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Reflecting Luneburg Lenses
Jorge Ruiz-Garcı́a, Enrica Martini, Senior Member, IEEE, Cristian Della Giovampaola,

David González-Ovejero, Senior Member, IEEE, and Stefano Maci, Fellow, IEEE

Abstract—This paper presents the exact closed-form solution
for a new planar lens, hereinafter referred to as Reflecting
Luneburg Lens (RLL). The proposed structure consists of two
stacked parallel plate waveguides of circular shape. The rays
generated by a point source located at the periphery of the bottom
waveguide propagate along curvilinear paths, whose trajectories
result from a variable refractive index profile with azimuthal
symmetry. Then, these rays encounter a reflecting boundary
and emerge all parallel in the upper uniform waveguide. The
behavior of this lens resembles that of a flat Luneburg lens, with
the fundamental difference that it works in reflection. The exact
refractive index profile is found by solving the non-linear integral
equation of ray-congruence trough a truncated Abel transform
method. The concept is numerically verified through different
implementations of the effective refractive index profile, including
a metasurface-based implementation. The proposed lens triggers
new possibilities that the normal flat Luneburg lens does not offer,
and it is applicable in a large variety of microwave, terahertz
and optical devices.

Index Terms—Beam-forming, flat optics, Luneburg lens, meta-
surface, surface wave.

I. INTRODUCTION

LUNEBURG graded index (GRIN) lenses [1] have been
extensively used in the microwave frequency range [2],

[3] and also at optical frequencies [4]. For instance, they
constitute the only type of antenna capable of steering a
beam in any direction without scan losses. On the other
hand, planar Luneburg lenses in parallel plate waveguides
(PPWs) provide full azimuthal scan with fan beams [5]. In
this paper, we introduce a new flat lens that is also able to
realize azimuthal scan, while opening up new possibilities
like enabling the design of compact scanning antennas with
an extended scanning range with respect to pillbox-based
solutions [6], [7]. We denote it as Reflecting Luneburg Lens
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González-Ovejero was funded in part by the European Union through the
European Regional Development Fund (ERDF), and by the French Region of
Brittany, Ministry of Higher Education and Research, Rennes Métropole and
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Régional de Bretagne.
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Fig. 1. Comparisons between (a) conventional Luneburg Lens and (b)
Reflecting Luneburg Lens (RLL). In the RLL, the rays emerging from an
arbitrary point at the periphery make longer paths and, after reflecting at the
boundary, they are coupled to an upper uniform guiding layer, where they
form a plane wave. The colored maps of refractive index do not have the
same scale.

(RLL). Fig. 1 shows the difference between the ray-paths in
a conventional flat Luneburg lens and in the RLL. The latter
consists of two stacked PPWs, where the rays launched by a
point source at the periphery of the bottom parallel plate (red
lines in Fig. 1(b)) are first reflected on a metallic boundary,
and then coupled to the upper uniform layer forming a planar
wave-front (black lines in Fig. 1(b)).

The core of this article is the analytical derivation of the
exact graded index profile for the RLL, which is obtained
by a truncated Abel transform method. Despite the conceptual
similarity with the Luneburg Lens, the expression obtained for
the RLL graded index is very different and cannot be inferred
from that of the conventional Luneburg lens. This fundamental
difference is due to the longer ray path needed to match the
reflection condition and the caustics inside the lens, shown in
Fig. 1(b).

The RLL has never been studied before, notwithstanding
its simplicity and practical usefulness. Indeed, this structure
can be applied in a wide variety of optical, terahertz and mi-
crowave devices. The top PPW in the RLL can accommodate
a radiating aperture to collimate the beam also in elevation,
while preserving the lens total footprint. For instance, the top
plate of the latter waveguide can be covered by a partially
reflecting surface [8], [9], which can provide a pencil beam
with conical scanning by changing the source position in the
focal circumference. As an alternative, one can couple the RLL
with a rotating prism, a linearly phased metasurface (MTS) or
a continuous transverse stub (CTS) array to scan the beam
also in elevation [10]–[13]. This way, it is possible to achieve
2D beam scanning with a number of control points that is
only proportional to the perimeter of a flat structure in terms
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of free-space wavelengths, and not to its area in wavelength
square. Therefore, the complexity and cost of the associated
electronics are drastically reduced. These possibilities are not
offered by the planar Luneburg lens.

Flat Luneburg lenses may be used to illuminate a MTS
sinusoidally modulated along one direction [14] to obtain 2D
scanning. In such configuration, the Luneburg lens and the
MTS antenna are at the same level, so the total footprint of
the antenna system is much larger than in the two-layered
RLL described above. In addition, the ideal relative position
between the lens and the MTS aperture depends on the position
of the source. Hence, the extent of the radiating aperture in
[14] had to be significantly increased to get multiple beams
by accommodating several sources around the Luneburg lens.
This led to an additional reduction of the aperture efficiency.
There exist other compact alternatives, where two stacked
PPWs have been used in combination with a parabolic reflector
to generate a plane wave [6], [7]. However, the scanning
performance of the parabolic reflecting structure degrades
(deterioration in side-lobe levels arising from coma phase
errors) when the source is displaced from the reflector focal
point to steer the beam. One does not face such a limitation
when scanning with the RLL.

