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Summary  

Acute respiratory distress syndrome (ARDS) is the main complication of COVID-19, requiring 

admission to Intensive Care Unit (ICU). Despite extensive immune profiling of COVID-19 

patients, to what extent COVID-19-associated ARDS differs from other causes of ARDS remains 

unknown. To address this question, we build 3 cohorts of patients categorize in COVID-

19negARDSpos, COVID-19posARDSpos, and COVID-19posARDSneg, and compare their immune 

landscape analyze by high-dimensional mass cytometry on peripheral blood. A cell signature 

associating S100A9/calprotectin-producing CD169pos monocytes, plasmablasts, and Th1 cells is 

found in COVID-19posARDSpos, unlike COVID-19negARDSpos patients. Moreover, this signature 

is essentially share with COVID-19posARDSneg patients, suggesting that severe COVID-19 

patients, whatever they experience or not ARDS, display similar immune profiles. We show an 

increase in CD14posHLA-DR low and CD14lowCD16pos monocytes correlate to the occurrence of 

adverse events during ICU stay. We demonstrate that COVID-19-associated ARDS display a 

specific immune profile, and might benefit from personalize therapy in addition to standard 

ARDS management. 
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Introduction  

The SARS-Coronavirus-2 (SARS-CoV-2) virus has rapidly affected more than 30 million people 

worldwide, requiring admission to Intensive Care Unit (ICU) for more than 2 million patients.1 

Whereas most patients exhibit mild-to-moderate symptoms, acute respiratory distress syndrome 

(ARDS) is the major complication of the coronavirus disease 2019 (COVID-19),2,3 leading to 

prolonged ICU stays, and high frequency of secondary complications, notably cardiovascular 

events, thrombosis, pulmonary embolisms, and strokes.1,4 The immune system plays a dual role 

in COVID-19, contributing to both virus elimination and ARDS development.5 Excessive 

inflammatory response has been proposed as the leading cause of COVID-19-related clinical 

complications, thus supporting intensive efforts to better understand the specificities and 

mechanisms of SARS-CoV-2-induced immune dysfunction.6,7 Moreover, even if therapies such 

as provided by convalescent plasma or neutralizing antibodies at an early stage of the disease, can 

lower the viral burden, this was only demonstrated in specific populations such as aged patients 

over 75,8 and no antiviral treatment has yet been able to definitely prevent the evolution of some 

patients towards deregulated inflammation and critical respiratory complications. The benefit of 

corticosteroids in severe COVID-19 for lowering overall mortality is now widely 

acknowledged.9,10 Conversely, steroid therapy was shown harmful in other ARDS etiologies, 

such as in influenza-associated ARDS,11 suggesting specific biological features of COVID 19-

related ARDS. A detailed understanding of the COVID-19-specific immune dysfunctions 

underlying ARDS development and severity is thus a major need and will hopefully help adapt 

specific therapeutic strategy. 

A number of high-resolution studies have recently concentrated on the determination of 

circulating markers that can distinguish severe from mild forms of COVID-19, providing a 

tremendous amount of data describing phenotypic and functional alterations in T cell, B cell, and 
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myeloid cell subsets.12–25 In particular, CD14posHLA-DR low, CD14posCD16pos, and immature 

monocytes were demonstrated as increased among peripheral blood mononuclear cells (PBMCs) 

from critically ill COVID-19 patients.15,21,23,26–29 Interestingly, monocyte number is reduced in 

COVID-19 compared to influenza patients, suggesting specific myeloid dysregulation.30 Various 

COVID 19-related alterations of lymphoid cells have also been described, including a T-cell 

lymphopenia, predictive of patient outcome, a broad T-cell activation including Th1, Th2, and 

Th17, an alteration of B-cell and T-cell repertoires, and a strong increase of plasmablasts, most 

prominent in ARDS COVID-19 patients.14,17,25,31–33 Importantly, COVID-19 ARDS immune 

profiling was performed using healthy donors as a control, thus precluding any conclusions on 

whether reported immune alterations could be related to COVID-19 and/or ARDS status. 

Answering this question has potential to decipher whether ARDS induced by SARS-CoV-2 is 

mechanistically different from other ARDS etiologies.  

To fill this gap, we performed a high-throughput mass cytometry approach on PBMCs obtained 

from 3 complementary series of 18 COVID-19negARDSpos, 18 COVID-19posARDSpos, and 20 

COVID-19posARDSneg patients, including exploratory and validation cohorts. We report common 

myeloid cell alterations in all COVID-19 patients, which are absent from non-COVID-19 ARDS 

patients. This includes in particular a strong increase of an unusual population of activated 

monocytes showing upregulated expression of CD169, associated with major COVID-19-specific 

alterations of T and B-cell compartments. 

 

Results 

Study population 

Analyses were performed on a cohort 1 of 63 cryopreserved PBMC samples isolated from 42 

patients included in ICU (n = 36) or infectious standard ward (n = 6). The demographic 

Jo
urn

al 
Pre-

pro
of



6 
 

characteristics of patients included are provided in Table 1 and Table S1. All patients but one 

were classified as severe at admission, requiring oxygen at a flow rate higher than 2 liters/min. 

ARDS was defined in accordance with international guidelines.34 Patients were classified in 3 

groups: COVID-19negARDSpos (n = 12, ARDS stages: 1 mild, 4 moderate, 7 severe), COVID-

19posARDSpos (n = 13, ARDS stages: 8 moderate, 5 severe), and COVID-19posARDSneg (n = 17, 

including 11 from ICU and 6 from infectious standard ward). In the COVID-19posARDSneg, no 

statistical differences were noticed for immune cell abundance or phenotype between ICU and 

standard ward patients. Within the COVID-19negARDSpos group, ARDS etiologies were bacterial 

pneumonia (n = 9), anti-synthetase syndrome (n = 1), and unknown (n = 2) (Table S1). For 21 

patients, a second blood sample obtained on day 7 after enrollment was studied (n = 7 for 

COVID-19negARDSpos, n = 8 for COVID-19posARDSpos, and n = 6 for COVID-19posARDSneg). 

Additionally, a validation cohort (cohort 2) was set up with 16 patients with demographic data 

detailed in Table S1 and Table S2. Patients were classified in 3 groups: COVID-19negARDSpos (n 

= 6), COVID-19posARDSpos (n = 5), and COVID-19posARDSneg (n = 3); additionally, COVID-

19negARDSneg (n = 2) samples were included. None of our patients received corticosteroids at the 

time of the study nor immune-modulators. The presence of SARS-CoV-2 in respiratory 

specimens (nasal and pharyngeal swabs or sputum) was detected by real-time reverse 

transcription polymerase chain reaction (RT-PCR) methods. To rule out undetected infections, 

negative RT-PCR samples were confirmed when possible by absence of neutralizing antibodies. 

Neutralizing antibodies were undetectable for the 11 samples out of 18 COVID-19neg patients for 

which material was available. In contrast, neutralizing antibodies were detected in 29 out of 30 

COVID-19pos tested. Timeline of sample collection are shown in Fig. S1. 

