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ABSTRACT 

 

Purpose: To determine and compare the accuracy of different activity monitors in assessing 

intermittent outdoor walking in both healthy and clinical populations through the development 

and validation of processing methodologies. 

 

Methods: In study 1, an automated algorithm was implemented and tested for the detection of 

short (≤1 min) walking and stopping bouts during prescribed walking protocols performed by 

healthy subjects in environments with low and high levels of obstruction. The following 

parameters obtained from activity monitors were tested, with different recording 

epochs
0.1s/0.033s/1s/3s/10s

 and wearing locations
scapula/hip/wrist/ankle

: GlobalSat DG100 (GS) and Qstarz 

BT-Q1000XT/-Q1000eX (QS) speed; ActiGraph wGT3X+ (AG) vector magnitude (VM) raw 

data, VM counts, and steps; and StepWatch3 (SW) steps. Further, linear mixed models were 

developed to estimate walking speeds and distances from the monitors parameters. Study 2 

validated the performance of the activity monitors and processing methodologies in a clinical 

population showing profile of intermittent walking due to functional limitations during outdoor 

walking sessions. 

 

Results: In study 1, GS
1s, scapula

, QS
1s, scapula/wrist

 speed, and AG
0.033s, hip

 VM raw data provided the 

highest bout detection rates (>96.7%) and the lowest root-mean-square errors (RMSEs) in speed 

(≤0.4 km/h) and distance (<18 m) estimation. Using SW
3s, ankle

 steps, the RMSE for 

walking/stopping duration estimation reached 13.6 min using proprietary software and 0.98 min 

using our algorithm (total recording duration =282 min). In study 2, using AG
0.033s, hip

 VM raw 
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data, the bout detection rate [95% CI] reached 100% [99–100], and the mean absolute percentage 

errors (SD) in speed and distance estimation were 9% (6.6) and 12.5% (7.9), respectively. 

 

Conclusion: GPS receivers and AG demonstrated high performance in assessing intermittent 

outdoor walking in both healthy and clinical populations. 

 

 

KEY WORDS: Wearable monitors/devices, accelerometer, global positioning system, 

pedometer, physical activity, intermittent claudication. 
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INTRODUCTION 

Walking is recognized as the most popular, convenient, and free form of everyday physical 

activity (PA) and is thus of particular interest for improving health outcomes (1). Assessing and 

promoting outdoor walking is of importance since performing walking bouts at a sufficient 

intensity and of sufficient duration to meet PA recommendations may be easier outdoors and 

more enjoyable for people (2,3). In addition to continuous walking, the total volume of 

ambulatory activity from day to day, regardless of the duration of the bouts of activity, is also of 

high importance to achieve health benefits (4,5). Day-to-day human walking behaviors are 

intermittent by nature, as 76% and 69% of the total walking and stopping bouts, respectively, last 

less than 1 min (6). Furthermore, outdoor walking sessions are of primary interest in frail and 

clinical populations for both walking capacity assessment and rehabilitation purposes (7–9) since 

access to a supervised exercise program is limited in some clinical populations (10). The walking 

activity of people with functional limitations is also intermittent, including walking bouts of 

different durations and intensities, depending on their walking ability (11). The same is true 

regarding their ambulatory activity from day to day (12,13). Therefore, regardless of the 

application, accurate monitors are needed to assess intermittent outdoor walking. 

 

A full and accurate assessment of outdoor walking relies on a two-step approach: i) the 

identification of intermittent walking and stopping bouts that may be very short in duration and 

ii) the estimation of parameters related to intensity (e.g., walking speed or cadence) and volume 

(e.g., walking duration or distance or total steps) over identified walking bouts. There have been 

extensive studies throughout the years conducted on the use of pedometers, accelerometers, and 

global positioning system (GPS) monitors to assess walking (14–17). However, it is worth noting 
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that a gap exists in the available studies regarding the accuracy of pedometers and 

accelerometers in providing a full assessment of short intermittent (outdoor) walking.  

 

While extensive literature exists regarding the step count accuracy of pedometers during 

treadmill or natural walking (17–20), their accuracy in detecting walking/stopping bouts of 

different durations during outdoor intermittent walking is largely unknown. Moreover, the 

validity of using walking cadence from pedometers to estimate the speed of ambulation has not 

been investigated, but there is increasing interest in the assessment of such a parameter as a 

proxy indicator of the associated metabolic equivalent of task (MET) levels (21). 

 

Accelerometers are the most used activity monitors in PA research but have been mainly used to 

assess PA patterns (not specifically walking) throughout periods ≥1 min in adults (22). Using 

machine learning algorithms, studies have classified activities under free-living conditions in 

adults on the basis of an accelerometer (at the hip or wrist level) and reported accuracies in 

walking (or stepping) identification ranging from 75% to 83% using sequential analysis windows 

of 10 s to 60 s of continuous activity (23–25). Although this approach is relevant, such 

algorithms are sophisticated and require a high level of technical skills, and the classification 

accuracy remains highly dependent on the initial database used for learning in terms of both the 

subject and activity characteristics. 

 

Finally, GPS monitors, with or without accelerometers, have been used to study outdoor walking 

(15,26), but only a few studies have focused on short intermittent walking (14,27). Furthermore, 

the effects of the environment obstruction level and the wearing location on the accuracy of GPS 
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monitors for such purposes are unknown. 

 

The aim of the present study was to determine and compare the accuracy of different types of 

activity monitors in assessing intermittent outdoor walking. We focused on outdoor walking 

sessions considering the importance of implementing and thus monitoring home- or community-

based walking programs for public health (7,9). For this purpose, we first developed and tested 

algorithms and prediction equations to assess the accuracy of GPS monitors, accelerometers, and 

pedometers in the estimation of intermittent outdoor walking during standardized and prescribed 

outdoor walking protocols in healthy participants (study 1). Herein, the analysis of walking 

activity relied on the detection of walking and stopping bouts and then quantifying walking bouts 

in terms of duration, speed, and distance. We aimed to implement an automated algorithm for 

bout detection that does not rely on the wearing location, recording epoch, or type of monitor 

used. Second, to study a real-world clinical application (7,8), we validated the accuracy of the 

activity monitors and the developed processing methodologies during outdoor walking sessions 

performed by a group of people walking intermittently due to functional limitations (study 2). 

 

METHODS 

Study overview 

The data and results of the present work were obtained from two distinct studies. Each study was 

approved by a local institutional ethics committee, and in both studies, the participants provided 

informed consent after being informed of the experimental procedure. Study 1 (“Acti-GPS” 

project; local institutional ethics committee: CPP OUEST II, Angers, France; NCT01805219) 

was specifically designed to include strict experimental conditions and be performed in healthy 

ACCEPTED



subjects to determine and compare the accuracy of different activity monitors in i) detecting 

intermittent outdoor walking bouts, for which algorithms were developed and tested, and ii) 

estimating walking speed and distance, for which prediction equations were developed and 

tested. Study 2 (“CLASH” project; local institutional ethics committee: CPP OUEST V, Rennes, 

France; NCT02041169) was a real-world scenario in which we validated the developed 

processing methodologies in a group of participants who experienced walking limitations during 

an outdoor walking session due to peripheral artery disease (PAD). More specifically, for these 

participants, their walking activity is limited due to lower-limb symptoms that impair their 

walking ability and force them to stop to recover. 

 

Study 1: Algorithm and equation development and testing 

Participants. Twenty healthy subjects (23 ± 3 years, 71 ± 10 kg, 176 ± 8 cm, 22.7 ± 3.0 kg/m
2
) 

were recruited. The inclusion criteria were as follows: being older than 18 years old; being 

affiliated with the social security system (according to French legislation); not presenting 

contraindications to the practice of physical activities; not being pregnant (women); and having 

read, understood, and signed the consent form. 