In addition, the RLL is well suited to be implemented by
MTSs, due to their intrinsic flatness. One can find in the
open literature several articles in which the GRIN medium in
conventional Luneburg lenses is implemented by modulated
MTSs [15]–[19]. MTSs can manipulate the propagation of
surface waves or guided waves in a similar way as graded
index media, but they provide additional degrees of freedom
in terms of design and simplify the technological implementa-
tion. Indeed, by averaging the boundary tangential fields, the
MTS can be macroscopically described through homogenized
impedance boundary conditions [20]. A gradual change in the
dimensions of the MTS constituent elements leads to a spatial
variability of the homogenized impedance boundary condition.
This variation imposes a deformation of the surface wave or
guided wave wavefront and addresses the local wavevector
along non-rectilinear paths [21]–[26], just like in graded index
media.

The propagation of surface waves and guided waves on
modulated MTSs has been the subject of several recent
works [15]–[19], [22]–[26], some of them addressing these
phenomena in the framework of Transformation Optics (TO)
[27]–[35] or in the framework of leaky-wave antennas [36]–
[41]. A rigorous treatment concerning the control of surface
waves with generic curvilinear wavefronts, denoted by flat
optics, may be found in [42], where ray tracing, transport of
energy, and ray velocity are rigorously described in terms of an
equivalent refractive index for both isotropic and anisotropic
impedance boundary conditions. This general theory is applied
here to the particular case of an axially symmetric equivalent
refractive index profile.

The article is organized as follows. Section II shows the
derivation of the general analytical representation of the ray
paths in a graded index medium with cylindrical symmetry
to clarify the difference between Luneburg lenses and RLLs.
This representation is exploited in Section III to derive the

Fig. 2. Ray path in a PPW filled with a radially graded index medium for two
cases: (a) 2ξ(R) < π, (b) 2ξ(R) > π. Case (a) represents the ray-path in
a conventional Luneburg lens and case (b) represents the ray-path in a RLL,
when a PEC wall is around the lens rim and reflected rays are canalized in
an upper PPW with refractive index n1.

closed-form, exact expression of the refractive index profile
for the RLL. In Section IV, this refractive index profile is
implemented through different approaches and numerically
simulated to evaluate its performance, showing the expected
behavior in all the cases. This section also presents an applica-
tion example of RLLs in a multibeam antenna system. Finally,
conclusions are drawn in Section V. The paper is enriched by
a mathematical Appendix to provide more details about the
truncated Abel transform formulation.

II. RAY-OPTICS IN AXIALLY SYMMETRIC REFRACTIVE
INDEX MEDIA

In this analysis, we consider circular structures of radius
R and a Cartesian reference system with coordinates (x,y,z)
and unit vectors x̂, ŷ, ẑ. The coordinates of the corresponding
cylindrical reference system are (ρ, ϕ, z). Let us consider the
case of a PPW filled by a medium with an inhomogeneous re-
fractive index neq(ρ) with azimuthal symmetry. Alternatively,
the waveguide could consist of a perfectly conducting top wall
and an impenetrable impedance boundary condition as bottom
wall. The impedance in the latter case serves to realize an
equivalent refractive index neq(ρ) in the waveguide. When
the equivalent refractive index has a radial dependence only,
the solving differential equation is written as [43]

1

ρ

d

d`

[
neqρ

2 dϕ

d`

]
= 0, (1)

where d` is the elementary length along a curvilinear ray-path.
With the exclusion of the point ρ = 0, this equation states that
the quantity neqρ2dϕ/d` is constant along the ray.

Defining as ψ the angle that the ray direction forms with
the radial direction, one has ρdϕ/d` = sinψ and then

neqρ sinψ = const = L, (2)

which is the generalization of Snell’s law for radially graded
index media. It states the conservation along the ray of a
quantity analogous to the mechanical angular momentum.
Therefore, L is called “ray angular momentum” and its value
is preserved at any point of the ray-path.
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A. Analytical Form for the Ray-Paths

Since dρ/d` = cosψ, one has ρdϕ/dρ = tanψ, that
through (2) gives

ρ
dϕ

dρ
= ∓ L√

(ρneq(ρ))
2 − L2

, (3)

where the upper/lower sign applies for ψ < π
2 , ψ > π

2 . The
trajectories of all the rays in a graded-index medium with
radial dependence of the refractive index profile satisfy (3).
We can further specify the expression above for the case in
which the source is placed at (ρ0, ϕ0) = (R, π). The geometry
for the problem at hand is depicted in Fig. 2, where α is
the angle formed with the x-axis by the ray stemming from
the source. For any α, the trajectory passes through a point
closest to the origin, whose radial coordinate is denoted as
ρmin, where the local ray is orthogonal to the radial direction
and one has ψ = π/2. This minimum radial distance can be
calculated from neq (ρmin) ρmin = L. We would like to point
out that ρmin is the value of the radial distance that cancels
out the square root in (3).

