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ABSTRACT: Two small 1,1,4,4-tetracyanobutadiene-functional-
ized chromophores were obtained by careful leverage of the
regioselectivity of the cycloaddition reaction of tetracyanoethylene
with anthracene−ynamide derivatives, inducing either a [2 + 2] or
a [4 + 2] Diels−Alder process. DFT calculations unraveled the
mechanism of the [2 + 2] cycloaddition−retroelectrocyclization
reaction sequence with ynamides and elucidated the differing
mechanisms in the two substrates. The synthesized dyes presented
panchromatic absorption extending into the near-IR and far-red/
near-IR photoluminescence in the solid state up to 1550 nm.

Push−pull chromophores, consisting of electron donor and
acceptor groups bridged together by a π-conjugated

backbone, are a class of molecules that play a prominent role
in organic molecular materials.1 Thanks to their particular
arrangement that facilitates intramolecular charge transfer
(ICT) interactions, they feature in scores of applications
including nonlinear optics (NLO)2 and organic photovoltaics
(OPVs).3 This persistently intriguing topic has stimulated the
exploration of 1,1,4,4-tetracyanobutadiene (TCBD) derivatives
and their chemistry by several groups in the past decade.4−12

The elegance of their approach stems from the simplicity of its
synthetic route: the TCBD motif can indeed be installed via a
facile, high-yield, catalyst-free [2 + 2] cycloaddition-retro-
electrocyclization (CARE) sequence, using tetracyanoethylene
(TCNE) and an electron-rich alkyne,10 thus allowing for
practical synthetic strategies such as postpolymerization
functionalizations.13 TCBD is now established as a valuable
strong electron acceptor group, with a rapidly expanding family
of dyes including this motif. Beyond its straightforward
incorporation in push−pull chromophores, other advantages
of TCBD were put forward: its twisted conformation was
shown to increase chromophore solubility and reduce
aggregation, thereby improving the poling process efficiency
in NLO materials.14 Despite a number of studies that have
promisingly demonstrated photoinduced charge separation in
TCBD-appended chromophores, fast nonradiative deactivation
of the excited state in these molecules constitutes a major
drawback to their implementation in optoelectronic applica-

tions. As suggested by Armaroli et al., in anilino-TCBDs,
torsional motions following photoexcitation give rise to a low-
energy twisted intramolecular charge transfer (TICT) state
that can deactivate to the ground state through accessible
conical intersections.15 As a direct consequence, these
molecules are generally nonluminescent and fluorescence
that involves a TCBD moiety has seldom been reported.16

In an effort to modify the prototypical anilino-TCBD
fragment, our group discovered that ynamides can engage in
the [2 + 2]-CARE reaction with TCNE to form a sulfonamido-
TCBD motif, producing dyes with markedly altered optoelec-
tronic properties.17−19 We recently revealed that such
chromophores could exhibit near-infrared (NIR) luminescence
in the solid state, extending to 1350 nm.20 This surprising
result prompted us to further investigate compounds based on
a similar design, i.e. sulfonamido-TCBD-PAH (polycyclic
aromatic hydrocarbon). Interestingly, others have also
described solid-state fluorescence involving an ICT to TCBD
in push−pull chromophores bearing a PAH.21

While examining the structures of photoactive multi-
component systems that integrate TCBD units, one can
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remark that anthracene is a strikingly rare building block, with
only two examples (to the best of our knowledge) bearing a
TCBD motif attached to strong electron-donating groups and
remote from the anthracene moiety.22,23 A possible explanation
is the presence of a competing Diels−Alder (DA) reaction
which makes this PAH seemingly incompatible with the [2 +
2]-CARE sequencea pitfall that was also encountered with
other acenes.24 Herein we report a synthetic strategy to
overcome this limitation, a complete mechanistic picture by
density functional theory (DFT) calculations, and the optical
properties of the synthesized molecules A-TCBD and DPA-
TCBD (Scheme 1).

We have previously identified the lack of reactivity of the
triple bond when the ynamide is grafted to the 9-position of
anthracene,18 which prompted us to investigate anthracenes
functionalized in a different position. Brominated derivatives
1a and 1b were therefore selected as starting molecules to
access 2-substituted anthracenes. Sonogashira cross-coupling
with trimethylsilylacetylene and subsequent deprotection gave
the precursor compounds 3a25 and 3b. The terminal alkynes
were brominated to afford compounds 4a and 4b in 78% and
70% yield, respectively. The latter underwent copper-catalyzed
amidation using Hsung’s conditions,26 leading to ynamides 5a
in moderate yield (36%) and 5b in very good yield (89%).
Compounds 5a and 5b were then reacted with one equivalent
of TCNE. While 9,10-diphenylanthracene derivative 5b
yielded DPA-TCBD (62%), compound A-TCBD was not
isolated and the DA product 6 was obtained instead (80%
yield).
The [4 + 2] cycloaddition of anthracene with TCNE has

