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1.  Introduction
Numerical simulations of the Earth's atmosphere and ocean play an important role in developing our understand-
ing of weather forecasting. A major focus lies in determining the large-scale flow correctly, which is strongly 
related to the parameterizations of sub-grid processes (Frederiksen et al., 2013). The non-linear and non-local 
nature of the dynamics of geophysical fluid flows make the large-scale flow structures interact with the smaller 
components. Solving the Kolmogorov scales (Pope, 2000) of geophysical flows is today, and likely for a fore-
seeable future, completely out of reach. This is due, in the first place, to the formidable computational expense 
that would be necessary, but also to the complexity of the many fine-scale physical or bio-chemical processes 
involved. Truncating the fine scales and simply ignoring their actions is highly detrimental to a reliable simula-
tion of the large-scale components of the flow. Yet, an accurate modeling of the fine-scale processes' effects is 
an excruciatingly difficult task and the idea of a stochastic modeling has strongly attracted the geophysical com-
munity since the seminal works of Hasselmann, 1976; and Leith, 1975. For several years, this interest has been 
strongly strengthened with the emergence of ensemble methods for probabilistic forecasting and data assimilation 
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issues (Berner & Coauthors, 2017; Franzke et al., 2015; Gottwald et al., 2017; Majda et al., 2008; Palmer & Wil-
liams, 2008; Slingo & Palmer, 2011).

The schemes proposed so far rely on very different methodological concepts. Multiplicative random forcing and 
randomization of parameters based on early turbulence studies on energy backscattering (Leith, 1990; Mason & 
Thomson, 1992) have been proposed (Buizza et al., 1999; Porta, Mana & Zanna, 2014; Shutts, 2005). The ad hoc 
nature of these schemes makes a systematic stochastic derivation of any flow dynamical model or configuration 
difficult. In addition, the absence of an explicit energy balance of the noise term leads to an uncontrolled increase 
of variance that is potentially problematic. They consequently require a proper tuning of the large-scale sub-
grid model and of the noise amplitude to stabilize the system. The subgrid model is, however, not related to the 
noise term and the amplitude of the perturbations to apply is also difficult to specify on physical grounds. More 
importantly, even for low noise, an arbitrary random perturbation defined outside of the physical principles on 
which the system has been built upon may lead to strongly erroneous probability density functions of the system's 
dynamics (Chapron et al., 2018). Other schemes based on an averaging and homogenization theory have been 
proposed (Franzke et al., 2006; Franzke & Majda, 2006) in the wake of Majda et al. (1999) and extended through 
the Mori-Zwanzig formalism (see the review Gottwald et al., 2017 and references therein). Those techniques are 
well suited for the design of stochastic reduced order systems.

In this study, we propose to stick to a specific stochastic model, called modeling under Location Uncertainty (LU) 
derived by Mémin (2014), which emerges from a decomposition of the Lagrangian velocity into a smooth-in-time 
drift and a highly oscillating random term. Such a slow/fast or smooth/oscillating decomposition is reminiscent to 
the Lagrangian decomposition introduced in the seminal work of Andrews & McIntyre (1978), which is currently 
used for surface or internal waves studies (Kafiabad et al., 2021; Salmon, 2013; Xie & Vanneste, 2015; Young 
& Jelloul, 1997). A similar random decomposition is also at the center of the variational stochastic framework 
of Holm (2015). Like our setting this latter approach applies in a broader context and not only to wave solutions. 
Both frameworks rely on a stochastic transport principle, with (Holm, 2015) dedicated to Hamiltonian dynamical 
systems and defined from a circulation preserving constrained variational formulation, while Mémin, (2014) is 
general and built upon classical physical conservation laws.

This stochastic transport principle has been used as a fundamental tool to derive stochastic representations 
of large-scale geophysical dynamics (Bauer, Chandramouli, Chapron, et  al.,  2020; Bauer, Chandramouli, Li, 
et al., 2020; Chapron et al., 2018; Resseguier et al., 2017a, 2017b, 2017c) or to define large eddy simulation 
models of turbulent flows (Chandramouli et al., 2020; Kadri Harouna & Mémin, 2017). The LU framework relies 
on a stochastic representation of the Reynolds transport theorem (Kadri Harouna & Mémin, 2017; Mémin, 2014) 
which introduces naturally meaningful terms for turbulence studies.

It gathers a multiplicative random advection which is responsible for an energy backscattering, a subgrid diffu-
sion operator describing the mixing of the large-scale flow component by the small-scale random component, 
and an effective advection which is attached to the small scales spatial inhomogeneity. This latter term has been 
shown to be reminiscent of a generalized Stokes drift component, hence designated as Itô-Stokes drift (Bauer, 
Chandramouli, Chapron, et  al.,  2020). Backscattering and diffusion are energetically in balance which leads 
hence to global energy conservation.

Recently, the LU formulation was shown to perform very well for oceanic quasi-geostrophic flow models (Bauer, 
Chandramouli, Chapron, et al., 2020; Bauer, Chandramouli, Li, et al., 2020; Resseguier et al., 2017b; 2017a). It 
was found to be more accurate in predicting the extreme events, in diagnosing the frontogenesis and filamen-
togenesis, in structuring the large-scale flow and in reproducing long-terms statistics. Besides, for a LU version 
of the Lorentz-63 model, derived from a Rayleigh-Bénard convection -in the very same way as the original model 
(Berge et al., 1987; Lorenz, 1963), it has been demonstrated that the LU setting was more effective in exploring 
the range of the strange attractor compared to classical models as well as to stochastic models built with ad hoc 
multiplicative forcings (Chapron et al., 2018).

In this work, the performance of the LU representation is assessed for the numerical simulation of the rotating 
shallow water (RSW) system, which can be considered as the first step toward developing global random numer-
ical weather prediction and climate models. In particular, this is the first time that the LU formulation is imple-
mented for the dynamics evolving on the sphere. The global energy conservation of the RSW-LU system for any 
realization, which is analytically demonstrated here, is a strong asset of the approach and this invariant feature 
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should be numerically conserved as closely as possible. Global energy conservation is especially important for 
long-term climatic simulations. However, classical purely damping parameterizations do not take into account 
energy and momentum fluxes from the unresolved to the resolved scales. In climatic models, this is believed to 
be a source of important biases (Gugole & Franzke, 2019).

Hence, we propose to combine the discrete variational integrator for RSW fluids as introduced in Bauer & 
Gay-Balmaz (2019a) and Brecht et al. (2019) with the numerical LU setting in order to maintain this conserva-
tion property as well as all the transport invariants. The benefit of the proposed method that relies on a modular 
combination of a variational integrator with a (potentially different) discretization of the LU formulation is that it 
should be directly applicable to existing dynamical cores of numerical weather prediction models.

The derivation of the variational integrator is based on the variational discretization framework introduced 
by Pavlov et  al.  (2011) for incompressible fluids, expanded by Gawlik et  al.  (2011) to incompressible fluids 
with advected quantities. In various papers, this framework has been further extended, for instance Desbrun 
et  al.  (2014) incorporated rotating and stratified fluids of atmospheric and oceanic dynamics and Bauer and 
Gay-Balmaz, (2019b) introduced soundproof approximations of the Euler equations. Variational integrators are 
designed by first discretizing the given Lagrangian, and then by deriving a discrete system of associated Eul-
er-Lagrange equations from the discretized Lagrangian (see, Marsden & West, 2001).

The advantage of this approach is that the resulting discrete system inherits several important properties of the 
underlying continuous system, notably a discrete version of Noether's theorem that guarantees the preservation 
of conserved quantities associated to the symmetries of the discrete Lagrangian (see, Hairer et al., 2006). Var-
iational integrators also exhibit superior long-term stability properties, (cf. e.g., Leimkuhler & Reich, 2004). 
Therefore, they typically outperform traditional integrators if one is interested in long-time integration or the 
statistical properties of a given dynamical system. Our choice for an energy preserving rather than an enstrophy 
conserving scheme is based on the following considerations. As shown in Bauer, Chandramouli, Li, et al. (2020) 
for stochastic barotropic quasi-geostrophic models, using an energy conserving scheme for long-term predictions 
yields better results than using an enstrophy conserving one. Besides, because of the direct cascade of enstrophy 
to high wave numbers, often stabilization through enstrophy dissipation is introduced, even in initially enstrophy 
conserving schemes, (cf. Bonaventura & Ringler, 2005; McRae & Cotter, 2014; Ringler & Randall, 2002).

Apart from taking into account the unresolved processes, it is paramount in probabilistic ensemble forecasting to 
model the uncertainties along time (Resseguier et al., 2020). In particular, operational ensemble data assimila-
tion methods rely classically on random perturbations of the initial conditions (PIC) together with an artificially 
carefully inflated variance (Anderson & Anderson, 1999) to increase the otherwise deficient ensemble forecasts' 
spread (Franzke et al., 2015; Gottwald & Harlim, 2013). Such inflation has the side effect of augmenting also the 
representation error of the ensemble members. In the present work, we compare the reliability of the ensemble 
spread of such a PIC model with our RSW-LU system, under the same noise amplitude, and show that the LU 
strategy yields a good trade-off between model error representation and ensemble spread.

The remainder of this paper is structured as follows. Section 2 describes the basic principles of the derivation of 
the rotating shallow water system in the LU formulation. Section 3 explains the numerical discretization of the 
stochastic dynamical system. Section 4 discusses the numerical results for an inviscid test case with homogene-
ous noise and a viscous test case with heterogeneous noise. In Section 5 we draw some conclusions and provide 
an outlook for future work. In the Appendices we demonstrate the energy conservation of the RSW–LU system, 
review some parameterizations of the noise and describe the discretization of the stochastic terms.

2.  Rotating Shallow Water Equations Under Location Uncertainty
In this section, we first review the LU representation introduced by Mémin (2014), then we derive the rotating 
shallow water equations under LU, denoted as RSW–LU, following the classical strategy (Vallis, 2017). In par-
ticular, we demonstrate one important characteristic of the RSW–LU, namely that it preserves the total energy of 
the large-scale flow.