Since a ray cannot propagate when its momentum is larger
than L, the ray undergoes at ρmin a turning point. The angle
ψ is always > π/2 before reaching the turning point, and
it becomes < π/2 when the ray goes beyond. At the turning
point, the radial coordinate also inverts its monotonic behavior
with respect to the azimuthal angle. Therefore, it is convenient
to integrate (3) from ρmin to ρ defining the positive angle

ξ (ρ) =

∫ ρ

ρmin

|L|

ρ′
√

(ρ′neq(ρ′))
2 − L2

dρ′, (4)

which is the angular deviation of the ray-path arc from the
turning point, as shown in Fig 2. Since L is constant along
the ray path, it can be obtained from its initial value at the
source point, i.e., L = Rn0 sinα. Due to the symmetry of the
trajectory about the turning point, the azimuthal angle covered
by the ray-path arc until the observation point can be written
as ξ(R) + sgn(π2 − ψ)ξ(ρ). Hence, 2ξ(R) is the total angle
spanned by the ray path.

Now, let us consider the case shown in Fig. 2(a), where
2ξ(R) < π. The function ϕ(ρ), where ϕ ∈ [0, π), is given by

ϕ(ρ) = π −
(
ξ(R) + sgn(

π

2
− ψ)ξ(ρ)

)
; 2ξ(R) < π. (5)

Equation (5) is the explicit functional equation in polar coor-
dinates (ρ, ϕ) of the ray trajectory of momentum L for a given
profile neq(ρ). Consider now the case in Fig. 2(b), where α
is negative and 2ξ(R) > π. In that case, for any ϕ ∈ (−π, π)
one has

ϕ(ρ) = −π+
(
ξ(R) + sgn(

π

2
− ψ)ξ(ρ)

)
; 2ξ(R) > π. (6)

It is interesting to note that the ray-path for α positive can be
obtained by just changing the sign in front of ξ(R)+sgn(π2 −
ψ)ξ(ρ), owing to the symmetry of the ray-paths with respect
to the x-axis. One can also observe that, due to the symmetry
of the problem, the ray forms an angle α with respect to the
normal to the circumference that limits the lens’ area. That is,
the ray ends its trajectory inside the lens with the same angle

with which it is launched from the source. This property stems
from the conservation of the angular momentum. Therefore,
at the exit point P the angle ϕ assumes the values

ϕout = ± (π − 2ξ(R)) for 2ξ(R) ≶ π. (7)

B. Luneburg and Reflecting Luneburg Conditions

The two situations of ray-paths in Fig. 2(a) (2ξ(R) < π)
and Fig. 2(b) (2ξ(R) > π) are quite different concerning ray
focusing. When 2ξ(R) < π, it is possible to have congruent
rays leaving the lens parallel to the x-axis. This ray behavior is
the one found in the conventional Luneburg lens. However, the
transmission ray-congruence in Fig. 2(a) is not possible when
2ξ(R) > π. Conversely, the ray congruence for 2ξ(R) > π
can be obtained in reflection, by placing a cylindrical wall
of perfect electric conductor (PEC) at the rim of the lens.
This configuration is the one represented in Fig. 2(b) and
corresponds to the RLL. The Snell’s law applied at the rim of
the lens implies n0 sinα = n1 sinϕout for the configuration
in transmission shown in Fig. 2(a). Interpreting the reflected
rays in Fig. 2(b) as transmitted into an upper PPW with
uniform refractive index n1, the same expression also applies
in reflection, but with a different bound concerning the ray-
path length. Therefore, using (4), one can write

π − arcsin

(
n0
n1

sin |α|
)
LL
=

2

∫ R

ρmin

sin |α|

ρ′
√
(ρ′neq/Rn0)

2 − sin2 α
dρ′, (8)

π + arcsin

(
n0
n1

sin |α|
)
RLL
=

2

∫ R

ρmin

sin |α|

ρ′
√
(ρ′neq/Rn0)

2 − sin2 α
dρ′, (9)

where (8) corresponds to the case of the conventional Luneb-
urg lens, while (9) stands for the RLL. It is important to
note that both conditions hold for the entire angular spectrum
|α| ∈ (0, π2 ). The refractive index solution in transmission
exists, and gives for n0 = n1 the well-known refractive index

of the Luneburg lens neq = n0

[
2− (ρ/R)

2
]1/2

. The graded
index profile solution of (9) provides the RLL behavior, and
it is derived in the next section.

III. EXACT SOLUTION FOR THE REFLECTING LUNEBURG
LENS

The non-linear integral equation in (9) can be solved in
closed-form for n0 = n1 using the truncated Abel transform
method. To this end, let us set R = 1, bearing in mind that
the radial distance will be de-normalized with respect to the
radius in the final solution. To ease the notation, we define the
following quantities: N(ρ) = neq(ρ)ρ/n0, N(ρmin) = l, and
thus N(1) = 1, l = sinα, l ∈ (0, 1). With this notation, (9)
becomes

π

2
+

1

2
arcsin(l) =

∫ 1

ρmin

l

ρ

√
(N(ρ))

2 − l2
dρ. (10)
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Fig. 3. Radial profile of the refractive index of the RLL (blue line) and of
the equivalent Luneburg Lens (red line) for n0 = n1 = 1.