already been well documented by several groups.27−29 The

modulation of the equilibrium for addition of TCNE to
anthracene by the solvent was discussed by Brown and
Cookson and the dissociation was found to be favored in
dioxane.30 Furthermore, Sauer et al. demonstrated the recovery
of the anthracene addend using a different anthracene
derivative to trap TCNE.31 In the light of these studies, we
sought to harness the reversibility of the DA reaction by testing
various methods for the recovery of the anthracene structure
and formation of the TCBD group. When 5a was heated at 80
°C in dioxane in the presence of 1 equiv of TCNE, even
though the retro-DA reaction is expected to be feasible under
these conditions, the ynamide degraded without significant
conversion into A-TCBD. At room temperature, the same
reaction led only to cycloadduct 6 in 62% yield. Under UV
irradiation (365 nm) in toluene, compound 5a did not provide
the [4 + 4] photodimerization product and its degradation was
exclusively observed, invalidating the preliminary protection of
the 9,10-positions of the anthracene core by formation of a
dimer as an alternate strategy. We endeavored to construct the
TCBD motif from cycloadduct 6 instead. In the presence of a
second equivalent of TCNE, compound 6 was successfully
converted into bisadduct 7 in 50% isolated yield. Using 5 equiv
of TCNE, 5a could be directly transformed into 7 in a much
higher yield (73%) than through the combined two-step
procedure (40%). Both cycloaddition products 6 and 7 were
moderately stable and decomposed in solution within a few
hours. Different conditions for the extrusion of TCNE from
the anthracene core were then assessed. When a 0.01 M
solution of 7 in dioxane was heated at 80 °C, A-TCBD could
be isolated in only 3% yield after 3 h. To inhibit the forward [4
+ 2] cycloaddition, rather than another anthracene derivative
and DA reaction, 1.5 equiv of commercially available 4-
ethynyl-N,N-dimethylaniline 8 were used to scavenge extruded
TCNE, considering the known efficiency32 and irreversibility
of the [2 + 2]-CARE reaction. Thus, when stirred for 3 h at 80
°C in the presence of 8, a solution of 7 in dioxane provided
compound A-TCBD in a satisfactory yield of 76%. The newly
synthesized dyes A-TCBD and DPA-TCBD were charac-
terized by 1H and 13C NMR spectroscopy, HRMS, and cyclic
voltammetry (Supporting Information).
Density functional theory (DFT) calculations at COSMO-

(DCM)-BLYP-D3(BJ)/TZ2P using ADF (see the Supporting
Information for computational details) were carried out to
pinpoint the origin of disparate regioselectivity of 5a and 5b.
For the calculations, the tosyl group (Ts) of 5a and 5b was
replaced with mesyl group (Ms) and the substrates are
denoted as 5a′ and 5b′. The energy profiles associated with the
[2 + 2]-CARE and [4 + 2] DA sequences of 5a′ and 5b′ are
provided in Figure 1 and are in line with others in the
literature.24 It can be seen that 5a′ preferentially reacts via the
DA sequence, whereas 5b′ reacts via the [2 + 2]-CARE
sequence. The origin of this observed regioselectivity is traced
back to the steric bulk at the 9- and 10-position of the
anthracene: the unsubstituted 5a′ can facilitate the DA
reaction of TCNE at anthracene to afford 6′, whereas the
9,10-diphenylanthracene 5b′ is too sterically demanding for
the DA reaction and the [2 + 2]-CARE pathway becomes
more energetically viable.
First, we focus on the reactivity of the unsubstituted

anthracene 5a′. The DA sequence of 5a′ (Figure 1a, go left)
begins with the formation of a reactant complex 5a′-INT1*
that is more stable (from enhanced π−π stacking) than the
corresponding complex 5a′-INT1 of the [2 + 2]-CARE

Scheme 1. Reaction Pathways for the Synthesis of A-TCBD
and DPA-TCBD
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pathway. From 5a′-INT1*, the DA reaction proceeds through
a concerted asynchronous transition state 5a′-TS1* (ΔE‡ =
0.4 kcal mol−1) to afford the experimentally isolated analog 6′.
The first step of the [2 + 2]-CARE sequence involves the
nucleophilic attack of 5a′ at TCNE, which goes via an
unfavorably high energy transition state 5a′-TS1 (ΔE‡ = 2.6
kcal mol−1) and formation of an unstable zwitterionic
intermediate.
Now, we analyze the reactivity of the 9,10-diphenylan-

thracene derivative 5b′ (Figure 1a, go right). The reactant
complex 5b′-INT1* is a resting state on the energy surface and
cannot proceed further due to an unsurmountable DA barrier
via 5b′-TS1* (ΔE⧧ = 10.0 kcal mol−1) that goes with a highly
destabilizing strain (ΔE⧧

strain = 100.3 kcal mol−1) due to steric
clash between TCNE and the phenyl groups at the 9- and 10-
positions of the anthracene (Figure 1b). Instead, 5b′-INT1*
reversibly dissociates to the reactants and then can form the
slightly less stable 5b′-INT1, which undergoes the nucleophilic
attack via 5b′-TS1* to generate a metastable zwitterionic
intermediate 5b′-INT2. The facile rotation and subsequent
cyclization via 5b′-TS2 accomplishes the stepwise [2 + 2]
cycloaddition and generates the cycloadduct 5b′-INT3.
Retrocyclization via 5b′-TS3 provides the s-cisDPA-TCBD′
which can then isomerize to complete the CARE sequence and
furnish s-transDPA-TCBD′.
The UV−vis absorption spectra of A-TCBD and DPA-