2.1.  Location Uncertainty Principles

The LU formulation is based on a temporal-scale-separation assumption of the following stochastic flow:
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d� � = �(� �, �) d� + �(� �, �) d��,� (1)

where 𝐴𝐴 𝑿𝑿 is the Lagrangian displacement defined within the bounded domain 𝐴𝐴 Ω ⊂ ℝ𝑑𝑑 (𝑑𝑑 = 2 or 3) , 𝐴𝐴 𝒘𝒘 is the 
large-scale velocity that is both spatially and temporally correlated, and 𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡 is a highly oscillating unresolved 
component (also called noise) term that is only correlated in space. The spatial structure of such noise is speci-
fied through a deterministic integral operator �∶(�2(Ω))� → (�2(Ω))� , acting on square integrable vector-valued 
functions 𝐴𝐴 𝐴𝐴 ∈ (𝐿𝐿2(Ω))𝑑𝑑 , with a bounded kernel 𝐴𝐴 𝐴𝐴𝐴 such that

� [� ](�, �) = ∫Ω
�̆(�, �, �)�(�) d�, ∀ �∈ (�2(Ω))� .� (2)

The randomness of such a noise is driven by a functional Brownian motion 𝐴𝐴 𝑩𝑩𝑡𝑡 (Da Prato & Zabczyk, 2014). The 
fact that the kernel is bounded, implies that the resulting random flow 𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡 is a centered (of null ensemble mean) 
Gaussian process with the well-defined covariance tensor:

�(�, �, �, �) = �
[

(�(�, �) d��)(�(�, �) d��)�
]

= �(� − �) d�∫Ω
�̆(�, �, �)�̆�(�, �, �) d�,

� (3)

where 𝐴𝐴 𝔼𝔼 stands for the expectation, 𝐴𝐴 𝐴𝐴 is the Kronecker symbol and 𝐴𝐴 ∙𝑇𝑇  denotes matrix or vector transpose. The 
strength of the noise is measured by its variance, denoted here as 𝐴𝐴 𝒂𝒂 , and which is given by the diagonal compo-
nents of the covariance per unit of time:

𝒂𝒂(𝒙𝒙, 𝑡𝑡)d𝑡𝑡 = 𝑸𝑸(𝒙𝒙,𝒙𝒙, 𝑡𝑡𝑡 𝑡𝑡).� (4)

We remark that this variance tensor has the same unit as a diffusion tensor (𝐴𝐴 m2 ⋅ s−1 ) and that the density of the 
turbulent kinetic energy (TKE) can be specified through it by 𝐴𝐴 1

2
tr(𝒂𝒂)∕d𝑡𝑡 .

The previous representation (Equation 2) is a general way to define the noise, but other formulations can be 
conveniently used in practice. In particular, the covariance operator per unit of time, 𝐴𝐴 𝑸𝑸∕d𝑡𝑡 , admits an orthogonal 
eigenfunction basis 𝐴𝐴 {Φ𝑛𝑛(∙, 𝑡𝑡)}𝑛𝑛∈ℕ weighted by the eigenvalues 𝐴𝐴 Λ𝑛𝑛 ≥ 0 such that 𝐴𝐴

∑

𝑛𝑛∈ℕ Λ𝑛𝑛 < ∞ . Therefore, one may 
equivalently define the noise and its variance, based on the following spectral decomposition:

𝝈𝝈(𝒙𝒙, 𝑡𝑡) d𝑩𝑩𝑡𝑡 =
∑

𝑛𝑛∈ℕ
𝚽𝚽𝑛𝑛(𝒙𝒙, 𝑡𝑡) d𝛽𝛽𝑛𝑛

𝑡𝑡 , 𝒂𝒂(𝒙𝒙, 𝑡𝑡) =
∑

𝑛𝑛∈ℕ
𝚽𝚽𝑛𝑛(𝒙𝒙, 𝑡𝑡)𝚽𝚽𝑇𝑇

𝑛𝑛 (𝒙𝒙, 𝑡𝑡),� (5)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 denotes 𝐴𝐴 𝐴𝐴 independent and identically distributed (i.i.d.) one-dimensional standard Brownian motions. 
The specification of those basis functions from data driven empirical covariance matrices enables one to con-
struct specific noises, informed either by numerical or observational data. This strategy will allow us to devise 
various forms of the noise in the following.

Remark 1 Decomposition (Equation 1) is a temporal decomposition and not a spatial decomposition as classi-
cally formulated through spatial filters and/or decimation operators in large-eddies simulation (LES) tech-
niques. However, in the case of turbulent flows, time and spatial scales are related. As a matter of fact, in 
the inertial range, the turn-over time ratio for two different scales 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝓁𝓁 reads 𝐴𝐴 𝐴𝐴𝐿𝐿∕𝜏𝜏𝓁𝓁 ∝ (𝐿𝐿∕𝓁𝓁)2∕3 and pro-
vides a direct relation between time-scale coarsening and spatial-scale dilation. Unless specifically needed, 
in the following, we will thus refer to large/small or unresolved scales without differentiating between time 
or space scales. Note also that temporal filtering has already been used for the definition of oceanic models 
(Hecht et al., 2008) or large-eddies simulation approaches (Meneveau & Katz, 2000).

Remark 2 Decomposition (Equation 1) is written in terms of an Itô stochastic integral. This decomposition could 
have been written in the form of a Stratonovich integral as well. The calculus associated to this latter inte-
gral has the advantage of following the classical chain rule. However, the Stratonovich noise no longer has 
zero expectation. This leads thus to a problematic decomposition with velocity fluctuations of non null en-
semble mean. For smooth enough integrands, it is possible to safely move from one form to the other. For 
interested readers, more insights on the difference of the two settings and their implications in stochastic 
oceanic modeling are provided in Bauer, Chandramouli, Chapron, et al. (2020).
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Remark 3 The approach could be extended to express flows on arbitrary Riemannian manifolds. In that case it is 
easier to work directly with the Stratonovich formulation since it is invariant under the change of coordi-
nates. As we consider here only flows that assume the shallow approximation, the considered representa-
tion of the equations in 𝐴𝐴 ℝ2 and 𝐴𝐴 ℝ3 is a very accurate approximation.

The core of the LU model representation is based on a stochastic Reynolds transport theorem (SRTT), introduced 
by Mémin (2014), which describes the rate of change of a random scalar 𝐴𝐴 𝐴𝐴 transported by the stochastic flow 
(Equation 1) within a flow volume 𝐴𝐴  . In particular, for incompressible unresolved flows, � ⋅ � = 0 , the SRTT 
can be written as

d�
(

∫(�)
�(�, �) d�

)

= ∫(�)
(��� + �� ⋅ (� −��)) d�,� (6a)

��� = d�� + (� −��) ⋅ �� d� + �d�� ⋅ �� −
1
2
� ⋅ (���) d�,� (6b)

where 𝐴𝐴 d𝑡𝑡𝑞𝑞(𝒙𝒙, 𝑡𝑡) = 𝑞𝑞(𝒙𝒙, 𝑡𝑡 + d𝑡𝑡) − 𝑞𝑞(𝒙𝒙, 𝑡𝑡) stands for the forward time-increment of 𝐴𝐴 𝐴𝐴 at a fixed point 𝐴𝐴 𝒙𝒙 , 𝐴𝐴 𝔻𝔻𝑡𝑡 is in-
troduced as the stochastic transport operator in Resseguier et al. (2017c) and �� = 1

2
� ⋅ � is referred to as the 

Itô-Stokes drift (ISD) in Bauer, Chandramouli, Chapron, et al. (2020). The transport operator plays the role 
of the material derivative in the stochastic setting. The ISD is defined by the variance tensor divergence and 
embodies the effect of statistical inhomogeneity of the unresolved flow on the large-scale component. As 
shown in Bauer, Chandramouli, Chapron, et al. (2020), it can be considered as a generalization of the Stokes 
drift associated to waves propagation with the emergence of a similar vortex force and Coriolis correction. 
In the definition of the stochastic transport operator in Equation 6b, the last two terms describe, respectively, 
an energy backscattering from the unresolved scales to the large scales and an inhomogeneous diffusion of 
the large scales driven by the variance of the unresolved flow components. The diffusion term generalizes the 
Boussinesq eddy viscosity assumption (here with a matrix eddy viscosity). This term is, nevertheless, directly 
related to the noise form and not anymore defined by loose analogy with the molecular dissipation mechanism. 
The backscattering term corresponds to an energy source that is exactly compensated by the diffusion term 
(Resseguier et al., 2017c).

In particular, for an isochoric flow with � ⋅ (𝒘𝒘 −𝒘𝒘�) = 0 , one may immediately deduce from Equation 6a the 
following transport equation of an extensive scalar:

𝔻𝔻𝑡𝑡𝑞𝑞 = 0,� (7)

where the energy of such random scalar 𝐴𝐴 𝐴𝐴 is globally conserved, as shown in Resseguier et al. (2017c):

d�
(

∫Ω

1
2
�2 d�

)

=
(

1
2 ∫Ω

�� ⋅ (���) d�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Energy loss by diffusion

+ 1
2 ∫Ω

(��)���� d�
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Energy intake by noise

d� = 0.
� (8)

Indeed, this can be interpreted as a process where the energy brought by the noise is exactly counterbalanced by 
that dissipated from the diffusion term.

2.2.  Derivation of RSW–LU

This section describes in detail the derivation of the RSW–LU system. This model enriches the formulation 
described in Mémin, (2014). Here it is fully stochastic and includes rotation to suit simulations of geophysical 
flows on a rotating frame.

The above SRTT (Equation 6a) and Newton's second principle allow us to derive the following (three-dimension-
al) stochastic equations of motions in a rotating frame (Bauer, Chandramouli, Chapron, et al., 2020):
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���������� �������� ��������∶

𝔻𝔻�� + � × (� d� + ��d��) = −1
�
��

(

� d� + d���
)

+ ��2 (� d� + ��d��) ,
� (9a)

� ������� �������� ��������∶

𝔻𝔻�� = −1
�
��

(

� d� + d�
�
)

− � d� + �∇2 (� d� + 
�d
�) ,
� (9b)

���� ��������∶

𝔻𝔻�� = 0,

� (9c)

���������� ���������∶

�� ⋅ (� − ��) + ��(� −��) = 0, �� ⋅ ��d�� + ����d�� = 0,

� (9d)

where 𝐴𝐴 𝒖𝒖 = (𝑢𝑢𝑢 𝑢𝑢)𝑇𝑇 (resp. 𝐴𝐴 𝝈𝝈𝐻𝐻d𝑩𝑩𝑡𝑡 ) and 𝐴𝐴 𝐴𝐴 (resp. 𝐴𝐴 𝐴𝐴𝑧𝑧d𝐵𝐵𝑡𝑡 ) are the horizontal and vertical components of the three-di-
mensional large-scale flow 𝐴𝐴 ⃖⃖⃗𝑤𝑤 (resp. the unresolved random flow 𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡 ); 𝐴𝐴 𝒇𝒇 = (2Ω̃sinΘ)𝒌𝒌 is the Coriolis parameter 
varying in latitude 𝐴𝐴 Θ , with the Earth's angular rotation rate 𝐴𝐴 Ω̃ and the vertical unit vector 𝐴𝐴 𝒌𝒌 = [0, 0, 1]𝑇𝑇 ; 𝐴𝐴 𝐴𝐴 is the 
fluid density; 𝐴𝐴 ∇𝐻𝐻 = [𝜕𝜕𝑥𝑥, 𝜕𝜕𝑦𝑦]𝑇𝑇  denotes the horizontal gradient; 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐴𝜎𝜎𝑡𝑡 = d𝑝𝑝𝜎𝜎𝑡𝑡 ∕d𝑡𝑡 (informal definition) are the 
time-smooth and time-uncorrelated components of the pressure field, respectively; 𝐴𝐴 𝐴𝐴 is the Earth's gravity value 
and 𝐴𝐴 𝐴𝐴 is the kinematic viscosity. In the following, the molecular friction term is assumed to be negligible and 
dropped from the equations. Note that in our setting the continuity Equation 9d ensure volume conservation 
(Resseguier et al., 2017c) and mass conservation (Equation 9c).