 

Experimental procedure. For each participant, the experimental procedure consisted of an 

outdoor prescribed walking protocol (PWP). Ten participants (24 ± 4 years, 71 ± 9 kg, 177 ± 8 

cm, 22.5 ± 2.0 kg/m
2
) each performed a different PWP on an outdoor flat athletic track (Rennes, 

France, latitude = 48.048184, longitude = -1.737166) characterized by a low level of obstruction 

(LLO). The same PWPs were performed by the ten other participants (23 ± 3 years, 70 ± 12 kg, 

176 ± 9 cm, 22.9 ± 3 kg/m
2
) in a flat urban canyon (Angers, France, 47.468727, -0.541211) 
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characterized by a high level of obstruction (HLO). Although there were 20 participants, we used 

only 10 different PWPs to compare the two environments, and each PWP was randomly assigned 

to one participant in each environment (LLO and HLO). 

 

Each PWP was divided into two phases that were completed consecutively during the same 

session (Figure 1). The first phase of the PWP was used to develop (or improve) and test the 

accuracy of different algorithms in detecting intermittent walking and stopping bouts. This first 

phase was duration-based and relied on a stop-and-go pattern (14,27) during which the 

participants performed a sequence of walking and stopping bouts of fixed durations that were 

randomly selected from {3, 6, 12, 15, 20, 30, 40, 50} s (see document, Supplemental Digital 

Content 1, which details the design of the first phase of the PWP, 

http://links.lww.com/MSS/C238). The random sequence lasted between 10 and 15 min and was 

repeated twice by each participant: once at a “self-selected” walking pace and once again at a 

“slow” walking pace (Figure 1). The participants were equipped with an MP3 player that 

included instructions needed to alternate between bouts of walking and stopping, such as “start”, 

“you will be stopping soon”, “stop”, and “you will finish soon”. 

 

The second phase of the PWP was used to develop and test the accuracy of the prediction 

equations for speeds and distances over the detected walking bouts. This phase was distance-

based, and each participant repeated a sequence of ten walking bouts of fixed distances separated 

by stopping bouts of ~30 s. There were five predetermined walking distances of 25, 50, 75, 100, 

and 200 m, which were each repeated twice and randomly distributed within the sequence. The 

sequence was repeated by each participant at a “self-selected”, “slow” and then “fast” pace 
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(Figure 1). In this second phase, cones were placed every 25 m on the outdoor athletic track or 

the urban canyon. The actual distances were measured using an odometer. The participants were 

asked to walk and stop as instructed by the investigator who supervised the PWP. In the urban 

canyon, when the participants arrived at the cone at either end of the pathway, they were asked to 

turn around without stopping and continue walking in the opposite direction. 

 

All the PWPs were supervised by an investigator who followed the protocol sequence using a 

stopwatch and recorded the time elapsed during each bout. 

 

Instrumentation. A total of 11 research-grade activity monitors were worn simultaneously by 

each participant during the PWPs, including seven GPS monitors, two accelerometers, and two 

pedometers. More specifically, one GlobalSat DG100 GPS receiver (GS, GlobalSat Technology 

Corp., Taiwan) that recorded data for 1-s epochs was worn in a shoulder pack with an external 

antenna fixed on the top of the shoulder strap at the level of the right scapula (GS
1s, scapula

). Three 

Qstarz BT-Q1000XT and three Qstarz BT-Q1000eX GPS receivers (QS, Qstarz International 

Co., Ltd., Taipei, Taiwan) that recorded data for 1-s and 0.1-s (10Hz) epochs, respectively, were 

worn (over the clothes) at the levels of the hip, wrist, and scapula (QS
1s, hip/wrist/scapula 

and QS
0.1s, 

hip/wrist/scapula
). The GPS receivers were initialized before all the experiments to ensure there was 

good reception of the satellites’ signals. Two wGT3X+ accelerometers (AG, ActiGraph
TM

, LLC, 

firmware version: 2.2.1-2.4.0, Shalimar, FL, USA) were programmed for recording raw data at a 

recording rate of 30 Hz (0.033 s) and were worn at the levels of the hip (right or left) and wrist 

(right or left) (AG
0.033s, hip/wrist

). Finally, two StepWatch3 pedometers (SW, Orthocare 

Innovations, Washington, D.C.) were worn on each ankle; they recorded data for 3-s and 10-s 
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epochs each (SW
3s/10s, ankle

) and were set to the default settings. SW monitors were available only 

for the experiments performed in the LLO environment. For each category of activity monitors, 

the wearing location was randomly selected. 

 

Data extraction and preprocessing. After each experiment, the data were downloaded to a 

personal computer using the appropriate manufacturer’s software for each activity monitor. The 

GS and QS data were downloaded using the Data Logger PC Utility (version 1.1, GlobalSat 

Technology Corp., Taiwan) and QTravel software (version 1.49, Qstarz International Co., Ltd., 

Taipei, Taiwan), respectively, and were automatically expressed in speed (km/h). The AG data 

were extracted using ActiLife 6 software (versions ≥6.5.3, ActiGraph
TM

, LLC Shalimar, FL, 

USA) in three forms, namely, the raw acceleration (G-Force) in 0.033 s epochs and the counts 

and the steps in 1 s epochs. The counts, computed from the raw acceleration, and the steps were 

obtained using two different methods: the normal filter (NF) and the low frequency extension 

filter (LFE). The raw acceleration and counts were then used to calculate the corresponding 

vector magnitude (VM), defined by √        , where  ,  , and   represent the raw 

acceleration or the counts provided from each axis. In this study, we resampled the AG
0.033s, 

hip/wrist
 VM raw acceleration and the QS

0.1s, hip/wrist/scapula
 speed to 1 s to remove unnecessary and 

noisy information. Herein, for the sake of simplicity, “AG
0.033s,*

 VM raw data” and “AG
1s,*

 VM 

counts” refer to the VM computed from the resampled raw acceleration and the counts/s for a 

given wearing location (*), respectively. The SW
3s/10s, ankle

 data were extracted using 

StepWatch
TM

 software (version 3.2, Orthocare Innovations, Washington, D.C.) in files including 

SW
3s/10s, ankle

 steps and a timestamp for the corresponding recording epoch. The activity duration 

(i.e., walking duration) and nonactivity duration (i.e., stopping period) calculated by the SW 
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software for each minute were also reported. To facilitate further data analysis, the 

activity/nonactivity duration algorithm used by the SW software was implemented in 

MATLAB® 2018b (MathWorks, Massachusetts, USA). 

 

Algorithm and equation development. As previously mentioned, we aimed to assess intermittent 

outdoor walking by first identifying intermittent walking from stopping bouts and second, by 

estimating the walking speed and distance over the walking bouts that were detected. 

 

Hence, the first objective was to develop a new algorithm for the detection of walking and 

stopping bouts offline that can assess each of the following parameters obtained from the 

corresponding activity monitors: GPS speed (GS
1s, scapula

, QS
0.1s, hip/wrist/scapula

, and QS
1s, 

hip/wrist/scapula
), AG

0.033s, hip/wrist
 VM raw data, AG

1s, hip/wrist
 VM counts or steps (NF, LFE), SW

3s/10s, 

ankle
 steps. To develop and test the algorithm, only the first phase (duration-based phase) of the 

performed PWPs was considered. From the time series of a given parameter obtained for a given 

participant, the algorithm determined the best threshold that divided the time series between 

walking and stopping by constructing a histogram of the considered time series. Then, the 

threshold was determined as the first local minima of the generated distribution. Any value 

below this threshold was identified as a stopping event, and all other values were identified as 

walking events. We then gathered all consecutive events of stopping and walking in bouts of 

stopping and walking, respectively. Then, for further analysis, bouts were then characterized by 

their status (walking/stopping), their time of occurrence, and their durations. The proposed 

method is commonly used in image processing applications and is known as the watershed 

algorithm (28). Figure 2 illustrates an example of the proposed algorithm applied to GPS speed. 
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In the same context, we were also interested in enhancing our previously validated algorithm 

(14), which was specifically designed for GPS speed only. Hence, we proposed to improve and 

automate the original algorithm (see document, Supplemental Digital Content 2, which describes 

the previous algorithm and its optimization, http://links.lww.com/MSS/C239). We also tested the 

enhanced algorithm on each studied parameter obtained from the activity monitors in addition to 

the GPS receivers. The algorithms were developed and implemented in MATLAB® 2018b. 