TCBD were recorded in dichloromethane (Figure 2A).
Compared to their ynamide precursors, the clear and
characteristic finger-like structured absorption bands of

anthracene that were observed between 335 and 400 nm in
5a and 5b are now indistinct. New features arose in both
TCBD derivatives, causing their absorption spectra to span the
whole visible range. Most remarkably, a very broad and
structureless low-energy absorption band, attributed to an ICT
transition resulting from interactions between the PAH moiety
and TCBD, covers the visible region between 450 and 800 nm,
with a maximum located at 527 nm (ε = 3.5 × 103 M−1 cm−1)
for A-TCBD and at 557 nm (ε = 4.3 × 103 M−1 cm−1) for
DPA-TCBD. Comparison with published data on pyrene and
perylene derivatives decorated with a TCBD unit20 reveals a
pronounced bathochromic effect as well as a slight hyper-
chromic effect associated with the increase in the PAH π-
conjugation and/or resonance stabilization (Table S2).
Finally, the photoluminescence (PL) properties of A-TCBD

and DPA-TCBD were examined. As reported with analogous
dyes,20 no emission was detected in dichloromethane, but in
rigid media, both compounds displayed a very comparable and
broad PL band (Figure 2B). In diluted rigid matrices (2-
methyltetrahydrofuran at 77 K and PMMA at room temper-
ature, Table S3), where the intermolecular interactions33 are
minimized, this band lied between the red and the first near-
infrared window (NIR-I, 700−950 nm). Powders of the
products exhibited PL in the NIR-I region with a maximum
centered at 865 and 875 nm for A-TCBD and DPA-TCBD
respectively, and a remarkably long tail extending to 1550 nm
in the second near-infrared window (NIR-II, 1000−1700 nm),
even farther than the upper limit in pyrene and perylene
derivatives (ca. 1350 nm). This PL enhancement in the solid-

Figure 1. (a) Energy profiles (ΔEDCM in kcal mol−1) for the competing catalyst-free [2 + 2] cycloaddition-retroelectrocyclization (CARE, in black)
and [4 + 2] Diels−Alder (DA) reactions (in blue) of 5a′ and 5b′ with TCNE; (b) key transition state geometries (in Å) and activation strain
analysis (ΔE⧧

DCM = ΔE⧧
DCM, strain + ΔE⧧DCM, int, in kcal mol−1). All data computed at COSMO(DCM)-BLYP-D3(BJ)/TZ2P.
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state can be ascribed to the restriction of molecular motions
following light absorption, which helps reduce the nonradiative
losses in these environments.21

Besides the successful synthesis of two TCBD-appended
anthracene derivatives A-TCBD and DPA-TCBD, our joined
experimental and theoretical investigations showed that the
regioselectivity of the cycloaddition reaction of TCNE with 5a
and 5b, favoring either a [4 + 2] Diels−Alder process with the
anthracene core in 5a or a [2 + 2]-CARE reaction with the
triple bond in 5b, is dictated by steric effects at the 9,10-
positions. DFT calculations uncovered the mechanism of the
[2 + 2]-CARE sequence with ynamides for the first time,
demonstrating that the reaction proceeds through stepwise [2
+ 2] cyclization to produce a cyclobutene intermediate which
then opens to give the TCBD moiety. When the DA reaction
was preferential, it could advantageously be used to deactivate
the 9,10-positions prior to the [2 + 2]-CARE, then its
reversibility exploited to unmask the anthracene core thanks to
a scavenger. In addition to insight into the reactivity of some π-
systems with TCNE, we expect the synthetic method
developed to obtain A-TCBD to be applicable to other
acene-TCBD targets. Both A-TCBD and DPA-TCBD
displayed optical properties that were remarkable for such

small dyes. They presented panchromatic absorption in DCM
that extends into the NIR-I region, and solid-state PL signals
lying between the far-red and the NIR-II range. This latter
feature, rare in TCBD-functionalized molecules, thus further
substantiates that new molecular designs comprising this
fragment can offer room for unusual photophysical proper-
ties.34
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Figure 2. (A) UV−vis absorption spectra of ynamide precursors 5a
and 5b and compounds A-TCBD and DPA-TCBD in dichloro-
methane. Inset: zoom on the low-energy band of A-TCBD and DPA-
TCBD. (B) Normalized photoluminescence spectra of A-TCBD and
DPA-TCBD in PMMA (λexc = 500 and 515 nm, respectively), organic
glass (MeTHF at 77 K, λexc = 480 and 520 nm, respectively), and
powders (λexc = 585 and 600 nm, respectively). The different
detectors used are represented as follows. Continuous line: R928;
filled symbols: R2658; open symbols: InGaAs.
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