Adopting in (10) the change of variable x′ = ln ρ and using
the notation η(x′) = N(ex

′
) leads to

π

2
+

1

2
arcsin(l) =

∫ 0

ln ρmin

l√
η2(x′)− l2

dx′. (11)

The ray path equation in (11) is first manipulated by using
the change of variables η′ = η(x′). Therefore, x′ = x(η′) and
we can write (11) as

1

2
π +

1

2
arcsin(l) =

∫ 1

l

dx′

dη′
l√

η′2 − l2
dη′, (12)

where we have used N(1) = 1 in the upper limit of the
integral. Equation (12) shows that the function on the left-
hand side is the inverse truncated Abel transform of the inverse
function x′ = x(η′). Applying the inverse Abel transform [44]
to both members leads to

1

2

∫ 1

η

π + arcsin(l′)√
l′2 − η2

dl′ =− π

2
ln ρ. (13)

Due to the truncated upper limit, the above inversion formula
cannot be easily demonstrated, and requires some algebraic
steps done in Appendix A. Using the following identities∫ 1

η

π√
υ2 − η2

dυ = π ln

(
1 +

√
1− η2
η

)
, (14)

∫ 1

η

arcsin(υ)√
υ2 − η2

dυ =
π

2
ln
(
1 +

√
1− η2

)
, (15)

in (13) leads to

− ln ρ = ln

(
1 +

√
1− η2
η

)
+

1

2
ln
(
1 +

√
1− η2

)
. (16)

Considering that η(ln ρ) = N(ρ) = neq(ρ)ρ/n0, the inversion
of (16), after re-normalizing by R, leads to

neq = n0

−1 +
√
1 + 8 (ρ/R)

2

2 (ρ/R)
2

3/2

, (17)

which is the exact form of the refractive index profile of
the RLL. Despite the apparent similarity between (8) and

Fig. 4. (a) Ray paths for the RLL. The red and blue solid lines represent
the rays in the bottom and top PPW, respectively. (b) Distribution of the
energy density along y for a feed with a power pattern of the type U(α) =
U0 cosm α.

(9), the refractive index profile in (17) is quite different
from that of the conventional Luneburg lens, which reads as

neq = n0

[
2− (ρ/R)

2
]1/2

. The profile of the lens for n0 = 1

is shown in Fig. 3. As one can observe in Fig. 3, the excursion
range of the refractive index profile in the RLL is larger than
in the Luneburg lens. Although this could be a disadvantage
fabrication-wise, such refractive index values can be easily
attained with the fully metallic metasurface structure described
in Section IV-C.

A. Closed Form of Ray-Paths and Fields

To express the ray-paths in closed-form, we first solve
for the turning point in ρminneq(ρmin)/(Rn0) = sinα.
Some algebraic steps yield the expression ρmin =
R sin |α/2| /[

√
2 cos2 (α/2)]. Then, using this explicit form

for the turning point and (17), the ray-path in (4) can be re-
written as

ξ (ρ) =

∫ ρ/R

sin|α/2|√
2 cos2(α/2)

2
√
2σ |sinα|√(

−1 +
√
1 + 8σ2

)3 − 8σ4 sin2 α

dσ,

(18)

where we have applied the substitution ρ′/R → σ. The ray
paths for any α can then be found using (18) in (6). Fig. 4
shows the resulting ray-paths. The path lengths are the same
as for the conventional Luneburg lens for α = 0o, and increas-
ingly longer for increasing α. However, for α = 50o, the ray
path is just 30% longer than for the equivalent Luneburg lens.
This additional propagation distance is necessary to collimate
the reflected rays. Although in general this implies a small
increase of the overall losses, this issue can be mitigated by
metal-only implementations, as discussed in Section IV-C. On
the other hand, if one places the primary feed in the inner
focal region, the ray paths are shorter than for the equivalent
Luneburg lens for α ∈ [−50o, 50o]. Fig. 4 also shows that the
two rays launched by the source in the vicinity of α = ±π/2
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Fig. 5. (a) Ray-paths for a RLL with δ = 0.7. The black and red lines
represent the rays in the bottom and top PPWs, respectively. (b) Difference
between the exit angles obtained by the numerical solution of (19) and the
approximate implicit formula in (21).

follow trajectories very close to the peripheral circumference
and they contribute to an increase of energy density in the
periphery of the planar wavefront, instead of being coupled to
the upper parallel plate. It is therefore better to avoid launching
rays in directions in the vicinity of α = ±π/2. This can be
simply done by using a primary source with a power pattern
that damps the intensity of the rays as we approach α = ±π/2,
such as the cosm α pattern represented in Fig. 4(b) for different
values of m.