 

The second objective was to develop and test the accuracy of prediction equations in estimating 

the speeds and distances of each detected walking bout. To address this second objective, only 

the second phase (distance-based phase) of the PWPs was considered. The walking and stopping 

bouts were first detected using the developed watershed algorithm. Then, for the GPS receivers, 

the mean GPS speed and the GPS distance were calculated for each detected walking bout. The 

GPS distance was computed from the mean GPS speed and the corresponding bout duration. For 

AG, the mean AG
0.033s, hip/wrist

 VM raw data and AG
1s, hip/wrist

 VM counts (NF, LFE) were 

computed for each detected walking bout. The total VM was also computed from the VM raw 

data and VM counts (NF, LFE) by summing the VM values for each walking bout. For SW
3s/10s, 

ankle
 steps and AG

1s, hip/wrist
 steps (NF, LFE), the step cadence was computed for each walking 

bout from the sum of the recorded step counts and the corresponding bout duration and was then 

expressed in steps/min. The total number of steps was also computed for each walking bout from 

AG
1s, hip/wrist

 steps (NF, LFE) and SW
3s/10s, ankle

 steps. Thereafter, prediction equations were 

developed using linear mixed models (LMMs) to estimate the actual walking speed and distance 

from the corresponding parameters measured by each activity monitor for each walking bout: i) 

GPS mean speed, AG
0.033s, hip/wrist

 mean VM raw data, AG
1s, hip/wrist

 mean VM counts and step 
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cadence (NF, LFE), and SW
3s/10s, ankle

 step cadence for speed estimation; ii) GPS distance, 

AG
0.033s, hip/wrist

 total VM raw data, AG
1s, hip/wrist

 total VM counts and total steps (NF, LFE), and 

SW
3s/10s, ankle

 total steps for distance estimation. The average actual speed during each walking 

bout was computed by dividing the actual distance of each bout by the elapsed time, as measured 

by the investigator using the stopwatch. The equations obtained for speed estimation from a 

given activity monitor were also used to indirectly estimate walking distance. For the GPSs, the 

equations were developed for each environment separately, as well as for the combined 

environments. For the AG, the equations were developed for the combined environments only. 

The LMM approach was used to account for the dependence among repeated measurements 

obtained from the same subject (29). Let  ̂     be the speed/distance estimation for the     

walking bout of subject  . This estimation can be modeled from the studied parameter       

using the LMM as follows: 

 

 ̂                              

 

where   and   are fixed effects coefficients related to the population’s characteristics,    and    

denote the individual subject’s random intercept and slope deviation, respectively, and   

represents the random error. The models were fitted using the restricted maximum likelihood 

method (30). A leave-one-out cross-validation (LOOCV) approach was used to build and 

evaluate the LMMs. The modeling was performed using R software 2020 (R Foundation for 

Statistical Computing, Vienna, Austria, version R.4.0.0). 

 

Statistical analysis. First, for each monitor, the performance of the algorithms in detecting 
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walking and stopping bouts was analyzed at the “bout-level” (14,27) using the detection rate, 

which was defined by the percentage of correctly detected bouts and was computed as follows:  

 

                    
                                                       

                     
      

 

A bout was considered correctly detected if it corresponded to the actual bout of the PWP and if 

its duration was within ±20% of the actual bout duration (27). The detection rates were expressed 

with their 95% confidence intervals (95% CIs). 

 

Furthermore, we used the McNemar or the Cochran Q statistical test to compare the bout 

detection rates across the various conditions studied, such as the monitor wearing locations, 

environments, and types of monitors. The McNemar test is a nonparametric statistical test 

appropriate for nominal dichotomous data and was used to compare the proportions of 

identified/misidentified bouts between two studied conditions. When more than two studied 

conditions were compared, the Cochran Q test was used (31), and the Bonferroni correction 

method for multiple comparisons was used. P values <0.05 were considered statistically 

significant. Statistical analysis for bout detection was performed in MATLAB® 2018b. 

 

Second, the performance of the LMM-based prediction equations was evaluated using R 

software 2020 by computing R
2
, the standard error of estimate (SEE), and Akaike information 

criteria (AIC) value. The AIC value reflects both the goodness of fit and the efficiency of a 

model for a given number of predictor variables. The lower the AIC value, the better the quality 

of the model is. For each model, the error in the estimation of speed and distance following the 
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leave-one-out procedure was computed from the average root-mean-square error (RMSE). 

 

Study 2: Validation in a clinical population 

Participants. Twenty-three participants with PAD with exertional limb symptoms (60 ± 10 

years, 78.9 ± 16.3 kg, 169 ± 8 cm, 27.4 ± 5.0 kg/m
2
) were recruited from the Vascular Medicine 

Unit (University Hospital, Rennes, France) to participate in the “CLASH” project. All 

participants were diagnosed with PAD and were limited to walking during treadmill tests. For a 

detailed description of the inclusion and exclusion criteria of the “CLASH” protocol, please refer 

to (32). 

 

Experimental procedure. During the “CLASH” protocol, the participants with PAD were asked 

to perform an outdoor walking session at their self-selected walking pace for 45 – 60 min, 

including bouts of stopping (recovery) due to lower-limb pain. In the “CLASH” protocol, the 

stopping durations performed by each participant were determined on the basis of a random 

sequence of the following stop durations, 0.5, 1.5, 2.5, 3.5, 4.5 min, and a self-selected duration 

determined by each participant (depending on symptom relief). The walking session was 

performed on the same outdoor athletic track (LLO) as for the healthy participants and 

supervised by an investigator who recorded the duration of each walking and stopping bout using 

a stopwatch. 

 

Instrumentation and data extraction. Only a selection of the activity monitors tested in the first 

study was used in this clinical study. The participants with PAD wore one GS
1s, scapula

, one 

AG
0.033s, hip

, and one SW
10s, ankle

. The GS and AG were configured as detailed in study 1. For the 
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SW, the “walking speed” and “leg motion” settings were set according to the gait characteristics 

of the participants, as recommended by the manufacturer. For all monitors, the data were 

downloaded and preprocessed following the same procedure as detailed in study 1. 

 

Data analysis. The watershed algorithm developed in study 1 was applied to the parameters 

collected from the participants in study 2 to test the performance of the algorithm in detecting 

walking and stopping bout in a clinical application. In addition, once the watershed algorithm 

was applied, we aimed to test the use of additional filters of 2 s, 10 s and 15 s to remove bouts ≤2 

s, <10 s, and <15 s. Such filters have been previously used (8,11,14) – but never formally tested 

– in participants with PAD. The 2 s-filter was initially proposed as an artifact management tool 

to remove very short walking and stopping bouts (14). The 10 s- and 15 s-filters were selected on 

the basis of the clinical rationale that walking‐induced ischemia is unlikely to elicit maximal 

claudication pain (during walking) or to disappear (during stopping) for such short periods (11). 

It is worth noting that only the 15 s filter was applied on SW data due to its recording epoch. 

Thereafter, for each detected walking bout, the walking speed and distance were estimated from 

the LMM prediction equations developed in study 1. 

 

Statistical analysis. First, the walking and stopping bout detection performance was computed as 

previously defined to compare all the detected bouts with the actual walking and recovery 

(stopping) bouts, (i.e., the detection rate was defined as the percentage of correctly detected 

walking and stopping bouts). The detection rates when using additional filters of 2 s, 10 s, and 15 

s were also computed. Second, to determine the performance of speed and distance estimation 

over each detected walking bout, the GS
1s, scapula

 speeds and distances were considered as the 
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reference (actual) values. Then, the following error metrics were computed: the bias of 

estimation, the typical error of estimate (TEE), the coefficient of variation (CV), the mean 

percent error (MPE), and the mean absolute percent error (MAPE) (33,34). TEE and CV are 

presented with their 95% CI, whereas MPE and MAPE are presented with their standard 

deviation. 