In order to model the large-scale circulations in the atmosphere and ocean, the hydrostatic balance approximation 
is widely adopted (Vallis, 2017). We now specify the scaling for this balance in the LU framework. We first adi-
mensionalize the basic variables as

(𝑥𝑥𝑥 𝑥𝑥) =  (𝑥𝑥′,𝑦𝑦 ′), 𝒖𝒖 =  𝒖𝒖′, 𝑡𝑡 =  𝑡𝑡′,  = ∕ , 𝑧𝑧 = 𝛼𝛼𝑧𝑧′, 𝛼𝛼 = ∕,� (10)

where the capital letters are used for the characteristic scales of variables and 𝐴𝐴 ∙′ denotes adimensional variables. 
To scale properly the vertical velocity, we propose to adopt a sufficient incompressible condition (Resseguier 
et al., 2017b, 2017c) for the resolved component in Equation 9d, that is

∇𝐻𝐻 ⋅ 𝒖𝒖 + 𝜕𝜕𝑧𝑧𝑤𝑤 = 0, ∇𝐻𝐻 ⋅ 𝒖𝒖𝑠𝑠 + 𝜕𝜕𝑧𝑧𝑤𝑤𝑠𝑠 = 0.� (11)

Note that the latter divergence-free condition on the ISD is usually considered for the classical Stokes drift 
(McWilliams et  al., 2004) although being controversial (Mellor, 2016). The three-dimensional bolus velocity 
introduced in the eddy-induced-advection parametrization (Gent et al., 1995; Gent & McWilliams, 1990; Grif-
fies, 1998) is also assumed to be incompressible in order to preserve the tracer's moments. In our case, the justi-
fication of this constraint is further strengthen by global energy conservation and a desirable bridge between the 
classical (global energy conserving) rotating shallow water system and its stochastic representation. Under the 
condition (Equation 11), a classical scaling of the vertical (resolved) velocity holds:

𝑤𝑤 = 𝛼𝛼  𝑤𝑤′.� (12)

Apart from these classical scaling numbers, the horizontal component 𝐴𝐴 𝒂𝒂𝐻𝐻 of the variance/diffusion tensor 𝐴𝐴 𝒂𝒂 , 
which characterizes the strength of the unresolved component, is scaled as

𝒂𝒂� = �  𝒂𝒂′
�, 𝒂𝒂 =

⎛

⎜

⎜

⎝

𝒂𝒂� 𝒂𝒂��

𝒂𝒂�� ��

⎞

⎟

⎟

⎠

, � = �


EKE
MKE

,
� (13)

where the specific factor 𝐴𝐴 𝐴𝐴 (Resseguier et al., 2017b) is defined as the ratio between the eddy kinetic energy 
(EKE) and the mean kinetic energy (MKE), multiplied by the ratio between the unresolved scale correlation 
time 𝐴𝐴 𝜎𝜎 and the large-scale advection time. From the definitions (Equations 3 and 4), the scaling of the horizontal 
small-scale flow reduces to
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𝝈𝝈𝐻𝐻d𝑩𝑩𝑡𝑡 =
√

𝜖𝜖  (𝝈𝝈𝐻𝐻d𝑩𝑩𝑡𝑡)′.� (14)

In addition, we consider the following scaling between the vertical and horizontal components of the unresolved 
flow:

𝜎𝜎𝑧𝑧d𝐵𝐵𝑡𝑡

‖𝝈𝝈𝐻𝐻d𝑩𝑩𝑡𝑡‖
∼ 𝛼𝛼 𝛼𝛼𝛼 i.e. 𝜎𝜎𝑧𝑧d𝐵𝐵𝑡𝑡 =

√

𝜖𝜖 𝜖𝜖  (𝜎𝜎𝑧𝑧d𝐵𝐵𝑡𝑡)′,� (15)

where 𝐴𝐴 𝐴𝐴 is a small factor (Resseguier et al., 2017b). Again, from the definitions (Equations 3 and 4), the other 
components of the variance/diffusion tensor scale then as:

𝒂𝒂𝐻𝐻𝐻𝐻 = 𝜖𝜖 𝜖𝜖  𝒂𝒂′
𝐻𝐻𝐻𝐻, 𝑎𝑎𝑧𝑧 = 𝜖𝜖 𝜖𝜖2 𝛼𝛼  𝑎𝑎′𝑧𝑧, i.e. 𝑎𝑎𝑧𝑧

‖𝒂𝒂𝐻𝐻‖
∼ 𝛼𝛼2𝛿𝛿2.� (16)

This relation provides a ratio between the vertical and horizontal eddy diffusivities. It is in practice quite small at 
large scale (Lévy et al., 2010, 2012).

Now, with 𝐴𝐴 𝒇𝒇 = 0 and a constant density 𝐴𝐴 𝐴𝐴0 , the horizontal momentum Equation 9a implies the following scalings 
of the rescaled pressures:

𝑝̃𝑝 = 𝑝𝑝∕𝜌𝜌0 =  2 𝑝̃𝑝′, d𝑝̃𝑝𝜎𝜎𝑡𝑡 = d𝑝𝑝𝜎𝜎𝑡𝑡 ∕𝜌𝜌0 =
√

𝜖𝜖  (d𝑝̃𝑝𝜎𝜎𝑡𝑡 )
′.� (17)

Finally, substituting all the above scalings into Equation 9b, the adimensional vertical momentum is given by

�2
[

d��′ + (�′ ⋅ �′
��

′ +�′�′��′) d�′ +
√

�
(

(��d��)′ ⋅ �′
��

′ + � (��d��)′�′��′
)

− �
2

(

(�′
� ⋅ �′

� + � �′��′
��) ⋅ �

′
��

′ + � (�′
� ⋅ �′

�� + � �′��′�)�′��′

+�′
� ⋅ (�′

��
′
��

′ + � �′
���

′
��′) + � �′�(�′

���
′
��

′ + � �′��′��′)
)

d�′
]

= −�′�
(

�̃′ d�′ +
√

� (d�̃�� )
′
)

− d�′∕Fr2,

� (18)

where 𝐴𝐴 Fr =  ∕
√

𝑔𝑔 is the Froude number. Let us now make the following assumptions:

𝛼𝛼2 ≪ 1, Fr2 = (1), 𝜖𝜖 = (1), 𝛿𝛿 𝛿 1.� (19)

The acceleration term on the left-hand side (LHS) of Equation 9b has now a lower order of magnitude than the 
RHS terms. Restoring the dimensions, the hydrostatic balance under moderate horizontal uncertainty and weak 
vertical uncertainty hence boils down to

𝜕𝜕𝑧𝑧
(

𝑝𝑝 d𝑡𝑡 + d𝑝𝑝𝜎𝜎𝑡𝑡
)

= −𝜌𝜌𝜌𝜌 d𝑡𝑡𝑡 i.e. 𝜕𝜕𝑧𝑧𝑝𝑝 = −𝜌𝜌𝜌𝜌𝜌𝜌𝜌 𝑧𝑧d𝑝𝑝𝜎𝜎𝑡𝑡 = 0.� (20a)

We remark that the unique decomposition principle of a semimartingale process (Kunita, 1997) is used here to 
separate the bounded variation component (in terms of 𝐴𝐴 d𝑡𝑡 ) and the martingale part (in terms of 𝐴𝐴 d𝑩𝑩𝑡𝑡 or 𝐴𝐴 d𝑝𝑝𝜎𝜎𝑡𝑡  ). Inte-
grating vertically these hydrostatic balances (Equation 20a) from 0 to 𝐴𝐴 𝐴𝐴 (see Figure 1), we have

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑝𝑝0(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) − 𝜌𝜌0𝑔𝑔𝑔𝑔𝑔 d𝑝𝑝𝜎𝜎𝑡𝑡 (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = d𝑝𝑝𝜎𝜎𝑡𝑡 (𝑥𝑥𝑥 𝑥𝑥𝑥 0,𝑡𝑡 ),� (20b)

where 𝐴𝐴 𝐴𝐴0 denotes the pressure at the bottom of the basin 𝐴𝐴 (𝑧𝑧 = 0) . Following (Vallis, 2017), we assume that the 
weight of the overlying fluid is negligible, that is 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) ≈ 0 with 𝐴𝐴 𝐴𝐴 the height of the free surface, leading to 

𝐴𝐴 𝐴𝐴0 = 𝜌𝜌0𝑔𝑔𝑔𝑔 . This allows us to rewrite Equation 20b such that for any 𝐴𝐴 𝐴𝐴 ∈ [0, 𝜂𝜂] we have

𝑝𝑝(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝜌𝜌0𝑔𝑔 (𝜂𝜂(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) − 𝑧𝑧) .� (20c)

Subsequently, the pressure gradient force in the horizontal momentum Equation 9a reads
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− 1
�0

��
(

� d� + d���
)

= −���� d� − 1
�0

��d��� ,� (20d)

which does not depend on 𝐴𝐴 𝐴𝐴 according to Equations 20b and 20c. Therefore, the acceleration terms on the LHS 
of Equation 9a cannot depend on 𝐴𝐴 𝐴𝐴 , and the shallow water momentum equation under weak vertical uncertainty 
(𝐴𝐴 𝐴𝐴 𝐴 1 ) can be written finally as

𝔻𝔻�
� � + � ×

(

� d� + ��d��
)

= −���� d� − 1
�0

��d��� ,� (21a)

𝔻𝔻�
� � = d�� +

(

(� − ��) d� + ��d��
)

⋅ ��� −
1
2
�� ⋅

(

�����
)

d�,� (21b)

where �� = 1
2
�� ⋅ �� is the two-dimensional ISD and 𝐴𝐴 𝔻𝔻𝐻𝐻

𝑡𝑡  denotes the horizontal stochastic transport operator 
whose expression is recalled in Equation 21b for the 𝐴𝐴 𝐴𝐴 component. The relation between the unresolved flow 
component and the random pressure can be further specified by considering a scaling of the martingale part of 
the momentum equation:

√

� d��̃′ +
√

� (��d��)′ ⋅ �′
��

′ +

√

�
Ro

� ′ × (��d��)′ =
√

� �′
� (d��� )

′,� (22)

where 𝐴𝐴 Ro =  ∕(𝑓𝑓0) denotes the Rossby number with 𝐴𝐴 𝒇𝒇 = 𝑓𝑓0𝒇𝒇 ′ , and 𝐴𝐴 𝐴𝐴𝐴 = 𝑢𝑢 − 𝔼𝔼(𝑢𝑢) stands for the martingale part 
of the horizontal velocity. We note that the scaling 𝐴𝐴 d𝑡𝑡𝑢̃𝑢 =

√

𝜖𝜖  d𝑡𝑡𝑢̃𝑢′ is obtained from the variance of the martin-
gale part of the vertical acceleration term (Equation 18) considering the hydrostatic balance (Equation 20a) and 
the continuity Equation 11. Therefore, for small Rossby number (𝐴𝐴 Ro ≤ 1 ), the random Coriolis term counter-bal-
ances the random gradient pressure force:

� × ��d�� ≈ − 1
�0

��d��� .� (23)

Besides, under weak vertical uncertainty, the dimensional continuity (Equations 11 and 9d) reduce to

�� ⋅ ��d�� = �� ⋅ �� = 0.� (24)

As a result, the vertical integration (from bottom topography 𝐴𝐴 𝐴𝐴𝑏𝑏 to free surface 𝐴𝐴 𝐴𝐴 ) of the continuity Equation 9d 
become

(� −��)|�=� − (� −��)|�=�� = −ℎ�� ⋅ 𝒖𝒖, �d��|�=� − �d��|�=�� = 0,� (25a)