 

SARS-CoV2 induces phenotypic changes in circulating immune cells 
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To decipher the impact of SARS-CoV2 on circulating immune cells, we characterized PBMCs 

from COVID-19pos versus COVID-19neg patients at admission using two separate mass cytometry 

panels exploring myeloid and lymphoid subsets, respectively (Table S3 and Key Resources 

Table). The full pipeline of analysis is depicted in Fig. S1. First, we performed an unbiased 

discovery approach with CellCnn, a neural network-based artificial intelligence algorithm 

allowing analysis of single-cell data and detection of cells associated with clinical status.35–37 

During training, CellCnn learns combinations of weights for each marker in a given panel that 

best discriminate between groups of patients. These weight combinations, called filters, can be 

used to highlight the specific profiles of cells associated with patient status. We identified the 

best-performing CellCnn filters for both the myeloid and the lymphoid panels highlighting a 

population of cells significantly enriched in COVID-19pos patients as compared to COVID-19neg 

patients (P < 0.0001 for both panels) (Fig. 1A). Projecting these cells on tSNE maps generated 

with either the myeloid or the lymphoid panels revealed that they fell into several distinct areas 

(Fig. 1B). The cells selected by the CellCnn filter on the myeloid panel showed high expression 

for CD169, CD64, S100A9, CD11b, CD33, CD14, and CD36 compared to background, while the 

cells selected by the CellCnn filter on the lymphoid panel showed high expression for CD38 and 

CXCR3 (Fig.1B and Fig. S2). These results were replicated in the cohort 2 (Fig. S3), and 

confirmed on a public set of data by using the CellCnn analysis showing a high expression of 

CD14, CD36, CD64, and CD169 cells on COVID-19pos patients (Fig. S4).15 As a whole, this 

broad and unbiased approach reproducibly showed that immune markers, in particular related to 

monocytes, segregated COVID-19neg and COVID-19pos patients.  

 

SARS-CoV2 induces CD169-expressing monocyte subsets  
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To investigate circulating monocyte heterogeneity and define consistent phenotypes, we used the 

FlowSOM algorithm. This approach led to the identification of 15 monocyte metaclusters from 

the myeloid panel (Fig. 2A). In particular, Mo30, Mo11, and Mo28 metaclusters were defined by 

higher expression of CD16 and lower expression of CD14, CD36, and CD64, corresponding to a 

non-classical monocyte phenotype. Mo21 and Mo22 were defined by the high expression of 

S100A9 and the low expression of CD36. Finally, Mo243 and Mo180 strongly expressed 

S100A9, CD169, and CD36. To assess the phenotypic changes in monocytes during SARS-CoV2 

infection, we determined the frequencies of these metaclusters in each patient at admission and 

performed hierarchical clustering on these values (Fig. 2B). The upper branch of the hierarchical 

clustering included 20 COVIDpos (10 ARDSneg and 10 ARDSpos) and 1 COVIDnegARDSpos patient 

whereas the lower branch included 10 COVIDpos (7 ARDSneg and 3 ARDSpos) and 11 

COVIDnegARDSpos (chi-square = 0.001) (Fig. 2B). We then analyzed the abundance of individual 

metaclusters and identified only 4 metaclusters out of 15 as differentially represented between the 

3 groups of patients (Fig. 2C and Fig. S2). In particular, within ARDSpos patients, Mo11 and 

M181 were less abundant in COVID-19pos patients (P < 0.01 and P < 0.05, respectively), while 

Mo243 and Mo180 were more abundant (P < 0.05 and P < 0.001) (Fig. 2C). No differences were 

detected within COVID-19pos groups (ARDSpos versus ARDSneg) (Fig. 2C). Interestingly, Mo243 

and Mo180 were both enriched in cells highly expressing CD169, CD64, CD36, and CD14 (Fig. 

2A and 2D). Additionally, Mo22 was present only in some COVIDpos patients and also expressed 

CD169 (Fig. 2B). Taken together, Mo243, Mo180, and Mo22 metaclusters were highly enriched 

in COVID-19pos patients when compared to COVID-19neg patients (P < 0.0001), with no 

difference regarding the ARDS status (Fig. 2E). Accordingly, CD169 was differentially 

expressed in COVID-19pos versus COVID-19neg patients (P < 0.001) (Fig. 2E). Altogether, our 

study including COVID-19 and non-COVID-19 critically ill patients suggest a specificity of 
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CD169 expression in COVID-19 patients, and greatly extend previous scRNAseq data showing 

an expansion of CD169-expressing monocytes in COVID-19 patients compared to healthy donors 

(Fig. 2F).15,25,38–40 We then performed the FlowSOM analysis on cohort 2 and validated the 

enrichment of Mo243 and Mo180 in COVID-19pos samples (Fig. S3A, S3B), these metaclusters 

also presenting a trend for high CD169 expression (Fig. S3C). 

 

Monocyte metacluster enrichment in COVID-19 is correlated with a specific increase of 

effector memory T cells and plasma cells 

To define a more global immune pattern and the relationship between immune cells in the context 

of the SARS-CoV2 infection, we sought for correlation between frequencies of clusters of T-, 

NK-, B-, and plasma cells (n = 136 clusters from the lymphoid panel, Fig. S1) and the 4 

monocyte metaclusters (Mo11, Mo181, Mo243, and Mo180) previously described. This analysis 

identified 70 clusters with significantly correlated variations (P < 0.05) (Fig. S2). To strengthen 

the relevance of these correlations, we restrained further analysis to the 29 strongest relationships 

(R > 0.5 or < -0.5 and P < 0.01) between Mo180 or Mo243 (the two metaclusters enriched in 

COVID-19 patients) and other immune cell subsets (Fig. 3A and Table S4). As expected, Mo180 

and Mo243 metaclusters were correlated (R = 0.93). Moreover, they were positively correlated 

with 18 clusters of T (n = 6), NK (n = 10), and plasma cells (n = 2), and inversely correlated with 

11 clusters of T (n = 9), and NK cells (n = 2) (Fig. 3A). Among positively correlated clusters, 

plasmo_183 and plasmo_198 similarly expressed CD38, CD44, and CD27, whereas plasmo_183 

was high for Ki-67 and HLA-DR, corresponding to an early plasma cell phenotype (Fig. 3B). NK 

cells were all marked by CD7 and T-bet expression, NK_209 being CD8high, and NK_241 and 

NK_197 displaying a Ki-67high proliferating phenotype. The related T8_147 and T8_161 clusters 

exhibited a CD45RAhighCD45ROlowCCD7lowCD27lowTbethighCD38high effector phenotype. Few 
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T4 clusters were positively correlated with Mo180 and Mo243, among them T4_106 displayed an 

effector memory proliferating phenotype (Ki-67highCD45RAlowCCR7lowCD45ROhighCD27high and 

CTLA4highPD1high). T4_25 was also marked by an effector memory phenotype 

(CD45RAlowCCR7lowCD45ROpos) and displayed a CD27lowCD127posCCR6posCxCR3negCD161pos 

Th17 profile (Fig. 3B). Conversely, some T4 clusters were inversely correlated with Mo_180 and 

Mo_243, in particular clusters T4_6, T4_20, and T4_34, all three corresponding to naïve cells 

(CD45RAhighCD45ROlowCCR7high), and T4_59 expressing a Th2 phenotype (CCR4high). We then 

compared the abundance of these 29 lymphoid clusters correlated with Mo180 and Mo243 and 

highlighted the 22 differentially represented lymphoid clusters between the three groups of 

patients (P < 0.05) (Fig. 3C and Fig. S2). Only 7 clusters of CD4 T cells, and 2 clusters of CD8 T 

cells were at lower abundance in COVID-19posARDSpos patients compared to COVID-

19negARDSpos patients. As previously discussed, T4_6, T4_20, and T4_34 corresponded to naïve 

cells, whereas within the effector memory cells, T4_7 and T4_45 were CD127low, T4_24, T8_99, 

and T8_113 were CD127high, and T4_59 was CCR4high. Conversely, 13 clusters were enriched in 