 

RESULTS 

For better readability, only a selection of the most significant findings is presented below (see 

Worksheets, Supplemental Digital Content 3, which details all the results of the study, 

http://links.lww.com/MSS/C240). 

 

Study 1: Algorithm and equations development and testing 

The participants performed a total of 768 walking and 768 stopping bouts during the first phase 

of the PWP. QS
1s, hip

 and AG
0.033s, hip

 recordings were each missing for one participant in the LLO 

environment. The mean ± standard deviation (range) of walking speed for GS
1s, scapula

 was 4.6 ± 

0.7 km/h (1.6 – 6.34 km/h) for the “self-selected” pace and 3.3 ± 0.7 km/h (1.1 – 5.3 km/h) for 

the “slow” pace. During the second phase of the PWP, the participants performed a total of 600 

walking and 600 stopping bouts. Two episodes of GPS signal loss over two different walking 

bouts, lasting 14 s and 34 s each, were noted for the GS
1s scapula

 receiver. Hence, these two 

walking bouts were excluded from the analysis. The mean ± standard deviation (range) of GS
1s, 

scapula
 walking speed was 4.9 ± 0.6 km/h (3.4 – 6.5 km/h) for the “self-selected” pace, 3.9 ± 0.6 

km/h (2.6 – 5.5 km/h) for the “slow” pace, and 5.9 ± 0.7 km/h (4.4 – 7.6 km/h) for the “fast” 

pace. 
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Performance for bout detection. The results related to the detection rates of walking and stopping 

bouts are presented in Table 1 and Figure 3. Table 1 shows that overall, both algorithms (the 

watershed and the enhanced algorithms) provided close detection rates across almost all the 

studied parameters. When considering all the results obtained from the watershed algorithm, 

regardless of the level of obstruction due to the environment, the highest detection rates for GPS 

measurements corresponded to GS
1s, scapula

 and QS
1s, wrist/scapula

 speeds with detection rates of 

96.6% [95.5 – 97.4], 96.7% [95.7 – 97.5], and 96.4% [95.4 – 97.3], respectively. The detection 

rate of the QS
1s, hip

 speed was 91.3% [89.7 – 92.7] and was significantly lower than those 

obtained from QS
1s, wrist/scapula

 (P <0.001). Moreover, QS
0.1s, hip/wrist/scapula

 had the lowest detection 

rates across wearing locations among the GPS measurements (P <0.05). All AG
0.033s, hip

 and 

AG
1s, hip

 parameters (i.e., VM raw data, VM counts, and steps) had significantly better 

performance than did the AG
0.033s, wrist

 and AG
1s, wrist

 parameters (P <0.05), with a detection rate 

of 98.3% [97.5 – 98.9] for AG
0.033s, hip

 VM raw data. There was no significant difference between 

AG
0.033s, hip

 VM raw data and AG
1s, hip

 VM counts (NF, LFE). The detection rate of SW
3s, ankle

 

steps was 87.6% [85.1 – 89.9], which was significantly higher than that of SW
10s, ankle

 steps, 

which was 21.8% [18.9 – 24.8]. Although the detection rates obtained from SW
3s/10s, ankle

 steps 

were lower, the error in detecting the total actual duration of activity (141 min) and inactivity 

(141 min) was considerably lower when the watershed algorithm rather than the SW software 

was used (RMSE of activity/inactivity duration estimation: 0.98 min vs. 13.6 min for SW
3s, ankle

 

steps,
 
and 3.5 min vs. 12.4 min for SW

10s, ankle
 steps). 

 

For inter-monitors comparisons, the detection rate was slightly but significantly higher for 

AG
0.033s, hip

 VM raw data and AG
1s, hip

 VM counts (NF) than for GS
1s, scapula

 speed and QS
1s, 
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wrist/scapula
 speed (P <0.05). Furthermore, SW

3s/10s, ankle
 steps resulted in a significantly lower 

detection rate than did the GPS speeds (GS
1s, scapula

 and QS
0.1s/1s, hip/wrist/scapula

), AG
0.033s, hip/wrist

 VM 

raw data and AG
1s, hip/wrist

 VM counts (P <0.05). 

 

Figure 3 shows the effects of both the duration of the bouts and the level of obstruction on the 

bout detection rate for a selection of monitors, wearing locations, and recording epochs. 

Regardless of the monitor, wearing location, and recording epoch, the detection rate was the 

lowest for short bouts and then increased for longer bouts (Figure 3 and see Worksheet 

Study1_Boutdetection, Supplemental Digital Content 3, which details all the results of the study, 

http://links.lww.com/MSS/C240). QS
1s, wrist

 speed and AG
0.033s, hip

 VM raw data had similar 

detection rates (98% [96 – 99] vs. 98% [97 – 99], P >0.05) in LLO environment. The detection 

rate of QS
1s, wrist

 speed decreased in HLO environment compared with LLO (96% [94 – 97] vs 

98% [96 – 99], P <0.05) and became lower (96% [94 – 97] vs. 98% [97 – 99], P <0.05) than that 

of AG
0.033s, hip

 VM raw data (Figure 3). 

 

Estimation of speed and distance. Table 2 presents a selection of the results for all monitors from 

LMM-based speed prediction equations and the LOOCV procedure. Estimation models with a 

higher R
2
 and lower RMSE were obtained from GPS speeds in the LLO environment (see 

Worksheet Study1_LMMEquations, Supplemental Digital Content 3, which details all the results 

of the study. http://links.lww.com/MSS/C240). When the results obtained from both 

environments were considered, the model using AG
0.033s, hip

 VM raw data yielded a similar 

RMSE as those obtained from the GPS speeds. For the estimation of walking distance, the 

models using GPS distance demonstrated better prediction performance than did the models 
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developed using AG
0.033s, hip/wrist

 VM raw data, AG
1s, hip/wrist

 VM counts, steps, and SW
3s/10s, ankle

 

steps, as shown by the lower SEE and RMSE values, higher R
2
 coefficients and better AIC. 

 

Study 2: Validation in a clinical population 

A total of 149 walking and 127 stopping bouts were performed by the PAD participants during 

the outdoor walking sessions. No data loss was noted. The mean ± SD (range) of GS
1s, scapula

 

walking speed was 4.2 ± 0.5 km/h (3.3 – 5.5 km/h). Table 3 presents the bout detection rate as 

well as the accuracy of speed and distance estimations when the 15 s filter was applied. 

 

Bout detection. Walking and stopping bouts were detected with a detection rate of 100% when 

the 15 s filter was applied for GS
1s, scapula

 speed, AG
0.033s, hip

 VM raw data, and AG
1s, hip

 VM 

counts (NF, LFE). Lower detection rates were obtained from AG
1s, hip

 steps (NF) and SW
10s, ankle

 

steps. When only the 2 s filter was applied (see Worksheets Study2_Boutdetection and 

Study2_Estimations, Supplemental Digital Content 3, which details all the results of the study, 

http://links.lww.com/MSS/C240), the detection rates of AG
1s, hip

 VM counts and steps (NF, LFE) 

decreased, while the detection rates for GS
1s, scapula

 speed and AG
0.033s, hip

 VM raw data remained 

high at 98.6% [96 – 99] and 99.6% [98 – 100], respectively. Additionally, the error in detecting 

the total actual duration of activity (605 min) and inactivity (309 min) was lower when the 

watershed algorithm rather than the SW software was used (RMSE of activity/inactivity duration 

estimation: 0.81 min vs 10.1 min). 