Figure 1.  Illustration of a single-layered shallow water system (inspired by Vallis, 2017). 𝐴𝐴 𝐴 is the thickness of a water 
column, 𝐴𝐴 𝐴𝐴 is the height of the free surface and 𝐴𝐴 𝐴𝐴𝑏𝑏 is the height of the bottom topography. As a result, we have 𝐴𝐴 𝐴 = 𝜂𝜂 − 𝜂𝜂𝑏𝑏 .
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where 𝐴𝐴 𝐴 = 𝜂𝜂 − 𝜂𝜂𝑏𝑏 denotes the thickness of the water column (with a still bottom). On the other hand, a small ver-
tical (Eulerian) displacement at the top and bottom of the fluid leads to a variation of the position of a particular 
fluid element (Vallis, 2017):

((𝑤𝑤 −𝑤𝑤𝑠𝑠) d𝑡𝑡 + 𝜎𝜎d𝐵𝐵𝑡𝑡)|𝑧𝑧=𝜂𝜂 = 𝔻𝔻𝐻𝐻
𝑡𝑡 𝜂𝜂𝜂 ((𝑤𝑤 −𝑤𝑤𝑠𝑠) d𝑡𝑡 + 𝜎𝜎d𝐵𝐵𝑡𝑡)|𝑧𝑧=𝜂𝜂𝑏𝑏 = 𝔻𝔻𝐻𝐻

𝑡𝑡 𝜂𝜂𝑏𝑏.� (25b)

Combining Equations 25a and 25b, we deduce the following stochastic mass equation:

𝔻𝔻�
� ℎ + ℎ�� ⋅ 𝒖𝒖 d� = 0.� (26)

Gathering all the elements derived so-far, we finally obtain the following RSW-LU system

(������������ �� ��������)

𝔻𝔻�� + � × � d� = −��� d�,

� (27a)

(������������ �� ����)

� �ℎ + ℎ� ⋅ � d� = 0,

� (27b)

(������ �������)

� × �d�� = −1
�
�d��� ,

� (27c)

(�������������� �����������)

� ⋅ 𝝈𝝈d𝑩𝑩� = 0, � ⋅ �� = 0,

� (27d)

where the symbol 𝐴𝐴 𝐴𝐴 for all horizontal variables are dropped for readability reasons. In Appendix A it is shown 
that this stochastic system conserves the global energy:

d𝑡𝑡 ∫Ω

𝜌𝜌
2
(

ℎ|𝒖𝒖|2 + 𝑔𝑔𝑔2) d𝒙𝒙 = 0.� (28)

It shares thus exactly the same energy conservation property as the deterministic one and beyond their formal 
resemblance this provides a strong physical link between the two systems. Moreover, it can be noticed that under 
a sufficiently weak (horizontal) uncertainty (𝐴𝐴 𝝈𝝈 ≈ 0 ), the system (Equations 27a, 27b, 27c, and 27d) reduces to the 
classical RSW system, in which the stochastic transport operator weighted by the unit of time, 𝐴𝐴 𝔻𝔻𝑡𝑡∕d𝑡𝑡 , reduces to 
the material derivative.

3.  Structure-Preserving Discretization of RSW–LU
In order to perform numerical simulations of the RSW–LU (Equations 27a, 27b, 27c, and 27d) the noise term 

𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡 has to be a priori parametrized. Its shape is conveniently expressed through a spectral representation and 
a set of basis functions (Equation 5). In this work homogeneous as well as heterogeneous spatial structures have 
been used and the way they are defined is reviewed in Appendix B. The incompressible homogenous noise (see 
Appendix B1) is defined through a convolution kernel and is associated with Fourier modes orthogonal func-
tions. It is easy to implement through fast Fourier transform (FFT). As shown in Section 4.1, this noise was in 
particular used to assess the numerical energy behavior of the discrete scheme. However, homogeneous noises, 
although carefully scaled from a known energy spectrum established at high resolution, fail to represent inho-
mogeneity effect encoded by spatially varying variance (the variance is constant and diagonal for homogeneous 
incompressible noise). This is detrimental to represent large scale effects shaped by the small-scale components 
in geophysical fluid dynamics. As a matter of fact as shown in Bauer, Chandramouli, Chapron, et al.  (2020), 
heterogeneous noise shapes the large-scale flow in a way akin to the action of vortex force associated with the 
classical Stokes drift.
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In this work, two different parameterizations of heterogeneous noise have been used and are described in Ap-
pendix B2. The former consists in calibrating empirical orthogonal basis functions (EOF) before the simulation 
(off-line) from available high-resolution simulation data while the latter consists in specifying the basis functions 
from the on-going (low resolution) simulation (i.e., on-line). The second basis functions do not depend on data 
and are time evolving whereas the first ones are data driven and stationary. A procedure based on dynamic mode 
decomposition (Schmid, 2010) to define the noise through evolving basis functions could have been as well used, 
as proposed by Gugole & Franzke (2019). Such a time evolving basis, learned from a high resolution simulation, 
are shown to perform better that stationary EOF based models. We will have the same type of conclusions for the 
non-stationary noise experimented here. In Section 4.2, both heterogeneous noises are adopted for identifying the 
barotropic instability of a mid-latitude jet.

In the following, we focus on an energy conserving (in space) approximation of the random dynamical system 
(RSW–LU). In this context, the spatial discretization allows us to mimic the balance between the global energy 
brought by the noise and the LU-diffusion (see Equation 8) at each time step, hence no additional numerical 
dissipation or energy increase is introduced into the system. Considering the definition of the stochastic transport 
operator 𝐴𝐴 𝔻𝔻𝑡𝑡 in Equation 6b, the RSW–LU system in Equations 27a and 27b can be explicitly written as

d�� = (−� ⋅ �� − � × � − ���) d� +
(1
2
� ⋅ � ⋅ (��) d� − �d�� ⋅ ��

)

,� (29a)

d�ℎ = −� ⋅ (�ℎ) d� +
(1
2
� ⋅ � ⋅ (�ℎ) d� − �d�� ⋅ �ℎ

)

.� (29b)

We suggest to develop an approximation of the stochastic RSW–LU model (Equations 29a and 29b) by first 
discretizing the deterministic model underlying this system with a structure-preserving discretization method 
(that preserves energy in space) and, then, to approximate (with a potentially different discretization method) 
the stochastic terms. Here, we use for the former a variational discretization approach on a triangular C–grid 
while for the latter we apply a standard finite difference method. Note that for the methodology introduced in 
this manuscript, other spatially energy conserving discretizations rather than the suggested variational integrator 
could be used too. The deterministic dynamical core of our stochastic system results from simply setting 𝐴𝐴 𝝈𝝈 ≈ 0 in 
the Equations 29a and 29b. To obtain the full discretized (in space and time) scheme for this stochastic system, 
we wrap the discrete stochastic terms around the deterministic core and combine this with an Euler–Marayama 
time scheme.

Introducing discretizations of the stochastic terms that do not necessarily share the same operators as the de-
terministic scheme has various advantages, as discussed in more detail in Section 3.2.1. For instance, such a 
well defined interface between these two model components minimizes the necessity to adapt the discretization 
schemes to each other which, in turn, would permit us to apply our method immediately to existing dynamical 
cores of global numerical weather prediction (NWP) models.

3.1.  Discretization of Deterministic RSW Equations

As mentioned above, the deterministic model (or deterministic dynamical core) of the above stochastic system 
results from setting 𝐴𝐴 𝝈𝝈 ≈ 0 , which leads via (Equation 4) to 𝐴𝐴 𝒂𝒂 ≈ 0 . Hence, Equations 29a and 29b reduce to the 
deterministic RSW equations

d�� =
(

−(� × � + � ) × � − �
(1
2
�2
)

− ���
)

d�, d�ℎ = −� ⋅ (�ℎ) d�,� (30)

where we used the vector calculus identity 𝒖𝒖 ⋅ �𝒖𝒖 = (� × 𝒖𝒖) × 𝒖𝒖 + 1
2
𝒖𝒖2 . Note that in the deterministic case 𝐴𝐴 d𝑡𝑡∕d𝑡𝑡 

agrees (in the limit 𝐴𝐴 d𝑡𝑡 → 0 ) with the partial derivative 𝐴𝐴 𝐴𝐴∕𝜕𝜕𝜕𝜕 .

3.1.1.  Variational Discretizations

In the following we present an energy conserving (in space) approximation of these equations using a variational 
discretization approach. While details about the derivation can be found in Bauer & Gay-Balmaz (2019a); Brecht 
et al. (2019), here we only give the final, fully discrete scheme.
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To do so, we start with introducing the mesh and some notation. The varia-
tional discretization of Equation 30 results in a scheme that corresponds to 
a C-grid staggering of the variables on a quasi uniform triangular grid with 
hexagonal/pentagonal dual mesh. Let 𝐴𝐴 𝐴𝐴 denote the number of triangles used 
to discretize the domain. As shown in Figure 2, we use the following nota-
tion: 𝐴𝐴 𝐴𝐴  denotes the primal triangle, 𝐴𝐴 𝐴𝐴 the dual hexagon/pentagon, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖 ∩ 𝑇𝑇𝑗𝑗 
the primal edge and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝜁𝜁+ ∩ 𝜁𝜁− the associated dual edge. Furthermore, we 
have 𝐴𝐴 𝐧𝐧𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐭𝐭𝑖𝑖𝑖𝑖 as the normalized normal and tangential vector relative to 
edge 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 at its midpoint. Moreover, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the discrete water depth at the cir-
cumcenter of 𝐴𝐴 𝐴𝐴𝑖𝑖 , ��� the discrete bottom topography at the circumcenter of 𝐴𝐴 𝐴𝐴𝑖𝑖 , 
and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 = (𝐮𝐮 ⋅ 𝐧𝐧)𝑖𝑖𝑖𝑖 the normal velocity at the triangle edge midpoints in the 
direction from triangle 𝐴𝐴 𝐴𝐴𝑖𝑖 to 𝐴𝐴 𝐴𝐴𝑗𝑗 . We denote 𝐴𝐴 𝐷̄𝐷𝑖𝑖𝑖𝑖 = 1

2
(𝐷𝐷𝑖𝑖 +𝐷𝐷𝑗𝑗) as the water 

depth averaged to the edge midpoints.