COVID-19posARDSpos compared to COVID-19negARDSpos including: i) CTLA4highPD1high 

effector memory activated CD4 Tcells (T4_106); ii) Tbethigh Th1-like CD8 effector phenotype 

(T8_146, T8_147, and T8_161); iii) cytotoxic mature CD16posCD56lowCD7posTbetposCD127neg 

NK cells (NK_209, NK_241, NK_242, and NK_244) with in particular proliferating Ki-67high 

NK cells (NK_241); and iv) proliferating plasmablasts (plasmo_183) and mature plasma cells 

(plasmo_198) (Fig. 3B and Fig. 3C). Of note, no cluster was differentially expressed between 

COVID-19posARDSpos and COVID-19posARDSneg groups (Fig. 3C and Fig. S2). Then, to explore 

the whole immune profile and define relationship with groups of patients, we performed 

correspondence analysis (CA) using, as a variable, the abundance of the myeloid (n = 4) and the 

lymphoid (n = 22) clusters differentially expressed between groups of patients (Fig. 3D). CA was 
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developed to analyze frequency tables and visualize similarities between patients and co-

occurrence of cell subsets.41 The first and second dimension of the correspondence analysis 

explained 80.5 % and 13.5 % of the difference, respectively (Fig. 3D). The top-ten cell 

populations accounting for the difference between COVIDpos and COVIDneg patients were 

Mo243, Mo180, T8_146, NK_244, and T8_161 being increased and Mo181, T4_6, Mo11, 

T8_99, and T4_45 being decreased in COVIDpos. Altogether, these subsets corresponded to an 

increase in inflammatory monocytes (CD169high CD64high), Tbethigh Th1-like CD8 T cells, and 

mature NK cells and a decrease in naïve T4 cells and effector memory T4 and T8 cells. 

Interestingly, only the first dimension of the correspondence analysis segregated COVID-

19posARDSpos from COVID-19negARDSpos (P < 0.001) and no statistical differences was found 

between COVID-19posARDSpos and COVID-19posARDSneg (Fig. 3D).  

 

Evolution of immune cell clusters between D0 and D7 in COVID-19 patients defines high-

risk clinical grade 

We performed mass cytometry analysis for 21 patients at day 7 of hospitalization, including 7 

COVID-19negARDSpos, 8 COVID-19posARDSpos, and 6 COVIDposARDSneg patients, in order to 

follow up the kinetic of PBMC phenotypic alterations. The 42 samples (21 at day 0 and 21 at day 

7) were parsed by correspondence analysis using, as a variable, the abundance of myeloid and 

lymphoid clusters (Fig. 4A). The first and second dimensions of the correspondence analysis 

explained 85.1 % and 9 % of the differences acquired between D0 and D7. The first dimension 

captured the difference between D0 and D7 only for COVID-19posARDSpos (P < 0.01) (Fig. 4A). 

Because of the limited number of samples, only a trend was observed for COVIDposARDSneg (P = 

0.062). The top-five enriched populations accounting for the differences between D0 and D7 for 

COVID-19posARDSpos patients were Mo11, Mo181, T8_113, T4_34, and NK_197, corresponding 
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to an enrichment in non-classical monocytes (CD14lowCD16highCD64lowCD36lowS100A9high), in 

M-MDSC-like (HLA-DRlowS100A9high), in effector memory CD127high T8 cells, in T4 naïve 

cells, and in Ki-67high proliferating NK cells. These 5 cell subsets were integrated in an immune 

score combining their fold change between D0 and D7. To define the relevance of this immune 

score in discriminating COVID-19 patients with unfavorable prognosis, we built a clinical score 

as the sum of events occurring during ICU stay (thromboembolic, ICU-acquired infection, septic 

shock, renal failure, and deaths) (Table 1). Interestingly, both the clinical and the immune scores 

were found correlated in severe COVID-19 patients, irrespectively of their ARDS status 

(Spearman R = 0.71; P = 0.006) (Fig. 4B). Finally, we analyzed changes between D0 and D7 of 

genes involved in IFN pathway. We found and upregulation of IFNAR1 and IFNAR2 during time 

in COVIDposARDSpos (Fig. S5A). Conversely, evolution of IFN type I target genes (ISG15, 

IFI27, IFI44L, RSAD2, and IFIT1) revealed a specific downregulation in COVIDposARDSpos 

samples. Interestingly, both IFNAR score and type I IFN score, obtained by combining the 

expression of IFN receptors and targets, respectively, presented a trend of correlation with the 

immune score (Fig. S5B), and the type I IFN score was significantly correlated with the CD169 

expression (Fig. S5C). 

 

Discussion 

Immune response to COVID-19 infection has been recently intensively studied at both 

transcriptomic and proteomic levels. However, most studies focused on either the lymphoid19,22,24 

or the myeloid compartments,12,21,23 and only few performed a wide analysis of the circulating 

immune landscape,13,16,25,42,43 thus precluding the definition of complex patterns of immune 

parameter alterations associated with COVID-19 severity or physiopathology. Moreover, these 

studies were designed to identify differences in immune cell subsets frequencies between 
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COVID-19 patients and healthy donors, and eventually correlated with the severity of the disease, 

but did not include severe non-COVID-19 patients as controls, although critically ill patients 

were previously largely demonstrated to display immune reprogramming.44 ARDS is a major 

adverse event occurring during ICU stay, leading to an overall mortality rate of 40 % to 60 %. 

Whether COVID-19 associated ARDS is clinically and biologically similar to other causes of 

ARDS remains controversial.45,46 To address this point, we characterized for the first time, by 

mass cytometry, the immune landscape in COVID-19-associated ARDS compared to other 

causes of ARDS. We demonstrated that an increase of CD169pos monocytes, correlated with 

specific changes of T, plasma, and NK cell subsets, defines COVID-19-associated ARDS and is 

not found in bacteria-associated ARDS, suggesting a COVID-19 specific immune 

reprogramming.  

The amplification of CD169pos circulating monocytes has already been highlighted in the context 

of COVID-19,15,23,38,47 and is reminiscent of other inflammatory conditions found in viral 

infections, such as with Human Immunodeficiency Virus or Epstein-Barr Virus, in which the 

CD169 sialoadhesin is induced in an IFN-dependent manner on the surface of circulating 

monocytes.48,49 Consistent with the inflammatory response, we showed that the accumulation of 

CD169pos monocytes in COVID-19pos patients is positively correlated with an increase of 

plasmablasts and mature plasma cells, Th1-like CD8 effector T cells, cytotoxic mature NK cells, 

and activated CD4 effector memory T cells displaying a CTLA4highPD1high phenotype. CD169pos 

activated monocytes were detected in mild disease,23 and were proposed to rise rapidly and 

transiently in patients with COVID-19, in association with a high expression of IFNγ and 

CCL8.15 This could be due to the transient nature of this monocytic population, either losing 

CD169, being short-lived, or being recruited into tissues as CD169pos macrophages, as suggested 

by the high expression of CCR2 on Mo243 and Mo180, the two monocyte subsets identified here 
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in COVID-19 patients, and the local inflammation and lung tissue destruction mediated by 

monocyte-derived macrophages in severe cases of SARS-CoV2 infections.50,51 Interestingly, we 

also found an upregulation of cytoplasmic S100A9 in monocyte subsets specifically amplified in 

COVID-19 patients irrespectively of their ARDS status. These data suggest that, in the early 

stage of the disease, monocytes could contribute to the burst of circulating calprotectin 

(S100A8/S100A9), recently proposed to contribute to the secondary cytokine release syndrome 

described in severe COVID-19 and attributed to neutrophils.21 Despite phenotypic alterations, our 

data revealed a specific alteration of the response to type I IFN in COVID-19pos versus COVD-

19neg ARDS patients after short stay in ICU, with an upregulation of IFN receptors without 

induction of IFN target genes. These results are reminiscent of the demonstration that deficiency 

of type I IFN pathway is associated with poor outcome in COVID-19 patients.52,53 

Whereas a seroconversion score was recently associated with huge modifications immune 

parameters reflecting B, T, and NK cell function in non-ICU COVID patients,54 our ICU patients 

clearly stand at a later stage of the disease, with 22 out of 29 already carrying neutralizing 

antibodies at D0. It is thus highly unlikely that the differential evolution of monocytic markers 

identified between D0 and D7 in our study could be attributable to seroconversion. 