B. Extension to Discontinuous Refractive Index at the Rim

The explicit expression of the lens refractive index profile
for different refractive indexes on top and bottom PPW, i.e.,
n0 6= n1, cannot be given in analytical form, but it is possible
to find a very good approximation. The equation to be solved
through the truncated Abel transform method is obtained by
inserting n0/n1 in the argument of the arcsine function in (13)
-as from (9)- and using (14). This leads to

π ln

(
1 +

√
1− η2
η

)
+

∫ 1

η

arcsin
(
n0

n1
l′
)

√
l′2 − η2

dl′ =− π ln ρ.

(19)

The integral in (19) cannot be calculated in analytical form,
but it can be approximated by expanding in Taylor series the
arcsine function [45] and retaining the first two terms. After
this manipulation, the integral can be estimated as∫ 1

η

arcsin(δl′)√
l′2 − η2

dl′ ≈
√
1− η2

(
δ +

δ3

9

(
η2 +

1

2

))
. (20)

Defining δ = n0/n1, (20) yields an excellent approximation
for δ ≤ 0.7. Substituting (20) in (19) leads to the following
implicit expression for the RLL

π ln

(
1 +

√
1− η2
η

)
+

√
1− η2

(
δ +

δ3

9

(
η2 +

1

2

))
+ π ln ρ = 0, (21)

where η = ρneq/n0. One can extend the range of applicability
of the above formula by including more terms of the Taylor
expansion in (20). Fig. 5(a) shows the ray-paths for a RLL with

Fig. 6. Graded index TEM RLL with insets illustrating the corner reflector
and the position of the feed horn.

δ = 0.7 in the bottom (black lines) and top (red arrows) PPWs,
while the colormap represents the refractive index distribution.
Fig. 5(b) shows the difference between the exit angles obtained
by the numerical solution of (19) and by using (21). One can
verify that the approximate formula yields an accuracy always
better than one degree.

C. Poynting Vector Profile in the Top PPW for Non-isotropic
Feed Pattern

Let us denote by U(α) the power density radiated by the
source per unit angle and per unit thickness of the PPW. The
conservation of the power density in each elementary ray tube
gives U(α)dα = Si(ϕout)Rdϕout, where Si(ϕ) represents
the incident Poynting vector at ϕ. After the reflection at the
periphery and coupling to the top PPW, the power density
remains confined on a straight tube of flux along x. This
condition leads to Si(ϕ)Rdϕ = Sr(y)dy, where Sr is the
Poynting vector of the reflected ray and we have assumed that
the top and bottom PPW have the same thickness. For n0 = n1
one has α = ϕout = arcsin(y/R), yielding

Sr(y) = U
dα

dϕout

dϕout
dy

=
U
(
arcsin y

R

)√
R2 − y2

. (22)

The equation above can be easily extended to n0 6= n1. It is
seen that for uniform U the density of reflected rays becomes
infinite for y = R and geometrical optics (GO) cannot be
applied. However, (22) maintains its accuracy when the power
density of the source is not uniform. Indeed, if the angular
dependence of the source power density is of the type U(α) =
U0 cos

m α, (22) becomes

Sr(y) = U0

cosm
(
arcsin y

R

)√
R2 − y2

, (23)

which leads to the distributions shown in Fig. 4(b) for m = 2,
4, 6, and 8. We note that for m = 1, Sr(y) becomes constant,
so in order to have a uniform planar wavefront, one should
have a cosα pattern type of the feed.



ACCEPTED MANUSCRIPT

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2020.3044668, IEEE
Transactions on Antennas and Propagation

SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, JULY 09, 2020 6

Fig. 7. Real part of the vertical component of the electric field in logarithmic
scale for (a) the bottom and (b) the top PPWs in Fig. 6. Phase distribution in
degrees for (c) the bottom and (d) the top PPWs in Fig. 6.

IV. NUMERICAL RESULTS

A. Graded Index Parallel Plate Lens

In the first instance, to prove the validity of the closed-
form refractive index profile derived in Section III-A, we have
analyzed an ideal RLL by a full-wave simulation. Fig. 6 shows
the simulated structure. The structure consists of two stacked
PPWs with circular shape. The bottom one is filled with a
dielectric medium with the radially graded refractive index
neq (ρ) given in (17) and shown in Fig. 3. The top parallel
plate is filled with air. Therefore, the refractive index in the
top layer equals that at the rim of the bottom layer (Fig. 2(b)),
such that n0 = n1 = 1 in (9). A corner reflector is used
to transfer the energy from the bottom to the top layer, and
an absorbing boundary on the left half of this latter layer
enables reflection-less plane-wave propagation. In this design,
the frequency of operation is f0 = 30 GHz and the radius of
the lens is R = 7λ0, where λ0 is the free-space wavelength at
f0. This radius has been arbitrarily chosen for demonstration
purposes. Reflecting Luneburg Lenses (RLLs) are intended
for medium- and high-gain antennas, which means that radii
R ≥ 2λ0 are considered. The height d of both PPWs is equal
to 1.5 mm, so only the fundamental transverse electromagnetic
(TEM) mode propagates. The curvilinear TEM wavefronts are
excited by a feed horn placed at (ρ0, φ0) = (R, π), and with a
power density function approximated as U(α) = U0 cos

m α.
The simulation results have been obtained with the commercial
software CST Microwave Studio [46], since it allows one to
use an ideal spatial GRIN material with a given profile. This
feature enables a preliminary validation before carrying out an
actual design based on MTSs.