The variational discretization method does not require to define explicitly 
approximations of the differential operators because they directly result from 
the discrete variational principle. It turns out that on the given mesh, these 
operators agree with the following definitions of standard finite difference 
and finite volume operators:

(Grad𝑛𝑛 𝐹𝐹 )𝑖𝑖𝑖𝑖
△
=

𝐹𝐹𝑇𝑇𝑗𝑗 − 𝐹𝐹𝑇𝑇𝑖𝑖

|𝑒𝑒𝑖𝑖𝑖𝑖|
,

(Grad𝑡𝑡 𝐹𝐹 )𝑖𝑖𝑖𝑖
△
=

𝐹𝐹𝜁𝜁− − 𝐹𝐹𝜁𝜁+

|𝑒𝑒𝑖𝑖𝑖𝑖|
,

(Div 𝑉𝑉 )𝑖𝑖
△
= 1

|𝑇𝑇𝑖𝑖|

∑

𝑘𝑘∈{𝑗𝑗𝑗𝑗𝑗− ,𝑖𝑖+}
|𝑒𝑒𝑖𝑖𝑖𝑖|𝑉𝑉𝑖𝑖𝑖𝑖,

(Curl 𝑉𝑉 )𝜁𝜁
△
= 1

|𝜁𝜁 |
∑

𝑒𝑒𝑛𝑛𝑛𝑛∈𝜕𝜕𝜕𝜕
|𝑒𝑒𝑛𝑛𝑛𝑛|𝑉𝑉𝑛𝑛𝑛𝑛,

� (31)

for the normal velocity 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 and a scalar function 𝐴𝐴 𝐴𝐴  either sampled as 𝐴𝐴 𝐴𝐴𝑇𝑇𝑖𝑖 at the circumcenter of the triangle 𝐴𝐴 𝐴𝐴𝑖𝑖 or 
sampled as 𝐴𝐴 𝐴𝐴𝜁𝜁± at the center of the dual cell 𝐴𝐴 𝐴𝐴± . The operators 𝐴𝐴 Grad𝑛𝑛 and 𝐴𝐴 Grad𝑡𝑡 correspond to the gradient in the 
normal and tangential direction, respectively, and 𝐴𝐴 Div to the divergence of a vector field:

(∇𝐹𝐹 )𝑖𝑖𝑖𝑖 ≈ (Grad𝑛𝑛 𝐹𝐹 )𝐧𝐧𝑖𝑖𝑖𝑖 + (Grad𝑡𝑡 𝐹𝐹 )𝐭𝐭𝑖𝑖𝑖𝑖 ,� (32)

(∇ ⋅ 𝐮𝐮)𝑖𝑖 ≈ (Div 𝑉𝑉 )𝑖𝑖,� (33)

(∇ × 𝐮𝐮)𝜁𝜁 ≈ (Curl 𝑉𝑉 )𝜁𝜁 .� (34)

The last equation defines the discrete vorticity and for later use, we also discretize the potential vorticity as

∇ × 𝐮𝐮 + 𝑓𝑓
ℎ

≈
(Curl 𝑉𝑉 )𝜁𝜁 + 𝑓𝑓𝜁𝜁

𝐷𝐷𝜁𝜁
, 𝐷𝐷𝜁𝜁 =

∑

𝑒𝑒𝑖𝑖𝑖𝑖∈𝜕𝜕𝜕𝜕

|𝜁𝜁 ∩ 𝑇𝑇𝑖𝑖|

|𝜁𝜁 |
𝐷𝐷𝑖𝑖.� (35)

3.1.2.  Semi-Discrete RSW Scheme

With the above notation, the deterministic semi-discrete RSW equations read:

d𝑡𝑡𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉
𝑖𝑖𝑖𝑖 (𝑉𝑉 𝑉𝑉𝑉) Δ𝑡𝑡𝑡 for all edges 𝑒𝑒𝑖𝑖𝑖𝑖 ,� (36a)

d𝑡𝑡𝐷𝐷𝑖𝑖 = 𝐷𝐷
𝑖𝑖 (𝑉𝑉 𝑉𝑉𝑉) Δ𝑡𝑡𝑡 for all cells 𝑇𝑇𝑖𝑖,� (36b)

where 𝐴𝐴 𝑉𝑉
𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐷𝐷

𝑖𝑖  denote the deterministic spatial operators, and 𝐴𝐴 Δ𝑡𝑡 stands for the discrete time step. The RHS of 
the momentum Equation 36a is given by

𝑉𝑉
𝑖𝑖𝑖𝑖 (𝑉𝑉 𝑉𝑉𝑉)

△
= −Adv(𝑉𝑉 𝑉𝑉𝑉)𝑖𝑖𝑖𝑖 − K(𝑉𝑉 )𝑖𝑖𝑖𝑖 − G(𝐷𝐷)𝑖𝑖𝑖𝑖 ,� (37)

where Adv denotes the discretization of the advection term (� × � + � ) × � of Equation 30, K the approximation 
of the gradient of the kinetic energy �( 1

2
𝒖𝒖2) and G of the gradient of the height field 𝐴𝐴 𝐴𝐴∇𝜂𝜂 . Explicitly, the advection 

term is given by

Figure 2.  Notation and indexing conventions for the 2D simplicial mesh.
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���(� ,�)��
△
=

− 1
���|�̃��|

(

(Curl � )�− + ��−

)

(

|�− ∩ ��|

2|��|
���− |���− |���− +

|�− ∩ ��|

2|��|
���− |���− |���−

)

+ 1
���|�̃��|

(

(Curl � )�+ + ��+

)

(

|�+ ∩ ��|

2|��|
���+ |���+ |���+ +

|�+ ∩ ��|

2|��|
���+ |���+ |���+

)

,

� (38)

where 𝐴𝐴 𝐴𝐴𝜁𝜁± is the Coriolis term evaluated at the center of 𝐴𝐴 𝐴𝐴± . Moreover, the two gradient terms read:

𝐾𝐾(𝑉𝑉 )𝑖𝑖𝑖𝑖
△
= 1

2
(Grad𝑛𝑛 𝐹𝐹 )𝑖𝑖𝑖𝑖 , 𝐹𝐹𝑇𝑇𝑖𝑖 =

∑

𝑘𝑘∈{𝑗𝑗𝑗𝑗𝑗− ,𝑖𝑖+}

|𝑒𝑒𝑖𝑖𝑖𝑖| |𝑒𝑒𝑖𝑖𝑖𝑖|(𝑉𝑉𝑖𝑖𝑖𝑖)2

2|𝑇𝑇𝑘𝑘|
,� (39)

𝐺𝐺(𝐷𝐷)𝑖𝑖𝑖𝑖
△
= 𝑔𝑔(Grad𝑛𝑛 (𝐷𝐷 + 𝜂𝜂𝑏𝑏))𝑖𝑖𝑖𝑖 .� (40)

The RHS of the continuity equation (Equation 36b) is given by

�
� (� ,�)

△
= −

(

Div (�� )
)

�
,� (41)

which approximates the divergence term −� ⋅ (𝒖𝒖ℎ) .

3.1.3.  Time Scheme

For the time integrator we use a Crank-Nicolson-type scheme where we solve the system of fully discretized 
non-linear momentum and continuity equations by a fixed-point iterative method. The corresponding algorithm 
coincides for 𝐴𝐴 𝝈𝝈 = 0 with the one given in Section 3.3.

3.2.  Spatial Discretization of RSW–LU

The fully stochastic system has additional terms on the RHS of Equations 29a and 29b. With these terms the 
discrete equations read:

d𝑡𝑡𝑉𝑉𝑖𝑖𝑖𝑖 = 𝑉𝑉
𝑖𝑖𝑖𝑖 (𝑉𝑉 𝑉𝑉𝑉) Δ𝑡𝑡 + Δ𝑉𝑉

𝑖𝑖𝑖𝑖 ,� (42a)

d𝑡𝑡𝐷𝐷𝑖𝑖 = 𝐷𝐷
𝑖𝑖 (𝑉𝑉 𝑉𝑉𝑉) Δ𝑡𝑡 + Δ𝐷𝐷

𝑖𝑖 ,� (42b)

where the stochastic LU-terms are given by

Δ�
��

△
=
(Δ�
2

(� ⋅ � ⋅ (��))�� − (�d�� ⋅ ��)��
)

⋅ ��� ,� (42c)

Δ�
�

△
= Δ�

2
(� ⋅ � ⋅ (��))� − (�d�� ⋅ ��)�.� (42d)

Note that the two terms within the large bracket in Equation 42c comprise two Cartesian components of a vector 
which is then projected onto the triangle edge's normal direction via 𝐴𝐴 𝒏𝒏𝑖𝑖𝑖𝑖 . The two terms in Equation 42d are scalar 
valued at the cell circumcenters 𝐴𝐴 𝐴𝐴 .

The parametrization of the noise described in Appendix B is formulated in Cartesian coordinates, because this 
allows using standard algorithms to calculate EOFs, for instance. Likewise, we represent the stochastic LU-terms 
in Cartesian coordinates but to connect both deterministic and stochastic terms, we will calculate the occurring 
differentials with operators as provided by the deterministic dynamical core (see interface description below). 
Therefore, we write the second term in Equation 42c as

(𝝈𝝈d𝑩𝑩𝑡𝑡 ⋅ ∇𝐹𝐹 )𝑖𝑖𝑖𝑖 =
2
∑

𝑙𝑙=1

(𝝈𝝈d𝑩𝑩𝑡𝑡)𝑙𝑙𝑖𝑖𝑖𝑖(∇𝐹𝐹 )𝑙𝑙𝑖𝑖𝑖𝑖 ,� (43)
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in which 𝐴𝐴 (𝝈𝝈d𝑩𝑩𝑡𝑡)𝑖𝑖𝑖𝑖 denotes the discrete noise vector with two Cartesian components, constructed as described in 
Appendix B and evaluated at the edge midpoint 𝐴𝐴 𝐴𝐴𝐴𝐴 . The scalar function 𝐴𝐴 𝐴𝐴  is a placeholder for the Cartesian compo-
nents of the velocity field 𝐴𝐴 𝒖𝒖 = (𝑢𝑢1, 𝑢𝑢2) . Likewise, the first term in Equation 42c can be written component-wise as

(� ⋅ � ⋅ (𝒂𝒂� ))�� =
2
∑

�,�=1

(

���
(

��� (���� )
)

��

)

��
,� (44)

where 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘 denotes the matrix elements of the variance tensor which will be evaluated, similarly to the discrete 
noise vector, at the edge midpoints. For a concrete realization of the differentials on the RHS of both stochastic 
terms, we will use the gradient operator (Equation 32) as introduced next.

To calculate the terms in Equation 42d we also use the representations (Equations 43 and 44) for a scalar function 
𝐴𝐴 𝐴𝐴 = 𝐷𝐷 describing the water depth. However, as our proposed procedure will result in terms at the edge midpoint 
𝐴𝐴 𝐴𝐴𝐴𝐴 , we have to average them to the cell centers 𝐴𝐴 𝐴𝐴 .

In the following, we will refer to this part of the code that generates the noise on a Cartesian mesh according to 
Appendix B as noise generation module.

3.2.1.  Interface Between Dynamical Core and LU Terms

As mentioned above, the construction of the noise is done on a Cartesian mesh while the discretization of the 
deterministic dynamical core (variational RSW scheme, Section 3.1), corresponding to a triangular C-grid stag-
gering, predicts the values for velocity normal to the triangle edges and for water depth at the triangle centers. 
We propose to exchange information between the noise generation module (see section above) and the dynamical 
core via the midpoints of the triangle edges where on such C-grid staggered discretizations the velocity values 
naturally reside. The technical details about how we realized such interface in our setup are given in Appendix C.

This modular approach with a well defined interface between these two model components has various advantag-
es over directly implementing the noise terms on a triangular C-grid mesh as used by the dynamical core. Firstly, 
this approach allows us to easily explore various noise types, because using a Cartesian mesh for the latter permits 
the usage of standard algorithms for example FFT or singular value decomposition (SVD). In contrast, exploring 
these ideas directly on a triangular C-grid would significantly increase the implementation work. In fact, this 
manuscript also serves as a proof of concept study to show that such modular approach indeed works very well.

Moreover, the definition of an interface between the two model components should minimize (or maybe even avoid) 
the necessity of adapting the numerics of an existing deterministic core in order to incorporate the discrete stochastic 
LU-terms. This, in turn, should allow us to apply our method directly to existing dynamical cores of NWP models.