Within severe COVID-19 patients, we detected no significant differences between ARDSpos and 

ARDSneg immune profiles, indicating a specificity of the phenotype induced by SARS-CoV2 

infection, irrespectively of the respiratory complications. While most published studies showed 

differences between mild and severe COVID-19 diseases, some of their conclusions might be 

obscured by the fact that ARDS by itself, mechanical ventilation, and/or nonspecific treatments 

might impact immune parameters.55 A strength of our study comparing two groups of severe 

COVID-19 patients with or without ARDS is to highlight features directly related to the viral 

infection rather than to its respiratory complications or their treatment. Importantly, our cohort 
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was homogeneous regarding treatment with in particular no immunosuppressive therapy at the 

time of sampling.  

The small size of our cohort did not allow us to pinpoint a mortality prognostic factor based on 

our phenotypic data. However, we identified a specific immune pattern associated with the 

occurrence of the major adverse clinical events (thrombosis, nosocomial infection, septic shock, 

acute renal failure, and death) described in COVID-19 and combined as a clinical score. In 

particular, an increase of non-classical CD14lowCD16pos monocytes (Mo11), and CD14posHLA-

DRlow M-MDSC-like (Mo181), both not expressing CD169, are markers of adverse events. This 

suggests that besides the early increase of CD169pos monocytes in all COVID-19 patients 

associated with T-cell dysfunctions, the immunological response to SARS-CoV2 infection 

features multiple alterations of monocytic subsets reflecting the severity of the disease. Consistent 

with these data, it was shown that CD14posHLA-DR low cells were increased in critical COVID-19 

patients,21,26,56–58 while CD14lowCD16pos monocytes, able to migrate to the lung, were correlated 

with the length of stay in ICU.15,23,59 Altogether, our study correlates the accumulation of non-

classical monocytes and M-MDSCs occurring during the first days of ICU to adverse events. 

 

Limitations of Study 

Besides the low number of included patients, our study has some limitations. By focusing on 

severe patients with and without ARDS, we cannot make conclusions about phenotypic changes 

in mild and moderate diseases. The analysis would also benefit from comparison with other virus-

associated ARDS. We thus analyzed a published dataset of flu-like illness and COVID patients, 

analyzed by mass cytometry.21 Interestingly, by using CellCnn, we were able to define a filter 

that accurately discriminate flu-like illness from COVID samples, suggesting immune differences 

between both diseases (Fig. S4). Moreover, since the mass cytometry was conducted on PBMCs, 
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we lack information on the neutrophil lineage, which appears affected in COVID-19 disease.21 It 

would also be interesting to link these data with in situ data from lung tissue samples and 

bronchoalveolar lavages. Unfortunately, at the time of the study, bronchoalveolar fluid collection 

was not allowed in our institution for patients positive for SARS-CoV2. However, our detailed 

analysis of circulating immune cells shows that immune monitoring of severe COVID-19 patients 

brings interesting prognostic biomarkers independently of their clinical classification in ARDSpos 

versus ARDSneg. Moreover, we demonstrated that at the biological level, COVID-19 associated 

ARDS is different from other causes of ARDS, and might benefit from personalized therapy in 

addition to standard ARDS management.23,60   
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Fig. 1: SARS-CoV2 induces specific phenotype of circulating immune cells 

CellCnn analysis performed on single cells from myeloid (top) and lymphoid (bottom) panels on 

39 samples at admission (Day 0) (COVID-19neg [n = 9] and COVID-19pos [n = 30]). (A) 

Frequencies of cells discovered by the best-performing CellCnn filter in COVID-19neg (blue) and 

COVID-19pos (orange) patients for each panel. Mann-Whitney tests, ****P < 0.0001. (B) Cells 

defined by the best-performing CellCnn filters enrichment shown on tSNE and representative 

markers for each panel (CD14 and CD38 [see additional markers in Fig. S2]).  

 

Fig. 2: CD169 monocytes are enriched in SARS-CoV2 infected patients 

(A) Heatmap of the 15 monocyte metaclusters defined after FlowSOM analysis. (B) Relative 

abundance of metaclusters among monocytes for each patient and hierarchical clustering of 

COVID-19negARDSpos (n=12, green), COVID-19posARDSpos (n=13, blue), and COVID-

19posARDSneg (n=17, red). (C) Abundance of metaclusters differentially expressed between 

groups, among singlet cell analyzed. (D) Expression of the corresponding markers (mean metal 

intensity) for background (gray), Mo11 and Mo181 (orange), and Mo243 and Mo180 (blue) 

metaclusters. (E) Abundance of Mo22, Mo180, and Mo243 and expression of CD169 (Box and 

Whiskers with 10 and 90 percentile). (F) UMAP from scRNAseq of COVID-19 patients 

(COVID-19) and healthy donors (healthy) highlighting CD14 and CD169 expression (data 

obtained from Wilk et al.25) Kruskal-Wallis test with Dunn’s multiple comparison correction, *P 

< 0.05, **P < 0.01, ***P < 0.001. 

 

Fig.3: Monocyte metaclusters enriched in COVID-19 are correlated with effector memory T 

cells and plasma cells 
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(A) Correlation between Mo180 and Mo243 and lymphoid clusters (see heatmap for all lymphoid 

clusters and markers in Fig. S2) from all patients at D0 (COVID-19negARDSpos [n=12], COVID-

19posARDSpos [n=13], and COVID-19posARDSneg [n=17]. Only strong correlations (Spearman R 

> 0.5 or R < -0.5 and P < 0.01) are shown (see all significant correlations [P < 0.05] in Fig. S2 

and Table S4). (B) Heatmap showing marker expression for the lymphoid clusters (Spearman R > 

0.5 or R < -0.5 and P < 0.001) strongly correlated with Mo180 and Mo243 (see heatmap for all 

clusters and markers in Fig. S2). (C) Abundance of lymphoid clusters differentially expressed 

between groups, among singlet cells analyzed. Kruskal-Wallis test with Dunn’s multiple 

comparison correction, *P < 0.05, **P < 0.01, ***P < 0.001 [see all clusters in Fig. S2]). (D) 

Two first dimensions of correspondence analysis accounting for 84 % of the association between 

immune clusters differentially expressed between groups (n= 4 monocyte- and n=22 lymphoid- 

clusters), and patients. For clarity, patients and immune cells are shown on 2 different plots. 

Dimensions 1 and 2 coordinates are compared between groups of patients. Kruskal-Wallis test 

with Dunn’s multiple comparison correction, ****P < 0.0001. 