Fig. 7(a) and Fig. 7(b) show the real part of the electric
field’s vertical component in the bottom and top PPWs,

(a)

(b)
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Fig. 8. (a) Power density distribution of the plane wave for sources with
m = 5.4, 8.7, and 13.6. The dotted lines show the CST power density sampled
in the top PPW along the white dashed line in Fig. 7(b), while the continuous
lines have been calculated with (23). (b) Phase distributions for sources with
m = 5.4, 8.7, and 13.6 computed with CST in the top PPW along the white
dashed line in Fig. 7(d). (c) Calculated (solid lines) and simulated (dotted
lines) far-field patterns corresponding to the power density distributions in
(a).

respectively, and for a feed horn with m = 5.4. In turn,
Fig. 7(c) and (d) display the phase distributions obtained for
the same component of the electric field in each layer. One
can see that a plane wave is neatly generated in the top layer.
The simulation also reveals that 91% of the accepted power
is transmitted to this upper layer. Moreover, the wave-fronts
given for the amplitude and phase distributions in Fig. 7(a)
and Fig. 7(c) are, as expected, perpendicular to the ray paths,
represented by red solid lines in Fig. 7(a).

Fig. 8(a) further illustrates the plane wave characteristics
in the top PPW. The dotted lines represent the simulated
normalized power density distribution of the plane wave in
the top PPW along the white dashed line in Fig. 7(b) for
m = 5.4, 8.7, and 13.6. The continuous lines have been
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Fig. 9. Comparison between the phase distribution in the 7λ0-radius lens in
Fig. 8(b) (black line) and the phase distribution in a 2λ0-radius lens (blue
line). The phases are calculated along the dashed lines in the insets. These
insets show, for both lenses, the real part of the vertical component of the
electric field (<{Ez}) in the top parallel plates and in the bottom one for the
2λ0-radius lens.

obtained using the analytical form in (23). The good agreement
proves that one can also use the proposed analytical model to
predict the power distribution in the RLL top layer. In turn,
Fig. 8(b) shows the phase sampled along the white dashed
line in Fig. 7(d) also for m = 5.4, 8.7, and 13.6. The far-field
patterns obtained for the same values of m with the analytical
model (solid lines) and with the full-wave simulator (dotted
lines) are shown in Fig. 8(c).

The RLL can also collimate the reflected beams in smaller
apertures. As an example, Fig. 9 compares the phase distribu-
tion of the 7λ0-radius lens in Fig. 8 with the phase distribution
of a 2λ0-radius lens, the primary feed is the same in both
cases (m = 5.4). The insets show, for the two lenses, the real
part of the vertical component of the electric field (<{Ez}) in
the top PPW and, for the 2λ0-radius lens only, <{Ez} in the
bottom parallel plate. One can observe that a plane wave is

Fig. 10. Ground variable TE Reflecting Luneburg lens. The plot in the upper
left corner shows the height variation of the bottom PPW with respect to the
radius. The dielectric-filled top PPW is coupled by cross slots.

Fig. 11. Real part of the horizontal component of the electric field in
logarithmic scale for (a) the bottom and (b) the top PPWs in Fig. 10. Phase
distribution in degrees for (c) the bottom and (d) the top PPWs in Fig. 10.

well formed in the top PPW in both cases and that the flatness
of the phase distributions is also very good.

B. TE Parallel Plate Waveguide Lens

In this second structure, the propagating mode is transverse
electric (TE). The propagation constant of TE modes in a par-

allel plate waveguide is β =

√
εrk

2 − (π/d)
2, where d is the

distance between the metal plates. Since β and the refractive
index are related by neq = β/k, one can obtain the desired
profile by just changing the height of the bottom parallel plate
waveguide. Fig. 10 shows the proposed structure, where the
bottom parallel plate waveguide has a curved ground plane
and it is filled by a homogeneous dielectric. Therefore, the
local PPW height is obtained as d (ρ) = λ0/(2

√
εr − n2eq (ρ))

[47], where neq is given in (17). The inset in Fig. 10 shows
the local height of the bottom parallel plate for a dielectric
medium with relative permittivity εr = 12.2. The lens radius
is R = 7λ0, where λ0 is the free-space wavelength at 30 GHz
and the height d of the upper waveguide is 1.5 mm.