 

Estimation of speed and distance. The MAPE obtained from the speed and distance estimations 

in the PAD participants are presented in Table 3 (see also Worksheet Study2_Estimations, 
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Supplemental Digital Content 3, which details all the results of the study, 

http://links.lww.com/MSS/C240). The AG
0.033s, hip

 VM raw data presented the lowest MAPE in 

estimating the walking speed using the developed LMM equations. Consequently, it showed the 

best estimation of distance when both the LMM equations and the estimated speed were used. 

 

DISCUSSION 

The main findings of the present study can be summarized as follows: 

 

a) Both of the algorithms tested were comparably accurate in intermittent walking bout detection. 

 

b) High and comparable detection rates of outdoor walking and stopping bouts in the 

environment with LLO were obtained from the GPS speeds (GS
1s, scapula

 and QS
0.1s/1s, hip/wrist/scapula

) 

and accelerometer parameters AG
0.033s, hip

 VM raw data and AG
1s, hip

 VM counts; however, the 

detection rate decreased in the HLO environment for GPS speeds and became significantly lower 

than those obtained from AG
0.033s, hip

 VM raw data and AG
1s, hip

 VM counts. 

 

c) In the LLO environment, the GPS speeds (GS
1s, scapula

 and QS
0.1s/1s, hip/wrist/scapula

) yielded better 

estimations of walking speed, whereas when both environments were considered, AG
0.033s, hip

 

VM raw data was more accurate and robust. 

 

d) The wearing location had a large and significant effect on monitor performance in bout 

detection and in the estimation of speed and distance; the GPS had the best performance at the 

wrist and scapula levels, and the AG device had the best performance at the hip level. 
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e) The SW
3s/10s, ankle

 step parameter was less accurate in identifying walking bouts than were the 

GPS and AG monitors, although its accuracy was improved when the new proposed algorithm 

rather than the default SW software was used. 

 

f) For the clinical application, the GPS and AG monitors provided the highest accuracy in 

assessing the intermittent walking activity of patients with functional limitations. 

 

Subject-based, automated algorithm for the detection of walking and stopping bouts. 

In contrast to all existing studies that focused on detecting longer walking sessions by applying 

standard thresholds for speed and/or accelerometer data, the new algorithm proposed in the 

present study is subject-based and is not affected by the type of monitor (parameter), wearing 

location, or recording epoch used. In previous studies, walking trips were defined as 3 – 5 

consecutive min of walking at speeds between 2 and 6-8 km/h over distances >30 m or 

accelerometer counts >500 counts/epoch (15,26,35). These walking bouts were interspersed with 

stopping bouts of durations >3 min. However, these studies did not consider the fragmented 

nature of day-to-day walking behavior (6), which precludes the use of such methods for the 

precise assessment of intermittent outdoor walking, both in healthy and clinical populations. In 

this present study, our previous algorithm for bout detection was also improved and became fully 

automated (14). The watershed algorithm had generally comparable detection rates to those of 

the enhanced version of our previous algorithm, and it had lower computational complexity 

because it consisted of a one-step algorithm and did not require a learning phase or the 

optimization of parameters. Although the enhanced version of our previous algorithm presented 
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high and promising detection rates, it was developed and tested on a limited dataset of healthy 

participants. A higher number of participants is required to carry out the learning procedure on 

different walking profiles and then to generalize the algorithm to the whole population. For the 

clinical application (study 2), 2 s, 10 s or 15 s filters were applied according to previous studies 

(8,11,14) to remove short walking displacement data that reflected patients recovering from the 

pain symptoms induced by ischemia during the previous walking bout. These short walking 

displacements were real (and detected) but had no clinical significance in the present context. 

However, in another context, if one aims to estimate total ambulatory (outdoor) activity 

throughout one day, short bouts lasting <10 s or 15 s may be of interest when for instance, one is 

investigating activities around the house such as gardening or other chores. Thus, the 10 s or 15 s 

filter should not be applied in these contexts. According to the context, the processing 

methodology needs to be adjusted when data from activity monitors are analyzed. Furthermore, 

despite the high detection rates of the GPS and accelerometer monitors, the watershed algorithm 

had a lower detection rate when the SW
10s, ankle

 was used due to the shorter recording epoch. The 

criterion we used to determine whether a bout was correctly detected (±20% of actual duration) 

may also affect the bout detection rate. For instance, for the SW
10s, ankle

, when criterion values of 

10%, 20%, and 30% were tested, the bout detection rate varied accordingly to 90%, 95%, and 

97%, respectively. 

 

Accuracy of GPS speed in assessing intermittent outdoor walking. 

GPS receivers have been primarily used to determine how the physical environment is associated 

with the PA behaviors of individuals (26,36). The present study extends previous works that 

have used GPSs to assess outdoor walking activity bouts ≥1 min (15,26,35,37). Our results also 
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extend previous studies (14,27) that addressed the validity of GPS receivers in assessing 

intermittent outdoor walking and show how performance is affected by the environment’s 

obstruction level, the device wearing location, and recording epoch. The QS GPS monitor is a 

good alternative to the GS, which is considered accurate but no more marketed. QS is among the 

most commonly used GPS monitors by PA researchers for long-term real-life measurements 

(26,37) and is generally placed at the hip level along with an accelerometer. According to our 

results, the QS monitor provides a lower bout detection rate (~91%) at the hip level than at the 

wrist and scapula levels, which are uncommon locations for long-term QS measurements. This 

finding should be considered by users in future studies. Furthermore, although it has been shown 

- mainly in sports studies - that high-frequency GPS monitors can enhance the accuracy of 

distance and speed estimation compared with low-frequency GPS monitors (38), our results 

showed that they are less accurate in identifying walking bouts since the signals have high 

variability and need additional processing steps for undersampling. They also cannot be used in 

real-life scenarios in which data needs to be recorded for several days. The error of the speed and 

distance estimations obtained in our study were consistent with those reported in previous studies 

(27,39) for LLO conditions. However, we provided the first data regarding the effects of the 

level of obstruction and wearing location on the accuracy of estimating walking speed and 

distance. 

 

GPS monitors have been previously used in clinical populations, including participants with 

PAD, to assess outdoor walking capacity (8,11). The present study formally validated the 

algorithm for bout detection (8) during outdoor walking sessions, with a 100% detection rate. 
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Accuracy of AG VM raw data and counts for assessing intermittent outdoor walking. 

The AG is the most commonly used accelerometer in PA research and has been extensively 

studied (22,40,41). However, the literature lacks validation studies for AG in the assessment of 

short intermittent walking, as proposed in the present study. The existing studies on walking 

assessment using AG have focused on the identification of walking bouts or the estimation of 

walking speed during long-duration walking periods (16,40,42), step count identification in 

intermittent walking (20), or the estimation of MET and energy expenditure at the minute level 

(22,41). Our study enables researchers to accurately assess intermittent walking using AG. We 

found a high bout detection rate and an acceptable accuracy for the estimation of walking speed, 

specifically when using AG
0.033s, hip

 VM raw data. This finding is consistent with those in 

previous studies that showed the highest step count accuracy of hip-located over wrist-located 

AG (20). 

 

Furthermore, with AG
0.033s, hip

 VM raw data, the LMM outperformed the models included in 

previous studies in estimating walking speed (16,42). Our results show an RMSE of 

approximately 0.4 km/h in the healthy population, a TEE of 0.3 [0.27 – 0.34] and a MAPE of 9 ± 

6.6% in the clinical population. Barnett et al. reported that the SEE for walking speed varies 

between 0.3 and 0.9 km/h in free-living 1 km walking trials assessed using uniaxial AG counts 

(16). 

 

The present study shows that the AG provides accurate estimations of intermittent outdoor 

walking parameters in participants with PAD, including the accurate detection of walking and 

stopping bouts, and an acceptable error in estimating walking speed and distance (<10%). The 
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results from this study show that AG
0.033s, hip

 VM raw data yields higher accuracy than does AG
1s, 

hip
 VM counts (NF, LFE). 

 

Accuracy of steps for assessing intermittent outdoor walking. 