3.2.2.  Computational Aspects

In addition to the deterministic scheme we have the terms 𝐴𝐴 Δ𝑉𝑉  and 𝐴𝐴 Δ𝐷𝐷 for the RSW–LU scheme (see, Equa-
tions 42c and 42d). Their discretization can be differentiated into:

1.	 �The noise generation of 𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡 and 𝐴𝐴 𝒂𝒂 . The noise generation relies on generating a fixed number of pseudo-ob-
servations and carrying out a SVD to obtain the EOFs. The SVD can be carried out as an economy-size SVD 
which depends linearly on the number of triangles. Currently for LU on-line, EOFs are estimated at each time 
step, but less frequent estimations are also possible to save computational costs.

2.	 �The computation of the divergence and gradient in Cartesian coordinates. The discretization of these opera-
tions are described in Appendix C, which results in matrix vector multiplications.

Here, we obtain the discretization of 𝐴𝐴 Δ𝑉𝑉  and 𝐴𝐴 Δ𝐷𝐷 using the interface, which is determined by the underlying dis-
cretization of the deterministic scheme. More specifically, we reformulate the differential operators in Cartesian 
coordinates with the local derivatives obtained from the deterministic scheme (see e.g., Equation C2). This results 
only in a few additional matrix vector multiplications.

Optimized standard methods for the noise generation on a Cartesian mesh are potentially more efficient than a 
direct (and not optimized) implementation on a triangular mesh. Besides the advantages mentioned above and 
given that the additional computational costs for interchanging the values via the interface consists of only a few 
matrix vector multiplications, we advocate our modular approach rather than a direct implementation.
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3.3.  Temporal Discretization of RSW–LU

The iterated Crank-Nicolson method presented in Brecht et al. (2019) is adopted for the temporal discretization. 
Keeping the iterative solver and adding the LU terms results in an Euler-Maruyama scheme, which decrease the 
order of convergence of the deterministic iterative solver (see, Kloeden & Platen, 1992 for details).

To enhance readability, we denote 𝐴𝐴 𝐴𝐴 𝑡𝑡 as the array over all edges 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 of the velocity 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑡𝑡 as the array over all 
cells 𝐴𝐴 𝐴𝐴𝑖𝑖 of the water depth 𝐴𝐴 𝐴𝐴𝑖𝑖 at time 𝐴𝐴 𝐴𝐴 . The governing algorithm reads:

For all simulations in this manuscript, we used a tolerance of 𝐴𝐴 10−10 for simulation on the sphere. In all these cases, 
our suggested fixed point solver converges in less than 10 iterations.

4.  Numerical Results
In this section, we first study the energy behavior of the numerical RSW–LU scheme introduced above for an 
inviscid test flow. Then, we show that for a viscous test case, the stochastic model captures more accurately the 
reference structure of the large-scale flow when compared to the deterministic model under the same coarse 
resolution. In addition, we demonstrate that the proposed RSW–LU system provides a more reliable ensemble 
forecast with larger spread, compared to a classical random model based on the perturbations of the initial con-
ditions (PIC).

4.1.  Inviscid Test Case–Energy Analysis

This first test case consists of two co-rotating vortices on the 𝐴𝐴 𝐴𝐴 -plane. To illustrate the energy conservation of 
the spatial discretization of the RSW–LU system (Equations 27a–27d), we use the homogeneous stationary noise 
defined in Appendix B1 since the two incompressible constraints 𝐴𝐴 ∇ ⋅ 𝝈𝝈d𝑩𝑩𝑡𝑡 = 0 and � ⋅ � ⋅ 𝒂𝒂 = 0 in Equation 27d 
are naturally satisfied. Then, no extra steps are required to satisfy the incompressible constraints.

4.1.1.  Initial Conditions

The simulations are performed on a rectangular double periodic domain 𝐴𝐴 Ω = [0, 𝐿𝐿𝑥𝑥] × [0, 𝐿𝐿𝑦𝑦] with 𝐴𝐴 𝐴𝐴𝑥𝑥 = 5000 km 
and 𝐴𝐴 𝐴𝐴𝑦𝑦 = 4330 km , which is discretized into 𝐴𝐴 𝐴𝐴 = 32768 triangles. We use this resolution for both the determin-
istic and stochastic simulations. The large-scale flow is assumed to be under a geostrophic regime at the initial 
state, that is �� × � = −��ℎ . We use an initial height field elevation (as e.g., in Bauer & Gay-Balmaz, 2019a) 
of the form

ℎ (𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 = 0) = 𝐻𝐻0 −𝐻𝐻 ′

(

exp

(

−
𝑥𝑥′
1
2 + 𝑦𝑦′1

2

2

)

+ exp

(

−
𝑥𝑥′
2
2 + 𝑦𝑦′2

2

2

)

−
4𝜋𝜋𝜋𝜋𝑥𝑥𝑠𝑠𝑦𝑦
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦

)

,� (45a)

Algorithm 1: Time-stepping algorithm



Journal of Advances in Modeling Earth Systems

BRECHT ET AL.

10.1029/2021MS002492

15 of 28

where the background height 𝐴𝐴 𝐴𝐴0 is set to 𝐴𝐴 10 km , the magnitude of the small perturbed height 𝐴𝐴 𝐴𝐴 ′ is set to 𝐴𝐴 75 m 
and the periodic extensions 𝐴𝐴 𝐴𝐴′

𝑖𝑖 , 𝑦𝑦
′
𝑖𝑖 are given by

�′
� =

��

���
sin

(

�
��

(� − ��� )
)

, �′� =
��

���
sin

(

�
��

(� − ��� )
)

, � = 1, 2� (45b)

with the centers of the vertices located at 𝐴𝐴 (𝑥𝑥𝑐𝑐1 , 𝑦𝑦𝑐𝑐1 ) =
2
5
(𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦) , 𝐴𝐴 (𝑥𝑥𝑐𝑐2 , 𝑦𝑦𝑐𝑐2 ) =

3
5
(𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦) with parameters 

𝐴𝐴 (𝑠𝑠𝑥𝑥, 𝑠𝑠𝑦𝑦) = 3
40

(𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦) .

To obtain the discrete initial water depth 𝐴𝐴 𝐴𝐴𝑖𝑖 , we sample the analytical function 𝐴𝐴 𝐴 at each cell center. Subsequently, 
the discrete geostrophic velocities at each triangle edge 𝐴𝐴 𝐴𝐴𝐴𝐴 at the initial state can be deduced via

𝑉𝑉𝑖𝑖𝑖𝑖 = −
𝑔𝑔
𝑓𝑓
(Grad𝑡𝑡 𝐷𝐷)𝑖𝑖𝑖𝑖 ,� (46)

where the Coriolis parameter 𝐴𝐴 𝐴𝐴 is set to 𝐴𝐴 5.3108 days−1 . For the LU simulations, the magnitude of the homogene-
ous noise remains moderate with its constant variance 𝐴𝐴 𝐴𝐴0 set to be 𝐴𝐴 169.1401 m2 ⋅ s−1 .

4.1.2.  Analysis of Energy Conservation

To analyze the energy conservation properties of our stochastic integrator, we use the above initial conditions to 
simulate the two co-rotating vortices for 2 days. In Figure 3, we show contour plots of the potential vorticity (as de-
fined in Equation 35) fields of the deterministic and stochastic models. We observe that under the moderate noise 
with 𝐴𝐴 𝐴𝐴0 as chosen above, the large-scale structure of the stochastic system is similar to that of the deterministic run.

On the specific staggered grid as shown in Figure 2, the total energy of the shallow water Equations A1a and A1b, 
for both deterministic and stochastic case, is approximated by

E(𝑡𝑡) ≈
𝑁𝑁
∑

𝑖𝑖=1

1
2
𝐷𝐷𝑖𝑖(𝑡𝑡)|𝑇𝑇𝑖𝑖|

∑

𝑘𝑘=𝑗𝑗𝑗𝑗𝑗− ,𝑖𝑖+

1
2|𝑇𝑇𝑖𝑖|

ℎ𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖(𝑉𝑉𝑖𝑖𝑖𝑖(𝑡𝑡))2 +
1
2
𝑔𝑔(𝐷𝐷𝑖𝑖(𝑡𝑡))2|𝑇𝑇𝑖𝑖|.� (47)

As shown in Bauer & Gay-Balmaz (2019a), the proposed discrete variational integrator (see Section 3.1) together 
with an iterative Crank-Nicolson time stepping method exhibits a 1st order convergence rate of the energy error 
with smaller time step size. This will allows us immediately to simply include the stochastic terms to result in an 
Euler-Maruyama type time integrator for stochastic systems (cf. Section 3.2).

In the present work, we consider the energy behavior of the deterministic scheme (i.e., the variational integrator) 
as reference, which is denoted as 𝐴𝐴 EREF(𝑡𝑡) in the following. For the stochastic RSW model, the Euler-Maruyama 
time scheme might lead to a different behavior with respect to energy conservation when compared to the de-
terministic model. In order to quantify numerically the energy conservation of the RSW–LU, we propose to 
measure the relative errors between the mean stochastic energy, denoted as ELU(�) , and the reference 𝐴𝐴 EREF(𝑡𝑡) by 

Figure 3.  Contour plots of the potential vorticity fields after 2 days for (left) one realization of a LU simulation with homogeneous noise and (right) a deterministic 
run. The contour interval is 0.4 𝐴𝐴 days−1 km−1 .
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ELU(�)∕EREF(�) − 1 , while using for both the same spatial resolution (see Table 1). This setup allows us to measure 
the influence of the stochastic terms on the energy conservation relative to the deterministic scheme. Figure 4 
shows these relative errors for different time step sizes over a simulation time of 2 days. As we can confirm from 
the curves, taking successively smaller time steps

𝐴𝐴 Δ𝑡𝑡 ∈
{

1.7361 × 10−4, 3.4722 × 10−5, 1.7361 × 10−5, 3.4722 × 10−6, 1.7361 × 10−6
}

 (in 𝐴𝐴 days−1 ) results in smaller 
relative errors.

To determine more quantitatively the convergence rate of the stochastic scheme (relative to the reference) with 
respect to different time step sizes, we defined the following global (in space and time) error measure:

𝜀𝜀(ELU) =
‖ELU(𝑡𝑡) − EREF(𝑡𝑡)‖𝐿𝐿2([0, 𝑇𝑇 ])

‖EREF(𝑡𝑡)‖𝐿𝐿2([0, 𝑇𝑇 ])
,� (48)

where 𝐴𝐴 ‖𝑓𝑓 (𝑡𝑡)‖𝐿𝐿2([0, 𝑇𝑇 ]) = (∫ 𝑇𝑇0 |𝑓𝑓 (𝑡𝑡)|2d𝑡𝑡)
1∕2

 and 𝐴𝐴 𝐴𝐴  is set to 2 days. We determine 
for an ensemble with 10 members such global errors in order to illustrate the 
convergence rate of each ensemble member and the spread between those 
rates. This spread is illustrated as blue shaded area in Figure  5. The area 
center is determined by the mean of the errors, and the dispersion of this 
area is given by one standard derivation (i.e. 𝐴𝐴 68% confident interval of the 
ensemble of 𝐴𝐴 𝐴𝐴(ELU) ). Besides, the minimal and maximal values of the errors 
of the ensemble are represented by the vertical bar-plots. The blue line of 
Figure 5 shows that the convergence rate (w.r.t. various 𝐴𝐴 Δ𝑡𝑡 ) of the ensemble 
mean energy is of 1st order. This is consistent with the weak convergence rate 
of order 𝐴𝐴 (Δ𝑡𝑡) of the Euler-Maruyama scheme, cf. Section 3.3.