 

Fig. 4: Evolution of immune cell subsets between D0 and D7, defines high-risk clinical grade 

COVID-19 patients 

(A) Two first dimension of correspondence analysis accounting for 94.1% of the association 

between immune clusters differentially expressed between groups (n= 4 monocyte and n=22 

lymphoid clusters), and patients for which a follow-up of 7 days was available (COVID-

19negARDSpos [n=7], COVID-19posARDSpos [n=8], and COVID-19posARDSneg [n=6]). For clarity, 

patients and immune cells are shown on 2 different plots. Dimensions 1 and 2 coordinates were 

compared between D0 and D7 for each group of patients. Wilcoxon matched-pairs signed rank 
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tests, **P < 0.01. (B) Spearman correlation between immune and clinical score for COVID-19pos 

patients (ARDSpos [n=8] and ARDSneg [n=6]). 
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Table 1: Patients’ characteristics for the cohort 1 

 COVID-19neg 

ARDSpos  

COVID-19pos 

ARDSpos 

COVID-19pos 

ARDSneg 

Patients D0/D7, n 12/7 13/8 17/6 

Age, median (IQR) 62 (48.2-66.7) 59 (53.5-67.5) 55 (46-67) 

Male, n (%) 7 (58) 10 (77) 12 (71) 

ICU/Clinical ward, n 12/0 13/0 11/6* 

SAPS II, median (IQR) 44.5 (29.2-59.2) 33 (19.5-39.5) 22 (13-28)* 

Length of stay in ICU, median (IQR) 11.5 (4.5-18.7) 15 (11-54) 2 (1-2)** 

Length of stay in Hospital, median (IQR) 18 (7-30.5) 22 (15-62.5) 9 (7.5-13) 

Comorbidities 

BMI, median (IQR) 26.4 (19.5-28.4) 28.6 (25-32) 28.1 (22.3-32.1) 

Chronic cardiovascular disease, n (%) 1 (8.3) 3 (23) 1 (5.8) 

Diabetes, n (%) 2 (16.7) 3 (23) 1 (5.8) 

Chronic respiratory disease, n (%) 1 (8.3) 0 (0) 0 (0) 

Chronic kidney disease, n (%) 0 (0) 2 (15.4) 0 (0) 

Cancer, n (%) 3 (25) 0 (0) 0 (0) 

Severity criteria 

Maximal O2 (L/min), median (IQR) 10 (7.5-15) 14 (9.2-15) 3 (2-5) 

Invasive ventilation, n (%) 12 (100) 13 (100) 0 (0) 

PaO2/FiO2, median (IQR) 116.5 (75.2-161.9) 106 (95.5-240) 313 (218.5-340.3) 

Events occurring during follow up 

Thromboembolic, n (%) 4 (33.3) 4 (30.8) 1 (5.8) 

ICU-acquired infections, n (%) 2 (16.7) 7 (53.8) 0 (0) 

Septic shock, n (%) 3 (25) 2 (15.4) 0 (0) 

Renal failure, n (%) 5 (41.7) 8 (61.5) 0 (0) 

Deaths, n (%) 4 (33.3) 1 (7.7) 0 (0) 

*: all patients except 1 required O2 at > 2 L/mn at admission; **: For patients in ICU; n: number; IQR: interquartile range; SAPS II: 

simplified acute physiology score 
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STAR*METHODS 

KEY RESOURCES TABLE  

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

CD11c (3.9), Purified BioLegend Cat# 301602, RRID:AB_314172 

CD33 (WM53), Purified BioLegend Cat# 303402, RRID:AB_314346 

CD209 (9E9A8), Purified BioLegend Cat# 330102, 
RRID:AB_1134253 

CD14 (M5E2), Purified BioLegend Cat# 301802, RRID:AB_314184 

CD123 (6H6), Purified BioLegend Cat# 306002, RRID:AB_314576 

CD21 (Bu32), Purified BioLegend Cat# 354902, 
RRID:AB_11219188 

CD192 (K036C2), Purified BioLegend Cat# 357202, 
RRID:AB_2561851 

CD163 (GHI/61), Purified BioLegend Cat# 333602, 
RRID:AB_1088991 

CD36 (5-271), Purified BioLegend Cat# 336202, 
RRID:AB_1279228 

CD86 (IT2.2), Purified BioLegend Cat# 305402, RRID:AB_314522 

CD169 (7-239), Purified BioLegend Cat# 346002, 
RRID:AB_2189031 

CD274 (29E.2A3), Purified BioLegend Cat# 329719, 
RRID:AB_2565429 

CD254 (MIH24), Purified BioLegend Cat# 347501, 
RRID:AB_2044062 

CD106 (EPR5047), Purified Abcam Cat# ab134047, 
RRID:AB_2721053 

CD3 (UCHT1), Purified BioLegend Cat# 300402, RRID:AB_314056 

CD49a (TS2/7), Purified BioLegend Cat# 328302, 
RRID:AB_1236385 

gp38 (REA446), Purified Miltenyi Biotec Cat# 130-107-017, 
RRID:AB_2653261 

CD80 (2D10), Purified BioLegend Cat# 305202, RRID:AB_314498 

CD34 (581), Purified BioLegend Cat# 343502, 
RRID:AB_1731898 

CD1a (HI149), Purified BioLegend Cat# 300102, RRID:AB_314016 

CX3CR1 (2A9-1), Purified BioLegend Cat# 341602, 
RRID:AB_1595422 

CD32 (FUN-2), Purified BioLegend Cat# 303202, RRID:AB_314334 

CD54 (HA58), Purified BioLegend Cat# 353102, 
RRID:AB_11204426 

CD195 (J418F1), Purified BioLegend Cat# 359102, 
RRID:AB_2562457 

CD206 (15-2), Purified BioLegend Cat# 321102, RRID:AB_571923 

S100A9 (A15105J), Purified BioLegend Cat# 600302, 
RRID:AB_2721747 
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CD45RA (HI100), Purified BioLegend Cat# 304102, RRID:AB_314406 

CD172a (15-414), Purified BioLegend Cat# 372102, 
RRID:AB_2629807 

CD68 (Y1/82A), Purified BioLegend Cat# 333802, 
RRID:AB_1089058 

CD11b (ICRF44), 209Bi Fluidigm Cat# 3209003, 
RRID:AB_2687654 

CD8a (RPA-T8), Purified BioLegend Cat# 301053, 
RRID:AB_2562810 

CD4 (RPA-T4), Purified BioLegend Cat# 300502, RRID:AB_314070 

CD25 (BC96), Purified BioLegend Cat# 302602, RRID:AB_314272 

CD38 (HIT2), Purified BioLegend Cat# 303502, RRID:AB_314354 

CXCR3 (G025H7), Purified BioLegend Cat# 353733, 
RRID:AB_2563724 

FoxP3 (259D/C7), Purified BD Biosciences Cat# 560044, 
RRID:AB_1645589 

CD7 (CD7-6B7), Purified BioLegend Cat# 343111, 
RRID:AB_2563761 

Gata-3 (TWAJ), Purified Thermo Fisher Scientific Cat# 14-9966-82, 
RRID:AB_1210519 