The SW is considered the most accurate pedometer in estimating steps and has been validated in 

several contexts, both in healthy and clinical populations (20,43). In addition to the use of steps 

as a proxy of the walking volume (steps/day), the estimation of speed of ambulation is of interest 

for a more detailed assessment of walking pattern (21). The speed of ambulation is determined 

by the combination of cadence (steps/min) and stride length. The use of a pedometer to estimate 

cadence is possible only with modern, advanced time-stamped pedometers that include a 

memory function. Furthermore, the way step accumulation is processed by the software 

according to the sampling epoch has a major impact on which parameter is truly being measured: 

step accumulation vs. step cadence (44). 

 

There are numerous studies on the step count accuracy of pedometers (17–20), but there are very 

few studies that addressed their accuracy in the estimation of walking (activity)/stopping 

duration (45) and cadence (18,46), and to our knowledge, their accuracy in estimating walking 

speed from cadence is unknown. Our results show that the SW estimations of activity (walking) 

and inactivity (stopping) durations using proprietary software are largely inaccurate during 

intermittent walking bouts. This is because the SW software analyzes the data on a minute basis; 

an active minute is identified if at least one step occurs over the minute considered, and the 

intensity of ambulation is classified according to the total step count over the same epoch (i.e., 

one min). In this way, all inactivity durations less than 1 min are neglected by the software, and 
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the activity duration is overestimated. Since the total step count (and not cadence) is computed 

on a minute basis, walking intensity can be inaccurately estimated. 

 

The use of the watershed algorithm significantly improved bout detection with the SW steps, 

particularly for SW
3s, ankle

 steps, which has the best recording epoch that can be used but allows 

only 2.5 days of continuous recording. Considering that a recording epoch of 10 s is the shortest 

epoch that can be configured for a long recording duration spanning 8 days with this model of 

SW, our study clearly showed that SW
10s, ankle

 steps had a low accuracy for the identification of 

intermittent outdoor walking bouts and generally overestimated the walking durations by 27%. 

The SW steps can better detect walking and stopping bouts of only durations >2 x the recording 

epoch, i.e., 6 s for SW
3s, ankle

 and 20 s for SW
10s, ankle

 (data not shown). AG
1s, hip

 steps (but not 

AG
1s, wrist

 steps) clearly outperformed SW
3s/10s, ankle

 steps since the steps count was processed over 

1 s epoch. However, the detection rate remained lower than the highest performance obtained 

using GPS speed, AG
0.033s, hip

 VM raw data and AG
1s, hip

 VM counts. Since the AG has been 

shown to be consistently less accurate than the SW in counting steps (19,20), by capturing either 

fewer (NF) or more (LFE) steps than the SW, it can be argued that AG
1s, hip

 performs better than 

SW
3s/10s, ankle

 because it does not capture the same (and correct) number of steps. We advocate 

that this was not the main issue here. Indeed, AG
1s, hip

 steps (NF, LFE) outperformed SW
3s/10s, 

ankle
 steps in bout detection. Furthermore, when the number of steps captured was compared 

between AG
1s, hip

 (NF, LFE) and SW
3s, ankle

 during each walking bout performed in study 1, the 

difference was actually small in the steps count with an MPE and MAPE ≤5% for bout durations 

>15 s (see Figure, Supplemental Digital Content 4, which illustrates a comparison of steps 

counting between AG
1s, hip

 steps (NF, LFE) and SW
3s, ankle

 steps, 
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http://links.lww.com/MSS/C241). Thus, AG performed better than SW in bout detection mainly 

due to the shorter recording epoch of the SW, which was particularly true for SW
10s, ankle

. 

Nevertheless, the RMSE of the estimation of walking speed was very similar between SW
3s, ankle

 

steps and AG
1s, hip

 steps (NF, LFE), whereas it was higher for SW
10s, ankle

 (Table 2). 

 

In the clinical population of PAD participants, all the walking and stopping bouts were ≥30 s, 

and the mean accuracy in bout detection reached 95% with SW
10s, ankle

 steps, with a low and 

acceptable mean overestimation of the walking duration at the session level by 3%. Conversely, 

we obtained a higher error (overestimation) in estimating walking speed, with a MAPE of 29%. 

Again, AG
1s, hip

 steps showed higher accuracy in bout detection and lower errors (MAPE) in 

speed estimation, while the MAPE in the LMM distance estimations were similar between 

SW
10s, ankle

 steps and AG
1s, hip

 steps. Given the limitations of the SW software in processing the 

actual activity (walking) duration, the available studies that have proposed a characterization of 

daily walking pattern in PAD participants from a 7-day period using the SW
10s, ankle

 should be 

reinterpreted accordingly (47,48). Furthermore, during home-based programs in PAD 

participants, Gardner et al. (7) used the SW “cadence” (which is in fact step accumulation) to 

estimate MET values over each walking session from a previously determined but unknown 

individual cadence-speed relationship. Therefore, if the SW software estimates of minute-level 

activity were used, it cannot be ruled out that the estimation of walking intensity was flawed. 

 

What about the combinations? 

Based on our results, the best combination for assessing intermittent outdoor walking would be 

QS
1s, hip

 speed and AG
0.033s, hip

 VM raw data, as used in PA studies for other purposes (26,37). 
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QS
1s, hip

 speed provides a better estimation of speed than does AG
0.033s, hip

 VM raw data in 

environments with LLO. In environments with HLO, the AG
0.033s, hip

 VM raw data is preferred 

for both walking bout detection and speed estimation. Unless the location of the outdoor walking 

session is determined in advance and does not change, the use of a GPS is required to have 

contextual information and determine the level of obstruction of the environment. The 

environments where the outdoor walking sessions take place can also include a mixture of 

different levels of obstruction. As we previously observed during outdoor walking sessions of 

limited duration (8,11,14,27,32), GPS signal dropouts were also a rarity in the present study. 

However, GPS signal dropouts cannot be totally ruled out, which could preclude the analysis of 

isolated bouts. The AG can complement or substitute GPS data in such situations. Finally, 

although energy expenditure was not addressed here, GPS monitors provide higher accuracy in 

estimating energy expenditure during walking with slopes than do accelerometers (49). 

 

Unless the step count is the expected outcome measure, SW3 should be used with caution when 

assessing intermittent outdoor walking, specifically if clinical inference is intended (e.g., outdoor 

walking capacity estimation). SW3 is being replaced by its newest version (SW4), which gives 

access to the recording of step counting on a second basis and thus can more accurately assess 

intermittent outdoor walking. This new version is under study. Furthermore, activPAL™ was not 

used in the present study but may be an accurate monitor for the assessment of short intermittent 

outdoor walking in healthy and clinical populations (13,18). 

 

Limitations 

This study has the following main limitations. First, the processing methodology was developed 
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and tested for outdoor walking sessions. It cannot be directly applied to detect walking in actual 

real-world contexts that might include other physical activities. To assess walking activity 

among other physical activities, additional effort is required to generalize the algorithms to real-

world contexts. Second, as previously explained, this study considered outdoor walking only, 

and our results cannot be extended to indoor contexts. However, the interest in studying indoor 

walking depends on the final application. For instance, in PAD participants, we previously 

reported that walking limitations induced by ischemic pain were more likely to occur outdoors 

(32). 

 

CONCLUSION 

This paper proposed a new method to identify walking and stopping bouts and tested the 

efficiency of different activity monitors in detecting and estimating intermittent outdoor walking. 

The results show that QS GPS speed and AG VM raw data can accurately detect walking and 

stopping bouts as well as estimate walking speed and distance during outdoor walking sessions. 

These findings have potential importance in clinical applications in which intermittent walking 

findings are indicative of disease-related outcomes and in which walking is prescribed as an 

efficient therapeutic strategy. A web platform was developed to help researchers to easily test the 

proposed methods. A first version of the web platform can be found on the following link: 

https://mapam.ens-rennes.fr/. 
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FIGURE CAPTIONS 

 

Figure 1. Example of GPS speed (GS
1s, scapula

)* for a subject performing the corresponding 

prescribed walking protocol in the low-level obstruction environment (upper panel) and the 

assigned walking sequences for the duration-based and distance-based phases in the lower left 

and right panels, respectively. *GS, GlobalSat DG100 GPS receiver. 