4.2.  Viscous Test Case - Ensemble Prediction

Next, we want to show that our stochastic system better captures the structure 
of a large-scale flow than a comparable deterministic model. To this end, we 
use a viscous test case and heterogeneous noise.

The viscous test case we use is proposed by Galewsky et  al.  (2004) and it 
consists of a barotropically unstable jet at the mid-latitude on the sphere. This 
strongly non-linear flow will be destabilized by a small perturbation of the 
initial field, which induces decaying turbulence after a few days. However, 

Parameters Value Description

𝐴𝐴 (Θ0,Θ1) 𝐴𝐴 (2𝜋𝜋𝜋 5𝜋𝜋)∕14 rad Initial latitude limits

𝐴𝐴 𝐴𝐴0 𝐴𝐴 10.158 km Background height

𝐴𝐴 𝐴𝐴 ′ 𝐴𝐴 120 m Initial perturbation amplitude

𝐴𝐴 𝐴𝐴 𝐴𝐴 6.371 × 103 km Mean radius of earth

𝐴𝐴 𝐴𝐴 𝐴𝐴 9.806 m ⋅ s−2 Gravity of earth

𝐴𝐴 Ω̃ 𝐴𝐴 7.292 × 10−5 s−1 Angular rotation rate of earth

𝐴𝐴 𝐴𝐴0 𝐴𝐴 80 m ⋅ s−1 Maximum zonal velocity

𝐴𝐴 𝐴𝐴𝑙𝑙 𝐴𝐴 3.975 × 1014 m4 ⋅ s−1 Fine-grid biharmonic viscosity

𝐴𝐴 𝐴𝐴𝐿𝐿 𝐴𝐴 3.199 × 1016 m4 ⋅ s−1 Coarse-grid biharmonic viscosity

𝐴𝐴 Δ𝑡𝑡𝑙𝑙 𝐴𝐴 12 s Fine-grid time step

𝐴𝐴 Δ𝑡𝑡𝐿𝐿 𝐴𝐴 50 s Coarse-grid time step

𝐴𝐴 𝐴𝐴𝑙𝑙 3,27,680 Number of triangles for fine grid (60-km resolution)

𝐴𝐴 𝐴𝐴𝐿𝐿 20,480 Number of triangles for coarse grid (240-km resolution)

Table 1 
Parameter List for Simulations of the Barotropic Instability

Figure 4.  Evolution of the relative 𝐴𝐴 𝐴𝐴2 errors between the energy of the mean 
RSW–LU and the reference, using 𝐴𝐴 Δ𝑡𝑡 (blue line), 𝐴𝐴 Δ𝑡𝑡∕10 (red line) and 𝐴𝐴 Δ𝑡𝑡∕100 
(yellow line) respectively.
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the development of the barotropic instability in numerical simulations highly 
depends on accurately resolving the small-scale flow, which is particularly 
challenging for coarse-grid simulations. For the same reason, the performance 
of an ensemble forecast system in this test case is quite sensible to the numer-
ical resolution. In the following, we demonstrate that the RSW–LU simulation 
on a coarse mesh under heterogeneous noises, provides better prediction of 
the barotropic instability compared to the deterministic coarse simulation, and 
produces more reliable ensemble spread than the classical PIC simulation.

4.2.1.  Stabilization

The former test case in Section 4.1 consists of smooth enough fields such that 
no additional sub-grid dissipation is required. In contrast, the following test 
case consists of the evolution of decaying turbulence, in which sub-grid en-
strophy will accumulate quickly, hence an efficient dissipation mechanism is 
needed, such as the biharmonic eddy viscosity (Galewsky et al., 2004) which 
is often used in atmospheric and oceanic flow models. Here, we include a 
biharmonic eddy viscosity with uniform coefficient 𝐴𝐴 𝐴𝐴 (of unit 𝐴𝐴 𝐴𝐴4∕𝑠𝑠 ) in the 
momentum equation:

d𝑡𝑡𝑉𝑉 = (−Adv(𝑉𝑉 𝑉𝑉𝑉)𝑖𝑖𝑖𝑖 − K(𝑉𝑉 )𝑖𝑖𝑖𝑖 − G(𝐷𝐷)𝑖𝑖𝑖𝑖 − 𝜇𝜇𝜇𝜇(𝑉𝑉 )𝑖𝑖𝑖𝑖) Δ𝑡𝑡𝑡� (49)

where:

𝐿𝐿(𝑉𝑉 )𝑖𝑖𝑖𝑖 = (Grad𝑛𝑛 (Div 𝑉𝑉 )𝑖𝑖𝑖𝑖 − Grad𝑡𝑡 (Curl 𝑉𝑉 )𝑖𝑖𝑖𝑖)2.� (50)

Although in the evolution Equation 29a the dissipative term is energetically exactly in balance with the random 
advection term, the supplementary biharmonic diffusion is needed here in this test case to drain the enstrophy 
pile-up. Using instead a dissipative discretization, in which numerical diffusion takes the role of such stabiliza-
tion, might give stable simulations also without explicit diffusion but then we would lose control of the strength 
of the diffusion. Note that we used standard biharmonic dissipation, but there exist also energy conserving enstro-
phy dissipation methods, such as those introduced in McRae & Cotter (2014) or in Frank et al. (2003).

4.2.2.  Initial Conditions

The values of the principle parameters for the simulations are specified in Table 1. Under the geostrophic regime, 
the initial zonal velocity and height is respectively given by

𝑢𝑢(Θ, 𝑡𝑡 = 0) = 𝑈𝑈0

𝑒𝑒𝑛𝑛
exp

(

1
(Θ − Θ0)(Θ − Θ1)

)

, for Θ0 < Θ < Θ1,� (51a)

ℎ(Θ, 𝑡𝑡 = 0) = 𝐻𝐻0 −
𝑅𝑅
𝑔𝑔 ∫Θ

𝑢𝑢(𝜃𝜃𝜃𝜃𝜃  = 0)
(

2Ω̃sin𝜃𝜃 + tan𝜃𝜃
𝑅𝑅

𝑢𝑢(𝜃𝜃𝜃𝜃𝜃  = 0)
)

d𝜃𝜃𝜃� (51b)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 = exp
(

−4∕(Θ1 − Θ0)2
)

 is used to rescale the jet magnitude to the maximal value 𝐴𝐴 𝐴𝐴0 at the jet's mid-
point 𝐴𝐴 Θ = 𝜋𝜋∕4 . As introduced by Galewsky et al. (2004), in order to initiate the barotropic instability, the follow-
ing localized bump is included in the height field:

ℎ′(Υ,Θ) = 𝐻𝐻 ′cos Θ exp
(

−(3Υ)2 −
(

15(𝜋𝜋
4
− Θ)

)2
)

,� (51c)

where 𝐴𝐴 Υ denotes the longitude. Here, the Coriolis parameter is set to 𝐴𝐴 𝐴𝐴 = 2 × 7.292 × 10−5sin(Θ) . Analogously 
to the previous inviscid test case, we then use these analytic functions (Equations 51a–51c) to sample the discrete 
velocity at the edge mid-points and the height field at the cell centers on the staggered mesh (See Figure 2).

For the LU simulations, we use the two heterogeneous noises described in Appendix B2, based on either the off-
line learning of EOFs from the high-resolution simulation data, denoted as LU off-line, or on the on-line estima-
tion of EOFs from the coarse-grid simulation, denoted as LU on-line. To allow for comparisons, the strength of 

Figure 5.  Convergence of the energy path of the RSW–LU to that of the 
reference w.r.t. time step sizes. The blue line shows the global errors of the 
ensemble mean energy, the blue area describes the 𝐴𝐴 68% confident interval of 
the ensemble errors and the dashed line stands for the 1st order convergence 
rate.
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these two noises are imposed to be the same. The PIC stochastic model is obtained as follows: first, we perform 
ensemble simulations of the LU off-line and the LU on-line method over 1 day. Then, each realization of these 
ensemble runs is used as one initial random state and simulated for the remaining days using the deterministic 
scheme. We call the PIC simulation using the LU off-line method PIC 1 and the PIC simulation obtained using 
the LU on-line method PIC 2. For each of these stochastic models, an ensemble run with 20 realizations is done.

Besides a deterministic coarse-grid simulation denoted as LR, a deterministic high resolution (HR) simulation is 
performed that provides us with a reference solution. For all coarse model runs (both deterministic and stochas-
tic), the resolution and parameters given in Table 1 are fixed to be the same. Note that Table 1 states the resolu-
tions and parameters used for these various simulations.

4.2.3.  Prediction of Barotropic Instability

In this section, we compare the predictions of the barotropic instability for different coarse models to that provid-
ed by the HR reference simulation. The latter is obtained from the coarse-graining procedure through a bilinear 
interpolation of the high resolution snapshots.

In Figure 6, we illustrate snapshots of the vorticity fields on the sphere for the reference, LU and deterministic 
models after a simulation time of 5 days. We can clearly see that the LU ensemble mean better captures the large-
scale structure of the reference flow than the deterministic simulation. To better distinguish the differences in the 
simulations, contour plots of the vorticity fields at day 4, 5 and 6, localized at the mid-latitude of the sphere, are 
given in Figure 7. From the evolution of the reference vorticity fields we observe that the barotropic instability 
of the mid-latitude jet starts to develop at day 4. Subsequently, more and more small-scale features emerge and 
the flow becomes turbulent. Furthermore, both LU on-line and LU off-line simulations exhibit the stretched out 
wave at day 5 in the same way as the reference does, and that some big vortices start to separate from the wave at 
day 6. On the other hand, these characteristics are not correctly captured in both PIC 1 and LR simulations. We 
remark that the results of the PIC 2 simulations are not included in Figure 7, since they behave quite similarly to 
the PIC 1 runs.

To physically interpret the above results, it is useful to analyze the energy spectra of the different models. From a 
basic knowledge of the two-dimensional turbulence theory (McWilliams, 2006), the potential enstrophy is trans-
ferred from the large scales to the small scales by the direct cascade, whereas the kinetic energy is transferred 
from the small scales to the large scales by the inverse cascade. However, introducing only a dissipation mech-
anism for coarse models often leads to an excessive decrease of the resolved kinetic energy (Arbic et al., 2013; 
Kjellsson & Zanna, 2017).

Figure 6.  Snapshots of the vorticity field on the sphere for different models (with 20,480 triangles) after 5 days. From left 
to right: reference, ensemble mean of LU online and deterministic LR. For the simulations we use the parameters given in 
Table 1.
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In our test case, this kind of issue is present in both PIC and the LR simulations, where the small-scale energy and 
enstrophy are over-dissipated, as illustrated in Figure 8. On the other hand, introducing the non-linear convection 
by the noise, the LU dynamical systems bring higher turbulent energy and enstrophy to the small scales, which 
leads to a better structuring of the large-scale flow. For instance, the time evolutions of the ensemble mean of 
the energy and enstrophy spectra for both LU on-line and LU off-line simulations are much closer to that of the 
references. However, the LU off-line spectrum changes little over time between wavenumbers 10 and 40 because 
the a priori obtained EOFs impose at each time step large scale modes on those scales. This is a drawback from 
a stationary noise. Note that these spectra on the sphere are calculated using the method proposed by Aechtner 
et al. (2015): first, the energy and enstrophy is interpolated onto a Gaussian grid, then the spherical harmonics 
basis are used to compute the power spectral density.