The CST simulation set-up is analogous to the one used in
the previous example, although a different excitation is used. A
horizontal dipole placed at the rim of the lens excites the first
TE mode, while avoiding coupling power to the fundamental
TEM mode. The modes of higher order than this TE are in
cut-off. Moreover, cross slots (with arms 0.2-mm wide and 1.5-
mm long) are inserted in the middle metallic plate (shared by
the top and bottom PPWs) at a distance λ1/2 from the border,
where λ1 is the effective wavelength. These slots, shown in
the right inset of Fig. 10, serve to couple the TE mode to the
upper PPW. The resulting horizontal E-fields in amplitude and
phase are presented in Fig. 11 for both layers. The use of a less
directional source leads to less clear wavefronts in the bottom
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Fig. 12. TM Reflecting Luneburg lens implemented by a bed of nail lens. (a)
Perspective view of the bottom layer. (b) Feed-horn dimensions (b = 5.4 mm
and Lhorn = λ0/2). (c) Schematic side view of the corner reflector used to
excite the top waveguide. (d) Local equivalent refractive index as a function
of the pin height (the pin dimensions are r = 0.3 mm and a = 1.25 mm).

layer. It is interesting to note that despite the fact that the TEM
mode can propagate, its contribution is not significant in the
top layer. Indeed, the planar wavefront in the top PPW appears
to be quite clean, as shown in Fig. 11(b) and Fig. 11(d).

C. TM Bed of Nails Lens With Internal Focal Circle

The last example shows two MTS implementations (R =
7λ0 and R = 2λ0) of the RLL using a bed of nails. In this
case, the propagating mode in the bottom PPW is transverse
magnetic (TM), as discussed in [16], [17], [48]–[50]. A bed
of nails realization eliminates the problems related to dielec-
tric losses at higher frequencies. Indeed, although one could
imagine high cost and complexity for the fabrication of such
structure, the metal additive manufacturing in [50] constitutes
a cost-effective approach to grow the metallic cylinders on
an aluminum base-plate with the tolerance required in the
millimeter-wave range. The AlSi10Mg alloys typically used in
metal 3D printers provide good electrical properties and low
losses. On the other hand, in the sub-THz range, one can use
Deep Reactive Ion Etching (DRIE) to create the desired 3D
pattern in a silicon wafer, which is then metalized by sputtering
gold [51], [52]. Hence, the final structure inherits the good
conductivity of Au (∼ 2× 107 S/m) in the sub-THz range.

Another fundamental difference with respect to the pre-
vious examples is that, instead of placing the source at the
periphery, the horn aperture is placed at (ρ0, φ0) = (0.5R, 0),
with its phase center (located behind the aperture) lying at
(ρ0, φ0) = (0.47R, 0). Although the maximum concentration
of rays occurs at approximately (ρ0, φ0) = (0.46R, 0), the
position of the phase center has been adjusted in the focal
region to obtain a better collimation effect. This is common
practice in spherical reflectors [53], where one has a focal
region instead of a focal point, and with deployable parabolic

Fig. 13. Real part of the vertical component of the electric field (<{Ez}) in
logarithmic scale for the bottom PPWs loaded with pins in the (a) R = 7λ0
and (b) R = 2λ0 lenses. <{Ez} in logarithmic scale for the top PPWs in
the (c) R = 7λ0 and (d) R = 2λ0 lenses. Phase distribution in degrees for
the top PPWs in the (e) R = 7λ0 and (f) R = 2λ0 lenses.

reflectors, where inaccuracies in the deployed surface also lead
to a focal region [54]. The possibility of placing the source
at the inner focal region is of utmost importance for practical
applications, since the source and the corner reflector do not
coexist in the focal circumference and it allows one to avoid
undesired coupling. The height of the PPWs is d = 3.75 mm,
so the higher-order TM mode is in cut-off up to 40 GHz [49].
The same corner reflector described in Section IV-A has been
used to couple the TM mode power to the upper PPW.

Fig. 12(a) shows a perspective view of the resulting R =
7λ0 structure. The dimensions of the feed horn and the corner
reflector are detailed in Fig. 12(b) and Fig. 12(c), respectively.
The base-plate with the corner-reflector can be fabricated by
standard lathe facing, boring and chamfering with ±2µm
roughness and a ±5µm general tolerance. In this lens, the
refractive index profile has been obtained varying the height
of cylindrical pins arranged in a square lattice with unit-cell
size a = 1.25 mm [16], [17], [50]. Fig. 12(d) shows the curve
that relates the height of the pins to the equivalent refractive
index neq . The height of the pin for each radial distance is
computed by mapping the value of neq given by (17) to a pin
height.

Fig. 13 shows the simulation results of the fields in the two
MTS lenses. As expected, placing the source at (ρ0, φ0) =
(0.5R, 0) does not change significantly the behavior of the
lens, and a plane wave is efficiently generated in the top PPW.
Although some reflections are seen inside the lenses ring in
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Fig. 14. TM Reflecting Luneburg lens as beam-former for a modulated MTS
aperture. (a) Top view of the bottom layer with the multiple feeds. (b) Detail
of the primary sources (b = 5.4 mm and Lhorn = λ0/2). (c) Top view of
the modulated MTS aperture. (d) Side view of the corner reflector region.