CCR7 (G043H7), Purified BioLegend Cat# 353237, 
RRID:AB_2563726 

CCR6 (G034E3), Purified BioLegend Cat# 353427, 
RRID:AB_2563725 

CD27 (O323), Purified BioLegend Cat# 302802, RRID:AB_314294 

CD10 (HI10a), Purified BioLegend Cat# 312223, 
RRID:AB_2562828 

CD117 (104D2), Purified BioLegend Cat# 105814, RRID:AB_313223 

CCR4 (L291H4), Purified BioLegend Cat# 359402, 
RRID:AB_2562364 

CD161 (HP-3G10), Purified BioLegend Cat# 339919, 
RRID:AB_2562836 

CD185 (J252D4), Purified BioLegend Cat# 356902, 
RRID:AB_2561811 

RORgt (AFKJS-9), Purified Thermo Fisher Scientific Cat# 14-6988-82, 
RRID:AB_1834475 

CD294 (BM16), Purified BioLegend Cat# 350102, 
RRID:AB_10639863 

LAG-3 (7H2C65), Purified BioLegend Cat# 369202, 
RRID:AB_2616877 

CTLA-4 (L3D10), Purified BioLegend Cat# 349902, 
RRID:AB_10642827 

PD-1 (EH12.2H7), Purified BioLegend Cat# 329941, 
RRID:AB_2563734 

Tim-3 (F38-2E2), Purified BioLegend Cat# 345019, 
RRID:AB_2563790 

CD127 (A019D5), Purified BioLegend Cat# 351337, 
RRID:AB_2563715 

Bcl-6 (k112-91), Purified BD Biosciences Cat# 561520, 

Jo
urn

al 
Pre-

pro
of



24 
 

RRID:AB_10713172 

T-bet (4B10), Purified BioLegend Cat# 644825, 
RRID:AB_2563788 

CD45RO (UCHL1), Purified BioLegend Cat# 304239, 
RRID:AB_2563752 

CD56 (HCD56), Purified BioLegend Cat# 318302, RRID:AB_604092 

Ki-67 (Ki-67), Purified BioLegend Cat# 350523, 
RRID:AB_2562838 

CD44 (BJ18), Purified BioLegend Cat# 338802, 
RRID:AB_1501199 

CD45 (HI30), 89Y Fluidigm Cat# 3089003, 
RRID:AB_2661851 

CD326 (9C4), Purified BioLegend Cat# 324229, 
RRID:AB_2563742 

CD19 (HIB19), Purified BioLegend Cat# 302202, RRID:AB_314232 

HLA-DR (10.1), Purified BioLegend Cat# 307602, RRID:AB_314680 

CD31 (WM59), Purified BioLegend Cat# 303127, 
RRID:AB_2563740 

CD16 (B73.1), Purified BioLegend Cat# 360702, 
RRID:AB_2562693 

CD64 (L243), Purified 
  

BioLegend Cat# 305029, 
RRID:AB_2563759 

Biological Samples 

   

Chemicals, Peptides, and Recombinant Proteins 

EQ Four Element Calibration 
Beads 

Fluidigm Cat# 201078 

Antibody Stabilizer PBS Candor Bioscience Cat# 131050 

Bond-Breaker™ TCEP 
Solution 

Thermo Fisher Scientific Cat# 77720 

Cell-ID™ Intercalator-Ir Fluidigm Cat# 201192B 

Cell-ID™ Cisplatin-198Pt Fluidigm Cat# 201198 

Cell Acquisition Solution Fluidigm Cat# 201240 

Critical Commercial Assays 

Transcription factor staining 
buffer set 

Miltenyi Biotec Cat# 130-122-981 

Maxpar® X8 Multimetal 
Antibody Labeling Kit 

Fluidigm Cat# 201300 

Preamp Master Mix Fluidigm Cat# 100-5580 

Reverse Transcription Master 
Mix 

Fluidigm Cat# 100-6298 

TaqMan Universal PCR 
Master Mix (2X) 

Life Technologies Cat# PN 4304437 

96.96 DNA Binding Dye 
Sample/Loading Kit—10 IFCs 

Fluidigm Cat# BMK-M10-96.96-EG 

Deposited Data 

CyTOF data Chevrier et al, Cell Reports Medicine, 2021 DOI: 
10.1016/j.xcrm.2020.100166 
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scRNAseq sata Wilk et al, Nat Med, 2020 DOI: 10.1038/s41591-020-0944-
y 

CyTOF data Schulte-Schrepping et al, Cell, 2020 DOI: 10.1016/j.cell.2020.08.001 

CyTOF data This paper DOI: 10.17632/xg9k72r5rt.1 

CyTOF data This paper DOI: 10.17632/c29frc3y6s.1 

Clinical data This paper DOI: 10.17632/5n8df8jvk4.1 

Oligonucleotides 

IFIT1: interferon induced 
protein with tetratricopeptide 
repeats 1 

TaqMan® Assays, ThermoFisher Scientific Hs03027069_s1 

IFNAR1: interferon alpha and 
beta receptor subunit 1 

TaqMan® Assays, ThermoFisher 
ScientificThermoFisher Scientific 

Hs01066116_m1 

ISG15: ISG15 ubiquitin-like 
modifier 

TaqMan® Assays, ThermoFisher 
ScientificThermoFisher Scientific 

Hs01921425_s1 

IFI27: interferon alpha 
inducible protein 27 

TaqMan® Assays, ThermoFisher Scientific Hs01086373_g1 

IFI44L: interferon induced 
protein 44 like 

TaqMan® Assays, ThermoFisher Scientific Hs00915287_m1 

RSAD2: radical S-adenosyl 
methionine domain containing 
2 

TaqMan® Assays, ThermoFisher Scientific Hs00369813_m1 

IFNAR2: interferon alpha and 
beta receptor subunit 2 

TaqMan® Assays, ThermoFisher Scientific Hs01022059_m1 

ELF1: E74-like factor 1 (ets 
domain transcription factor) 

TaqMan® Assays, ThermoFisher Scientific Hs00152844_m1 

Software and Algorithms 

CellCnn, ScaiVision platform Scailyte AG version 0.3.6 

R https://www.cran.r-project.org v3.6.3 

Premessa (R package) https://github.com/ParkerICI/premessa premessa 0.2.6 

viSNE (Cytobank) Amir et al,Nat Biotechnol (2014) NA 

FlowSOM (Cytobank) Van Gassen et al, Cytometry A (2015) NA 

Rstudio https://rstudio.com/ v1.2.5033 

pheatmap (R package) https://cran.r-project.org/package=pheatmap v1.0.12 (CRAN) 

Cytobank Kotecha et al., 2010 
https://www.cytobank.org 

https://doi.org/10.1002/ 
0471142956.cy1017s53 

Kaluza Beckman Coulter v2.1.00002 

Prism (software) https://www.graphpad.com v8 
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Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Mikael Roussel (mikael.roussel@chu-rennes.fr) 

 

Material Availability 

The study did not generate new unique reagents. 

 

Data and Code Availability 

Additional Supplemental Items are available from Mendeley Data at 

http://dx.doi.org/10.17632/xg9k72r5rt.1, http://dx.doi.org/10.17632/c29frc3y6s.1, and 

http://dx.doi.org/10.17632/5n8df8jvk4.1 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Patients 

This study was performed in the infectious diseases department and intensive care unit (ICU) at 

Rennes University Hospital. The study design was approved by our ethic committee (CHU 

Rennes, n°35RC20_9795_HARMONICOV, ClinicalTrials.gov Identifier: NCT04373200) and 

informed consent was obtained from patients in accordance with the Declaration of Helsinki. 