 

Figure 2. Example of the watershed algorithm applied for GPS speed (GS
1s, scapula

)*. The left 

panel shows GS
1s, scapula

 speed data for the duration-based phase of the prescribed walking 

protocol and the obtained threshold at 1.4 km/h (dotted line) representing the local minima of the 

generated histogram (right panel). *GS, GlobalSat DG100 GPS receiver. 

 

Figure 3. The detection rate versus bout durations for QS
1s, wrist

 speed, AG
0.033s, hip

 VM raw data, 

and SW
3s, ankle

 steps*. The left and right graphs correspond to the environments with low and 

high levels of obstructions, respectively. The detection rates are displayed with 95% confidence 

intervals that were computed using the function binofit in MATLAB® 2018b. *QS, Qstarz BT-

Q1000XT GPS receiver; AG, ActiGraph wGT3X+ accelerometer; SW, StepWatch3 pedometer. 
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Table 1 - Detection rates obtained with both developed algorithms for walking and stopping 

bouts according to the different activity monitors and when considering the combination of both 

environments with low and high levels of obstruction. 

 

Monitor Parameter 
a
 

Wearing 

position 

Total 

bouts 

Bout detection rate % [95% CI] 

P values 
b
 

Taoum et al. 

Watershed 

algorithm 

Le Faucheur et 

al. Enhanced 

algorithm 

GS Speed (1 s) Scapula 1536 
96.6 [95.5 – 

97.4] 
97.6 [96.7 – 98.3] 0.0025 

QS 

Speed (1 s) 

Hip 1460 
91.3 [89.7 – 

92.7] 
91.9 [90.3 – 93.2] 0.352 

Wrist 1536 
96.7 [95.7 – 

97.5] 
96.8 [95.7 – 97.6] 0.808 

Scapula 1536 
96.4 [95.4 – 

97.3] 
96.5 [95.4 – 97.4] 0.842 

Speed (0.1 s) 

Hip 1536 
90.2 [88.6 – 

91.7] 
88.7 [87.1 – 90.3] 0.018 

Wrist 1536 
93.4 [92.1 – 

94.6] 
91.1 [89.5 – 92.5] <0.001 

Scapula 1536 
93.9 [92.6 – 

95.1] 
95.4 [94.3 - 96.4] 0.005 

AG 

Raw data  

(0.033 s) 

Hip 1456 
98.3 [97.5 – 

98.9] 
98.7 [98.0 – 99.2] 0.201 

Wrist 1536 
95.4 [94.2 – 

96.4] 
91.9 [90.5 – 93.2] <0.001 

Count NF (1 s) 

Hip 1456 
98.2 [97.3 – 

98.8] 
98.3 [97.5 – 98.9] 0.655 

Wrist 1536 
91.8 [90.3 – 

93.1] 
91.2 [89.7 – 92.6] 0.216 

Steps NF (1 s) 

Hip 1456 
94.6 [93.3 – 

95.7] 
94.6 [93.3 – 95.7] 1 

Wrist 1536 
88.3 [86.6 – 

89.9] 
84.4 [82.5 – 86.2] <0.001 

Count LFE (1 

s) 

Hip 1456 
97.7 [96.8 – 

98.4] 
99.0 [98.4 - 99.5] <0.001 

Wrist 1536 
92.6 [91.2 – 

93.9] 
92.2 [90.7 - 93.5] 0.307 

Steps LFE (1 

s) 

Hip 1456 
92.9 [91.4 – 

94.1] 
92.9 [91.4 – 94.1] 1 

Wrist 1536 78.8 [76.7 – 78.8 [76.7 – 80.9] 1 
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80.9] 

SW Steps (3 s) Ankle 768 
87.6 [85.1 – 

89.9] 
80.4 [77.4 – 83.1] <0.001 

 Steps (10 s) Ankle 768 
21.8 [18.9 – 

24.8] 
30.5 [27.2 – 33.9] <0.001 

a
 Recording epoch is indicated for each measured parameter. 

b
 P values obtained following the 

McNemar test. 

GS, GlobalSat DG100 GPS receiver; QS, Qstarz BT-Q1000XT/-Q1000eX GPS receiver; AG, 

ActiGraph wGT3X+ accelerometer; SW, StepWatch3 pedometer; NF, normal filter; LFE, low 

frequency extension filter. 
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Table 2- Speed prediction equations developed using Linear Mixed Models along with statistical parameters.  

Model 
a
 Environment Equation R

2
 AIC SEE RMSE P values 

GS
1s, scapula

 speed Combined  ̂                     0.86 158.61 0.4 0.4 <0.001 

LLO  ̂                       0.98  -274.08 0.2 0.2 <0.001 

HLO  ̂                      0.82 200.96 0.3 0.4 <0.001 

QS
1s, hip

 speed Combined  ̂                    0.79 540.33 0.5 0.5 <0.001 

LLO  ̂                       0.97 -175.92 0.2 0.2 <0.001 

HLO  ̂                       0.59 388.96 0.5 0.6 <0.001 

QS
1s, wrist

 speed Combined  ̂                     0.86 451.86 0.4 0.4 <0.001 

LLO  ̂                        0.98 -291.73 0.2 0.2 <0.001 

HLO  ̂                       0.63 377.30 0.5 0.5 <0.001 

QS
1s,scapula

 speed Combined  ̂                     0.84 334.65 0.4 0.4 <0.001 

LLO  ̂                        0.99 -398.01 0.1 0.1 <0.001 

HLO  ̂                      0.65 340.56 0.5 0.5 <0.001 

AG
0.033s, hip

 VM raw data Combined  ̂                     0.89 -139.99 0.3 0.4 <0.001 

AG
0.033s, wrist

 VM raw data Combined  ̂                      0.72 629.13 0.6 0.6 <0.001 

AG
1s, hip

 VM counts (NF) Combined  ̂                     0.79 293.30 0.5 0.6 <0.001 

AG
1s, wrist

 VM counts (NF) Combined  ̂                     0.68 667.71 0.7 0.7 <0.001 

AG
1s, hip

 VM counts (LFE) Combined  ̂                    0.79 294.23 0.5 0.6 <0.001 

AG
1s, wrist

 VM counts (LFE) Combined  ̂                     0.68 660.07 0.7 0.7 <0.001 

AG
1s, hip

 steps (NF) Combined  ̂                       0.70 605.28 0.6 0.6 <0.001 

AG
1s, wrist

 steps (NF) Combined  ̂                     0.01 1594.4 1.0 1.03 0.012 

AG
1s, hip

 steps (LFE) Combined  ̂                         0.69 531.79 0.6 0.6 <0.001 

AG
1s, wrist

 steps (LFE) Combined  ̂                       0.05 1548.27 1.0 1.0 <0.001 

SW
3s, ankle

 steps Combined  ̂                        0.68 348.97 0.6 0.7 <0.001 

SW
10s, ankle

 steps Combined  ̂                       0.48 486.86 0.8 0.9 <0.001 
a
 The models are presented as the monitors type with the recording epoch and the wearing location as exponents, and the studied parameter. 

In equations,  ̂,              represent the estimated speed and the studied parameter (GPS speed, AG
0.033s

 VM raw data, AG
1s

 VM counts, and cadence computed from 

steps). GS, GlobalSat DG100 GPS receiver; QS, Qstarz BT-Q1000XT GPS receiver; AG, ActiGraph wGT3X+ accelerometer; NF, normal filter; LFE, low frequency 

extension filter; SW, StepWatch3 pedometer; LLO, low level of obstruction; HLO, high level of obstruction; Combined, low and high level of obstruction environments. 
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Table 3- Bout detection rates of walking and stopping in PAD patients for 15 s-filter, and the estimation of speed and distance. 

