilustering algorithm. FlowSOM uses
Self-Organizing Maps (SOMs) to patrtition cells irdoisters based on their phenotype, and then
builds a Minimal Spanning Tree (MST) to connect thedes of the SOM, allowing the
identification of metaclusters (i.e. group of ckrs). We performed the FlowSOM algorithm on
the previous VISNE results, using all events angepahannels, and the following parameters:
clustering method = hierarchical consensus, itenat= 10, number of clusters = 256, number of
metaclusters = 30. For both panels, each metacl{cstetaining a given number of clusters) was
manually annotated based on his marker expres$iengbype, his projection on the viSNE and
his localization in the FlowSOM MST.

We first analyzed the myeloid panel. Out of 30 rolessters defined by the FlowSOM approach,
we identified 13 metaclusters with monocyte markether metaclusters contained other cell
types, low count of cells or remaining doubletslead cells. We visually identified 2 (Mo18 and
Mo26) out of the 13 metaclusters that were hetareges. These 2 metaclusters were manually
split into 2 new metaclusters (identified respesiyivas Mo180, Mo181 and Mo214, Mo0243)
(Fig. S1B). Thus, altogether we analyzed 15 mesidets of myeloid cells. Regarding the

lymphoid compartment, we noticed that FlowSOM dedirmetaclusters at the lineage level, thus
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we retain all the 136 clusters included in 10 mletgers of interest (i.e. containing lymphoid
lineage markers) (Fig. S1C). All metaclusters andters phenotypes including their abundances
and mean marker intensity were then exported fromoliank for further analyses. Cytometry
data was explored with Kaluza Analysis Softwarec{@ean Coulter). Hierarchical clustering and

heatmaps were generated with R v3.6.3, using RstddP.5033 and the pheatmap package.

Statistical analysis

Statistical analyses were performed with GraphpadnP8.4.3. P values were defined by a
Kruskal-Wallis test followed by a Dunn’s post-tefstr multiple group comparisons or by
Wilcoxon matched-pairs signed rank tests as apjateprCorrelations were calculated using
Spearman test. * P < 0.05, * P < 0.01, *** < 0.0@hd **** P < 0.0001. Hierarchical clustering
of the patients was performed using euclidean mitgtaand complete clustering. Correspondence
analysis was performed using the package factoshsiyg as variable the abundance in cell

subsets for each patient.

Supplementary Materials:

Figure S1. Description of the 2 cohorts of patie@gTOF experimental design and data analysis
pipeline. Related to Table 1 and Figures 1 and 2.

Figure S2. Supplemental data for cohort 1. Reltddeigure 1B, 2 and 3.

Figure S3. CellCnn and FlowSOM analysis for colzomRelated to Figures 1, 2 and 3.
Figure S4. CellCnn analysis for Chevrier et al.l{&eports Medicine, 2021) datand for

Schulte- Schrepping et al. (Cell, 2020) daf@elated to Figure 1.
Figure S5. IFN | pathway. Related to Figure 4.

Table S1. Clinical data (excel spreadsheet). Retkatd able 1.
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Table S2. Patients’ characteristics for the coBoRelated to Table 1.
Table S3. Panel of antibodies. Related to STAR bidth

Table S4. Spearman correlation between myeloidyangdhoid clusters. Related to Figure 3.
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Highlights
e Machine-learning analysis of CyTOF data segregates Covid-19" and Covid-19" ARDS
e CD169'S100A9" monocytes differentiate Covid-19 ARDS from other ARDS
e Monocyte compartment alterations correlate with other immune subset
modifications
e CD14'HLA-DR® and CD14°CD16" monocytes are markers of adverse Covid-19
evolution

eTOC Blurb

Roussel et al. characterize the immune profile of COVID-19" and COVID-19 patients, both
presenting an acute respiratory distress syndrome (ARDS) and COVID-19" without ARDS. They
identify a COVID-19 signature associating CD169°S100A9" monocytes, plasmablasts, and Th1
cells. CD14"HLA-DR" and CcD14"°cD16" monocytes increase during the ICU stay correlate with
unfavorable clinical course.
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