Patients with malignancy, HIV-infected patients, and patients with preexisting immune disorders 

or receiving immunosuppressive agents were excluded. The presence of SARS-CoV-2 in 

respiratory specimens (nasal and pharyngeal swabs or sputum) was detected by real-time reverse 

transcription polymerase chain reaction (RT-PCR) methods (TaqPath COVID-19, 

ThermoFisher).  

Cohort 1: Peripheral blood was collected in tubes containing lithium heparin from COVID-

19negARDSpos, COVID-19posARDSpos, and COVID-19posARDSneg patients. Peripheral blood 
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samples were drawn at D0 and D7. PBMC were isolated from whole blood using ficoll before 

cryopreservation. All patients provided written informed consent. The following data were 

recorded: gender, age, preexisting chronic kidney disease and acute kidney failure during the ICU 

stay,61 preexisting chronic heart failure,62 Body Mass Index (BMI), SAPS II at admission,63 

duration of mechanical ventilation, length of hospital stay, and outcome (alive or dead) on day 7, 

day 30 and day 90. The occurrence of nosocomial infection, defined following CDC criteria as 

previously described,64 was also recorded during hospital stay. For each patient, a clinical score 

was built to summarize the occurrence of adverse clinical events frequently encountered during 

hospitalization.64,65 Each of the following events: thromboembolic events, nosocomial infection, 

septic shock, acute renal failure, and death counting as one point, the score varies from 0 (no 

adverse events) to 5. Patients’ characteristics for cohort 1 are reported in Table 1 and Table S1. 

 

Cohort 2: Same inclusion criteria were applied to cohort 2. Only patients at D0 were included. 

Patients’ characteristics for cohort 1 are reported in Table S1 and Table S2. 

 

METHODS DETAILS 

Mass cytometry analysis 

PBMC from patients were thawed. Briefly, cells were stained 5 minutes in RPMI supplemented 

with 0.5 µM Cisplatin Cell-ID™ (Fluidigm, San Francisco, CA) in RPMI 1640 before washing 

with 10% FCS in RPMI 1640. Cell pellets were resuspended in 80µl of 0.5% BSA in PBS. Then 

60 µl of each surface staining cocktail, lymphoid or myeloid, were added to 40µl of resuspended 

cells. After staining, cells were washed in 0.5% BSA in PBS before fixation/permeabilization 

with the transcription factor staining buffer set (Miltenyi, Bergisch-Gladbach, Germany). Then 

60µl of each surface staining cocktail, lymphoid or myeloid, were added to 40µl of resuspended 
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cells in Perm Buffer. The panel of antibodies is listed in Table S3 and in Key Resources Table. 

After intracellular staining, cells were washed twice before staining in DNA intercalator solution 

(2.5% Paraformaldehyde, 1:3200 Cell-ID™ Intercalator-Ir (Fluidigm, San Francisco, CA) in 

PBS). Samples were cryopreserved at -80°C until acquisition on Helios™ System (Fluidigm, San 

Francisco, CA). 

 

Antibodies and reagents 

Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then 

coupled to lanthanide metals using the MaxPar antibody conjugation kit (Fluidigm Inc.) 

according to manufacturer’s recommendations. Following the protein concentration 

determination by measurement of absorbance at 280 nm and titration on positive controls, the 

metal-labeled antibodies were diluted in Candor PBS Antibody Stabilization solution (Candor 

Bioscience, Germany) for long-term storage at 4°C. Antibodies used are listed in Table S3 and 

Key Resources Table.  

 

Quantitative real-time polymerase chain reaction 

Total RNA was extracted from PAXgene blood RNA kit (Qiagen, Valencia,CA) using a 

Hamilton Microlab STARlet Automated Handler (Atlantic Lab Equipment, Beverly, MA). cDNA 

was then prepared using Reverse Transcription Master Mix (Fluidigm Sunnyvale, CA) and gene 

expression preamplification was performed with Fluidigm Preamp Master Mix and Taqman 

Assays (Invitrogen, Thermo Fisher Scientific Inc, Carlsbad, CA, USA). After loading the reaction 

chambers using the integrated fluid circuit (IFC) HX controller from Fluidigm, the realtime PCR 

was performed in a BioMark HD system (Fluidigm Corp., USA) using single probe (FAM-MGB, 

reference: ROX) settings and GE 96x96 standard v1 protocol. Data processing took place using 
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the Fluidigm real-time PCR analysis software (v. 4.1.3). For each sample, the cycle threshold 

(CT) value for the gene of interest was determined and normalized to the housekeeping gene 

ELF1. The relative level of expression of each gene for each patient at D7 compared to D0 was 

assessed using the 2-ddCT method. For all D0 samples, the relative level of expression of each 

gene was assessed by 2-dCT method Type I IFN response score was determined as Log2 of the 

mean of the following genes: ISG15, IFI27, IFI44L, RSAD2 and IFIT. IFNAR score was 

considered as Log2 of the mean of the following genes: IFNAR1 and IFNAR2. 

 

Detection of SARS-CoV-2 neutralizing antibodies 

The viral strain (RoBo strain), which was cultured on Vero-E6 cells (ATCC CRL-1586), used for 

the nAb assay was a clinical isolate obtained from a nasopharyngeal aspirate of a patient HOS at 

the University Hospital of Saint-Etienne for severe COVID-19. The strain was diluted in 

Dulbecco’s modified Eagle’s medium–2% fetal calf serum in aliquots containing 100–500 tissue 

culture infectious doses 50% (TCID50) per ml. Each serum specimen was diluted 1:10 and serial 

twofold dilutions were mixed with an equal volume (100 µL each) of virus. After gentle shaking 

for 30 min at room temperature, 150 µL of the mixture was transferred to 96-well microplates 

covered with Vero-E6 cells. The plates were then placed at 37°C in a 5% CO2 incubator. 

Measurements were obtained microscopically 5–6 days later when the cytopathic effect of the 

virus control reached ~100 TCID50/150 µL. The serum was considered to have protected the 

cells if >50% of the cell layer was preserved. The neutralizing titer is expressed as the inverse of 

the higher serum dilution that protected the cells. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Mass Cytometry Preprocessing 
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After acquisition, intrafile signal drift was normalized and .fcs files were obtained using CyTOF 

software. To diminish batch effects, all files were normalized on EQ Beads (Fluidigm Sciences) 

using the premessa R package (https://github.com/ParkerICI/premessa). Files were then uploaded 

to the Cytobank cloud-based platform (Cytobank, Inc.). Data were first arcsinh-transformed using 

a cofactor of 5. For all files, live single cells were selected by applying a gate on DNA1 vs. 

DNA2 followed by a gate on DNA1 vs. Cisplatin, then beads were removed by applying a gate 

on the beads channel (Ce140Di) vs. DNA.1 Normalized, transformed and gated values were 

exported as FCS files.  

 

CellCnn analysis 

Identification of a Covid-19-specific cell-identity signature was carried out using the CellCnn 

algorithm,35 implemented in Pytorch in the ScaiVision platform (version 0.3.6, © Scailyte AG). 