Fig. 13(a) and Fig. 13(b), the power coupling efficiency in
the top layer reaches 91% in both cases. Figs. 13(c)-(d) and
Figs. 13(e)-(f) show the amplitude and phase distributions,
respectively, of the plane-waves generated in the top PPWs.

D. Example of antenna application

From the symmetry of neq(ρ), it is clear that the perfor-
mance of the lens will be azimuthally symmetric. Therefore,
different locations of the primary feed along φ will imply
a rotation in the plane-wave direction. Here, we suggest a
MTS antenna structure to scan the beam in both azimuth
and elevation by combining source switching and mechanical
rotation of the upper layer. The idea is to get an operation
similar to that of Variable Inclination Continuous Transverse
Stub (VICTS) array, where the beam is steered by changing
the relative orientation of a planar wavefront and a slotted plate
[12], [55], [56]. In the proposed structure, presented in Fig. 14,
the RLL replaces the feeding network for the generation of the
planar wavefront, while the role of the slotted plate is played
by the periodically modulated MTS. The bottom layer is that
of Fig. 12(a), where more ports have been placed. Moreover,
the top layer is not a PPW anymore, but an open MTS structure
sinusoidally modulated in one direction. The modulation is
achieved by cylindrical pins placed over a stepped periodic
ground plane, so the interface between the top of the pins and
free-space is flat, as shown in Fig. 14(d). As in the previous
section, the bottom PPW is connected with the upper one by
a continuous corner reflector at the circular rim of the lens.
The corner reflector in the top PPW is terminated by a circular
flange that serves to excite the upper aperture, see Fig. 14(d).
Since space is still available in the middle of the lower PPW
after placing the primary sources (Fig. 14(a)-(b)), it is easy to
arrange the top upper layer so that it can be rotated.

Fig. 15. 3D view of the radiated beam (left column) and u-v color maps
(right column) showing the directivity in dBi when (a) port 1, (b) port 2 and
(c) port 3 in Fig. 14(b) are excited.

Fig. 15 shows the radiation performance of the proposed
antenna when three different ports are excited. The left-hand
side figures schematically show the generated pencil beams
when one independently excites port 1, port 2 and port 3
in Fig. 14(b). In turn, the right-hand side figures show the
corresponding directivity in the u-v plane. It is observed that
when one switches ports the azimuth and elevation angles of
the beam change. Notice that, as for the VICTS array, the
relative angle between the port and the direction of sinusoidal
modulation modifies both the azimuth and elevation angles of
the radiated beam. Hence, one can cover a wide conical range
by combining source switching with the rotation of the top
layer with no need of rotating the bottom layer.

V. CONCLUSION

We have presented the exact closed-form solution for the
Reflecting Luneburg Lens and its implementation with meta-
surfaces. This new lens consists of two stacked parallel plate
waveguides (PPW) of circular shape. The field generated by
a primary source at an arbitrary point of the peripheral focal
circumference or the inner focal region of the bottom PPW
is collimated in the top uniform PPW, after reflection on
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a metallic boundary and coupling to the upper layer. The
resulting structure is light weight, low profile and easy to
manufacture, and it can be readily applied to beam-forming
for antennas. In fact, after arranging an array of sources on
the focal line or the inner focal region, one can obtain multiple
simultaneous beams in azimuth or switch the beam direction
by adding pin diodes. This means that it can be conveniently
used as a beam-former for scanning antennas (without the need
of phase shifters), when the upper layer is used as a radiating
aperture.

APPENDIX
DEMONSTRATION OF INVERSION FORMULA

The steps followed to demonstrate the inversion formula in
(13) are:

1) formally replace l with l′ in (12),
2) multiply both members by 1/

√
l′2 − η2,

3) integrate both members in dl′ from η to 1.

With these steps we obtain∫ 1

η

1
2π + 1

2 arcsin(l
′)√

l′2 − η2
dl′ =∫ 1

η

∫ 1

l

dx′

dη′
l′√

l′2 − η2
√
η′2 − l′2

dl′dη′. (24)

We can interchange the order of integration in (24) applying
Fubini’s theorem. This implies that the extremes of integration
can be defined only for positive value of the argument inside
the square-roots, thus leading to∫ 1

η

1
2π ∓

1
2 arcsin(l

′)√
l′2 − η2

dl′ =∫ 1

η

dx′

dη′

[∫ η′

η

l′√
l′2 − η2

√
η′2 − l′2

dl′

]
dη′. (25)

One can recognize that

l′√
l′2 − η2

√
η′2 − l′2

=

[
d

dl′
arcsin

(√
l′2 − η2√
η′2 − η2

)]
, (26)

which inserted in (25) leads to

1

2

∫ 1

η

π − arcsin(l′)√
l′2 − η2

dl′ =

∫ 1

η

dx′

dη′

[
arcsin

(√
l′2 − η2√
η′2 − η2

)]η′
η

dη′. (27)

The right-hand side can be rewritten as∫ 1

η

dx′

dη′
π

2
dη′ =

π

2

∫ 0

ln ρ

dx′ = −π
2
ln ρ, (28)

which leads to (13).
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