 

Parameters Detection rate  

[95% CI] 

MAPE (SD)  

Speed estimation from LMM 

MAPE (SD) 

Distance estimation from LMM 

MAPE (SD) 

Distance = Estimated speed * time 

GS
1s, scapula

 speed 100 [99 – 100] Reference measure Reference measure Reference measure 

AG
1s, hip

 VM counts (NF) 100 [99 – 100] 9.8 (7.3) 12.5 (8.5) 10 (7.4) 

AG
1s, hip

 VM counts (LFE) 100 [99 – 100] 10.7 (8.1) 11.9 (7.4) 10.6 (8.2) 

AG
0.033s, hip

 VM raw data 100 [99 – 100] 9 (6.6) 12.5 (7.9) 8.4 (6.3) 

AG
1s, hip

 steps (NF) 97.8 [95 – 99] 19.7 (10.6) 17.4 (9.7) 18.3 (10.7) 

AG
1s, hip

 steps (LFE) 99.6 [98 – 100] 18.3 (11.1) 18.8 (10.3) 18.3 (11.3) 

SW
10s, ankle

 steps 94.9 [92 – 97] 28.8 (11.8) 16.7 (10.7) 31.7 (11.2) 

GS, GlobalSat DG100 GPS receiver; AG, ActiGraph wGT3X+ accelerometer; NF, normal filter; LFE, low frequency extension filter; SW, StepWatch3 pedometer. 
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Supplemental Digital Content 1 

To form the prescribed walking protocols (PWPs), a random sequence alternating between 

walking and stopping bouts was generated from fixed bout durations of {3, 6, 12, 15, 20, 30, 

40, 50} s, with each duration represented 24 times for each class of events (i.e., walk/stop). This 

resulted into a sequence of 384 (8 bouts durations x 24 x 2) walking and stopping bouts that 

was divided into 10 PWPs lasting each between 10 to 15 min. 

 
n, number of bouts; W, walking event; S, Stopping event; P, Protocol. 
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Supplemental Digital Content 2 

As mentioned in the manuscript, we were interested to enhance our previous method (1,2) by 

optimizing the detection algorithm and testing it on the different studied parameters from the 

monitors that were employed in the experiments. The original detection algorithm of this 

method was the following:  

1. The mean of the individual walking speed (IWS) and its standard deviation (SD) were 

computed from the first walking bout.  

2. A low pass filter was applied to remove artifact having values >2*IWS. 

3. A high pass filter was performed to replace all values < IWS - K*SD by 0. K being 

determined from the coefficient of variation of the IWS (𝐶𝑉ூௐௌ) as follows 

𝐾 =  ൜
5, 𝑖𝑓 𝐶𝑉ூௐௌ < 15%

2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
, with 𝐶𝑉ூௐௌ =

ௌ஽

ூௐௌ
× 100. 

4. An artifact management was handled to remove short walking and stopping bouts that 

have duration < 2 * recording epoch (<4s for a recording frequency of 0.5 Hz).   

This method was validated on GPS data in healthy participants (1,2) and then applied for the 

identification of walking and stopping bouts in participants with PAD during outdoor walking 

(3,4). 

Nevertheless, it highly depends on the IWS and SD computed from the first walking bout, 

which might create inaccurate identification in case of high variability of walking speed. It also 

has fixed values of K, which were tested and validated previously for GPS data. Therefore, we 

proposed to enhance this method to test it on the parameters obtained from all the monitors, as 

following 

1. Computing the mean and SD of parameters for walking bouts: 
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a. The watershed algorithm was first applied to preliminary discriminate walking 

and stopping bouts. 

b. The IWS was replaced by the mean of the outputs of the different monitors tested 

(GS1s, scapula speed, QS0.1s, hip/wrist/scapula speed, QS1s, hip/wrist/scapula speed, AG0.033s, 

hip/wrist VM raw data, AG1s, hip/wrist VM counts and steps, and SW3s/10s, ankle steps), 

and was computed along with its SD from all the identified walking bouts for a 

given subject to take into consideration all the paces performed over a given 

walking session and thus the measure variability. 

2. The low pass filter was applied as in the initial algorithm. 

3. The high pass filter was optimized. Instead of having fixed values of K, we have 

proposed to optimize these values (k1, k2) for each studied parameter using a leave one 

out cross validation (LOOCV) as follows: 

a. From the training set, the CV were computed over the walking bouts of each 

subject. Then, the 𝐶𝑉௠௘ௗ௜௔௡ was computed. 

b. The optimization of (k1, k2) was performed by minimizing the error rate of the 

algorithm on the training set using a grid search on k1, k2 = {1, 1.5, …, 7}. 

c. For a test subject, the 𝐶𝑉௦ was computed from the walking data of the subject. 

d. The high pass filter was then applied to replace all values < IWS - K*SD by 0, 

with 𝐾 =  ൜
𝑘ଵ, 𝑖𝑓 𝐶𝑉௦ < 𝐶𝑉௠௘ௗ௜௔௡

𝑘ଶ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
 

4. The step of artifact management was omitted from this part of analysis due to the 

presence of very short duration events in the PWPs. 
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The following table explains the content of each sheet in this Supplemental Digital Content 

 Sheet Name Content 

Study1_BoutsDetection 

This sheet presents the bout detection rates (95% CI) of both algorithms, 

Taoum et al. watershed algorithm and Le Faucheur et al. enhanced 

algorithm, using all the tested monitors over each duration of walking and 

stopping events performed in spontaneous or/and slow paces in environment 

with LLO or/and HLO. Thresholds for walking events are also presented as 

mean (SD) [min - max] for each monitor using both processing methods. 

The CVmed (%) and {k1, k2} values obtained in Le Faucheur et al. Enhanced 

algorithm for each studied parameter are also presented 

Study1_GPSErrors 

This sheet presents the error metrics of measuring walking speed of the GPS 

receivers over each distance of walking events performed in spontaneous, 

slow, and fast paces in environments with LLO or/and HLO. The error 

metrics are the root mean square error (RMSE), the mean percent error 

(MPE), the mean absolute percent error (MAPE), the typical error of 

estimate (TEE), and the coefficient of variation (CV). MPE and MAPE are 

represented with their standard deviation, whereas TEE and CV are 

represented with 95% CI.   

Study1_LMMEquationss 

This sheet presents the LMM predictive equations for speeds and distances 

for GPS receivers in environments with LLO or/and HLO, wGT3x 

accelerometer data in the combined environments, and SW pedometer data 

in LLO environment. 

Study2_BoutsDetection 

This sheet presents the detection rates (95% CI) of bout identification in the 

clinical population of PAD participants for all the monitors, when applying 

the filters of 2, 10, and 15 s. 

Study2_Estimations 

This sheet presents the accuracy of speed and distance estimation from the 

LMM predictive equations as well as the estimation of the distance from the 

estimated speed (distance = estimated speed * duration), when applying the 

filters of 2, 10, and 15 s. 

 

 

Abbrevations: 

LLO Low level of obstruction 

HLO High level of obstruction 

NF Normal filter for wGT3x+ accelerometer 

LFE Low filter extension for wGT3x+ accelerometer 
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Supplemental Digital Content 4 

 

Figure S 1. A comparison of steps counting obtained from AG1s, hip steps (NF, LFE) and SW3s, 

ankle during the first phase of the prescribed walking protocols in Study 1. Graphs A, B, C, and 

D represent respectively the steps counting of each studied parameter, the error, MPE (%), and 

MAPE (%) between AG1s, hip steps (NF, LFE) and SW3, ankle over each bout duration. The dotted 

lines in graphs C and D represent the ±5% error. The graphs show that AG presented a low 

overestimation of the SW3s steps when the LFE was enabled, and a low underestimation of SW3s 

steps when the LFE is disabled. However, this difference is relatively low with MPE and MAPE 

≤5% for bout durations >15 s. 
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