Briefly, this is a supervised machine learning algorithm that trains a convolutional neural network 

with a single layer to predict sample-level labels using single-cell data as inputs. Data from each 

CyTOF panel was analyzed separately, in each case using all measured protein markers to train a 

series of CellCnn networks with varying hyperparameters. Each sample was given a label 

corresponding to the Covid-19 status of the patient from which the sample was drawn (positive or 

negative). To generate input data for training CellCnn, sub-samples of 2000 cells, termed multi-

cell inputs (MCIs), were chosen randomly from each sample independently. For each training 

epoch, 2000 MCIs from each label class (Covid-19pos or Covid-19neg) were presented to the 

network in random order. During training, 30 % of the samples were set aside for validation, 

chosen in a stratified manner to maintain the relative proportions of each class. 50 independent 

networks were generated for each CyTOF panel using hyperparameters randomly chosen from 

the following options: i) number of filters: (2, 3, 5, 7, and 10), ii) top-k pooling percentage: (1, 5, 
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10, 20, and 30), iii) dropout probability: (0.3, 0.4, and 0.6), iv) learning rate: (0.001, 0.003, and 

0.01), and v) weight decay: (0.00001, 0.0001, 0.001, 0.01, and 0.1). Training was performed with 

a batch size of 50. Adam was used as an optimizer {kingma2015adam}, with a beta1 coefficient 

of 0.999 and a beta2 coefficient of 0.99. Each network was trained for a maximum of 50 epochs, 

or until the validation loss no longer decreased for 10 consecutive epochs. At the end of training, 

the weights from the epoch with lowest validation loss were returned. Representative filters were 

determined by clustering the filters from all networks achieving ≥ 90 % accuracy on the 

validation samples, then choosing the filter in each cluster with the minimum distance to all other 

filters in that cluster. For both CyTOF panels, a single representative filter showing the largest 

positive association with the Covid-19pos label class was used to calculate cell-level filter 

response scores. Thresholds were set on the filter response scores to select Covid-19-associated 

cells by calculating the relative frequencies of selected cells in each sample at 100 different 

thresholds for each filter, then performing a logistic regression to predict sample labels. For each 

threshold, the data was first split in a stratified manner into a training set, comprising 60 % of 

samples, and a test set, comprising 40 % of samples. The logistic regression was performed on 

the training set, and the accuracy of resulting predictions was calculated on the test set. This 

procedure was performed 10 times, with randomly chosen training/test splits, and the mean of the 

resulting accuracies for each threshold was calculated. For the lymphoid panel, one threshold 

(9.63) achieved the highest accuracy and was set as the final threshold. For the myeloid panel, 

multiple thresholds achieved the same level of accuracy; the lowest of these (4.96) was set as the 

final threshold. The relative frequencies of cells in each sample with filter response scores greater 

than or equal to the respective thresholds were calculated and compared using a Wilcoxon rank-

sum test. 
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viSNE, FlowSOM, and hierarchical clustering 

We first performed a dimension reduction for both panels (i.e. myeloid and lymphoid) and all 

cleaned-up 63 files were first analyzed using viSNE, based upon the Barnes–Hut implementation 

of t-SNE. Equal downsampling was performed, based on the lowest event count in all files 

(lymphoid panel) or on the maximum total events allowed by Cytobank (myeloid panel). For the 

myeloid panel, the following parameters were used: perplexity = 45; iterations = 5000; theta = 

0.5; all 37 channels selected. For the lymphoid panel the parameters were as follows: perplexity = 

45; iterations = 7500; theta = 0.5; all 36 channels selected.  

Then we applied a clustering method using the FlowSOM clustering algorithm. FlowSOM uses 

Self-Organizing Maps (SOMs) to partition cells into clusters based on their phenotype, and then 

builds a Minimal Spanning Tree (MST) to connect the nodes of the SOM, allowing the 

identification of metaclusters (i.e. group of clusters). We performed the FlowSOM algorithm on 

the previous viSNE results, using all events and panel channels, and the following parameters: 

clustering method = hierarchical consensus, iterations = 10, number of clusters = 256, number of 

metaclusters = 30. For both panels, each metacluster (containing a given number of clusters) was 

manually annotated based on his marker expression phenotype, his projection on the viSNE and 

his localization in the FlowSOM MST.  

We first analyzed the myeloid panel. Out of 30 metaclusters defined by the FlowSOM approach, 

we identified 13 metaclusters with monocyte markers, other metaclusters contained other cell 

types, low count of cells or remaining doublets or dead cells. We visually identified 2 (Mo18 and 

Mo26) out of the 13 metaclusters that were heterogeneous. These 2 metaclusters were manually 

split into 2 new metaclusters (identified respectively as Mo180, Mo181 and Mo214, Mo243) 

(Fig. S1B). Thus, altogether we analyzed 15 metaclusters of myeloid cells. Regarding the 

lymphoid compartment, we noticed that FlowSOM defined metaclusters at the lineage level, thus 
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we retain all the 136 clusters included in 10 metaclusters of interest (i.e. containing lymphoid 

lineage markers) (Fig. S1C). All metaclusters and clusters phenotypes including their abundances 

and mean marker intensity were then exported from Cytobank for further analyses. Cytometry 

data was explored with Kaluza Analysis Software (Beckman Coulter). Hierarchical clustering and 

heatmaps were generated with R v3.6.3, using Rstudio v1.2.5033 and the pheatmap package.  

 

Statistical analysis  

Statistical analyses were performed with Graphpad Prism 8.4.3. P values were defined by a 

Kruskal-Wallis test followed by a Dunn’s post-test for multiple group comparisons or by 

Wilcoxon matched-pairs signed rank tests as appropriate. Correlations were calculated using 

Spearman test. * P < 0.05, ** P < 0.01, *** < 0.001, and **** P < 0.0001. Hierarchical clustering 

of the patients was performed using euclidean distance and complete clustering. Correspondence 

analysis was performed using the package factoshiny using as variable the abundance in cell 

subsets for each patient.  

 

Supplementary Materials: 

Figure S1. Description of the 2 cohorts of patients, CyTOF experimental design and data analysis 

pipeline. Related to Table 1 and Figures 1 and 2. 

Figure S2. Supplemental data for cohort 1. Related to Figure 1B, 2 and 3. 

Figure S3. CellCnn and FlowSOM analysis for cohort 2. Related to Figures 1, 2 and 3. 

Figure S4. CellCnn analysis for Chevrier et al. (Cell Reports Medicine, 2021) data1 and for 

Schulte- Schrepping et al. (Cell, 2020) data2. Related to Figure 1. 

Figure S5. IFN I pathway. Related to Figure 4. 

Table S1. Clinical data (excel spreadsheet). Related to Table 1. 
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Table S2. Patients’ characteristics for the cohort 2. Related to Table 1.  

Table S3. Panel of antibodies. Related to STAR Methods.  

Table S4. Spearman correlation between myeloid and lymphoid clusters. Related to Figure 3.  
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HighlightsHighlightsHighlightsHighlights    

• Machine-learning analysis of CyTOF data segregates Covid-19
+
 and Covid-19

-
 ARDS 

• CD169
+
S100A9

+
 monocytes differentiate Covid-19 ARDS from other ARDS 

• Monocyte compartment alterations correlate with other immune subset 

modifications 

• CD14
+
HLA-DR

lo
 and CD14

lo
CD16

+
 monocytes are markers of adverse Covid-19 

evolution 

 

eTOC BlurbeTOC BlurbeTOC BlurbeTOC Blurb    

Roussel et al. characterize the immune profile of COVID-19
+
 and COVID-19

-
 patients, both 

presenting an acute respiratory distress syndrome (ARDS) and COVID-19
+
 without ARDS. They 

identify a COVID-19 signature associating CD169
+
S100A9

+
 monocytes, plasmablasts, and Th1 

cells. CD14
+
HLA-DR

lo
 and CD14

lo
CD16

+ 
monocytes increase during the ICU stay correlate with 

unfavorable clinical course. 
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Figure	3
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R = 0.708
P = 0.006
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