4.2.4.  Evaluation of Ensemble Forecasts

Once the ensembles have been produced by the random models, we measure the reliability of the ensemble fore-
cast systems by some simple metrics. But before we do so, let us first demonstrate qualitatively the time evolution 

Figure 7.  Comparison of the vorticity contour plots along the mid-latitude jet for different models (with 20,480 triangles) at day 4, 5 and 6 respectively. From top 
to bottom: reference, ensemble mean of LU on-line, ensemble mean of LU off-line, ensemble mean of PIC 1 and deterministic LR. The contour interval is fixed to 

𝐴𝐴 2 × 10−5 s−1 , the x-axis is longitude (in rad) and the y-axis is latitude (in rad). For the simulations we use the parameters given in Table 1.

Day 4 Day 6Day 5
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of each ensemble spread and compare it with the observation trajectory (obtained from the HR reference simula-
tion). To determine the latter, we evaluate the local vorticity field of the reference at different grid points in the 
region of the mid-latitude jet. These points serve as observation points. The evolution of the spread of the ensem-
ble forecast systems is then built by the 𝐴𝐴 95% confident interval of its ensemble trajectories at each selected point.

In Figure 9 we compare the reference simulation and the simulations obtained from the off-line noise. To make 
the figure easier to read, only the off-line noise is shown since the on-line noise behaves in a similar way. As 
shown, for the six local points chosen along the longitude 𝐴𝐴 Υ = −1.53 rad , the ensemble spreads of the LU off-
line system are large enough to almost always include the observation trajectories, whereas the spreads of the PIC 
1 system are quite small so that the observations are not always contained within the spread. For the latter, this 
will result in a wrong coupling of the measurement and the ensemble system, when performing data assimilation 
(Franzke et al., 2015; Gottwald & Harlim, 2013).

To quantify whether the ensemble spread of the forecast system represents the true uncertainty of the obser-
vations (obtained from the reference simulation), the rank histogram (Hamill, 2001; Talagrand et al., 1997) is 
widely adopted as a diagnostic tool. This approach checks where the verifying observation usually falls w.r.t. the 
ensemble forecast states which are arranged in an increasing order at each grid point. In an ensemble with perfect 
spread, each member represents an equally likely scenario, so the observation is equally likely to fall between any 
two members. To construct the rank histogram in our test case, we proceed as follows:

1.	 �At every grid point 𝐴𝐴 𝒙𝒙𝑖𝑖 , we rank the 𝐴𝐴 𝐴𝐴𝑒𝑒 vorticity values 𝐴𝐴
{

𝑞𝑞(𝑗𝑗)(𝒙𝒙𝑖𝑖)
}

𝑗𝑗=1,...,𝑁𝑁𝑒𝑒
 of the ensemble from lowest to highest. 

This results in 𝐴𝐴 𝐴𝐴𝑒𝑒 + 1 possible bins which the observations can fall into, including the two extremes;
2.	 �Identify which bin the observation vorticity 𝐴𝐴 𝐴𝐴𝑜𝑜(𝒙𝒙𝑖𝑖) falls into at each point 𝐴𝐴 𝒙𝒙𝑖𝑖 ;
3.	 �Tally over all observations 𝐴𝐴 {𝑞𝑞𝑜𝑜(𝒙𝒙𝑖𝑖)}𝑖𝑖=1,...,𝑁𝑁𝑜𝑜

 to create a histogram of rank.

Figure 8.  Comparison of the ensemble mean of the kinetic energy (left column) spectrums and the potential enstrophy (right column) spectrums for different models 
(with 20,480 triangles) at day 5 (1st row), 7 (2nd row) and 10 (3rd row) respectively. Note that the potential enstrophy is defined by the square of the potential vorticity 
and each potential enstrophy spectrum is normalized by its first value at the largest wavenumber. The dashed line is the 𝐴𝐴 𝐴𝐴−3 (left column) and 𝐴𝐴 𝐴𝐴−1 (right column) power 
law. These power laws for the RSW equations are discussed in (Chen et al., 2011; Ringler & Randall, 2002).

Kinetic energy Normalized enstrophy
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As shown in Figure 10, the histograms of both random models exhibit a U-shape for a few days in the begin-
ning, while after a simulation time of about 10 days, the histograms of both LU on-line and LU off-line systems 
become mostly flat. A U-shape indicates that the ensemble spread is too small so that many observations are 
falling outside of the extremes of the ensemble while a dome-shape indicates the contrary. A flat histogram, in 
contrast, indicates that the ensemble members and observations are sampled from a common distribution. We 
observe that the LU off-line system performs slightly better than the LU on-line version. In contrast to these very 
good ensemble spreads, the histograms of both PIC 2 and PIC 1 systems remain in a U-shape during the entire 
simulation period which indicates that these systems do not accurately estimate the correct uncertainty around 
the observations.

It is important to notice that a flat rank histogram does not necessarily imply good forecasts, it only measures 
whether the observed probability distribution is well represented by the ensemble. To verify that a forecast is 
reliable, we need more criteria. One necessary criterion (Weigel, 2012) for a reliable ensemble forecast is that the 
mean squared error (MSE) of the ensemble matches the mean intra-ensemble variance (MEV), up to an ensemble 
size-dependent scaling factor, that is

MSE (�) = 1
��

��
∑

�=1

(

�� − 𝔼̂𝔼[�]
)2
(�,𝒙𝒙�)

≈
(

�� + 1
��

)

1
��

��
∑

�=1
V̂ar[�](�,𝒙𝒙�) =

�� + 1
��

MEV (�),

� (52)

where 𝐴𝐴 𝔼̂𝔼[𝑞𝑞] = 1
𝑁𝑁𝑒𝑒

∑𝑁𝑁𝑒𝑒
𝑗𝑗=1 𝑞𝑞

(𝑗𝑗) and V̂ar[�] = 1
��−1

∑��
�=1

(

�(�) − 𝔼̂𝔼[�]
)2

 denote the empirical mean and the empirical 
variance, respectively.

In Figure 11, we compare the differences in time between the MSE and the MEV, normalized by the squared max-
imum of the initial vorticity, for the different random models from above. From these curves we can deduce that 
the LU off-line system exhibits the lowest errors during the entire simulation time of 20 days. In particular, during 
the first 10 days, these errors are significantly lower when compared to the other models, which can be explained 
by the fact that the LU off-line system incorporates data from the reference into the ensemble, which increases 

Figure 9.  Comparison of the ensemble spread evolution over 20 days of the vorticity field for the LU-offline (red area) runs and the PIC-offline (blue area) runs, at six 
different locations 𝐴𝐴 Θ = (0.4, 0.56, 0.72, 0.88, 1.04, 1.2) rad along the longitude 𝐴𝐴 Υ = −1.53 rad . The observation trajectories are shown by the black lines.
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the reliability of the ensemble forecast. Although the errors between MSE and 
MEV of the LU on-line system is larger than the LU offline system from day 5 
to day 10, they remain at low level from day 10 onwards, implying that the reli-
ability of the former increases for longer simulation times. In contrast, both PIC 
1 and PIC 2 systems show higher error values at most of the times and hence 
provide less reliable ensembles. We remark that other metrics, such as the con-
tinuous ranked probability score (Resseguier et al., 2020; Weigel, 2012), can 
also be used to measure a calibrated ensemble.

5.  Conclusions
In this study, we introduced a stochastic version of the rotating shallow wa-
ter equations under location uncertainty (RSW-LU). The derivation is based 
on a stochastic Reynolds transport theorem, where the fluid flow is decom-
posed into a large-scale component and a noise term modeling the unresolved 
small-scale flow. A benefit of this approach is that the total energy is con-
served along time for any realization. In order to preserve this structure, we 
combined an energy (in space) preserving discretization of the underlying 
deterministic equations of this RSW–LU system with approximations of the 
stochastic terms that are based on standard finite volume/difference operators.

Figure 11.  Comparison of the differences between the mean square error 
(MSE) and the mean ensemble variance (MEV) of the ensemble vorticity 
fields for the LU on-line (red dashed line) runs, the LU off-line (red solid line) 
runs, the PIC 2 (blue dashed line) runs and the PIC 1 (blue solid line) runs. 
Note that these differences are normalized by 𝐴𝐴 𝐴𝐴0 = ‖𝑞𝑞(Υ,Θ, 𝑡𝑡 = 0)‖∞ .
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We could show for an f-plane test case that this approach leads for homogeneous noise to a discretization of the 
RSW–LU system that preserves (spatially) the total energy. Moreover, using inhomogeneous noise that well cap-
tures the impact of small scales on the large-scale flow, we demonstrated that for a barotropically unstable jet on 
the sphere our proposed RSW–LU model better predicts the development of the instabilities than a comparable 
deterministic model, while the ensemble spread of the RSW–LU system is more likely to contain the observations 
compared to an ensemble of deterministic simulations with perturbed initial conditions (PIC). We also showed 
that the RSW–LU forecast systems follows a common distribution of the observations and is more reliable than 
the PIC system.

Showing accurate ensemble spreads and reliable forecasting skills, we will next apply our developed RSW–LU 
system to data assimilation. We will also work toward discretizations of stochastic flow models in the framework 
of LU that preserve total energy both in space and time to which the present work provides a first step. Exploit-
ing the modular approach of combining different discretizations for deterministic and stochastic terms, in future 
work we will explore the possibility to consistently extend existing atmospheric and ocean models with stochastic 
parametrizations. We remark that the stochastic approach proposed in this work could be extended to arbitrary 
Riemannian manifold. In this setting, it would be easier to first convert the Itô integrals to the Stratonovich rep-
resentations (see Remark 2), and then transform the latter from Euclidean space to other subspaces of Riemannian 
manifold under diffeomorphism (Hsu, 2000). This application could be helpful for the deep atmosphere compo-
nent of various global numerical weather prediction and climate models, where the domain significantly differs 
from Euclidean space.

Appendix A:  Energy Conservation of RSW–LU
This appendix demonstrates the energy conservation of the RSW–LU system (Equations 27a–d). Let us recall 
that the density of the kinetic energy (KE) and of the potential energy (PE) of the large-scale flow in the shallow 
water system (Vallis, 2017) is, respectively, given by

KE = ∫

ℎ

0

𝜌𝜌0
2
|𝒖𝒖|2 d𝑧𝑧 =

𝜌𝜌0
2
ℎ|𝒖𝒖|2,� (A1a)

PE = ∫

ℎ

0
𝜌𝜌0𝑔𝑔𝑔𝑔 d𝑧𝑧 =

𝜌𝜌0
2
𝑔𝑔𝑔2,� (A1b)

where 𝐴𝐴 |𝒖𝒖|2 = 𝒖𝒖 ⋅ 𝒖𝒖 and we assume that 𝐴𝐴 𝐴𝐴0 = 1 and the bottom is flat, that is 𝐴𝐴 𝐴𝐴𝑏𝑏 = 0 for algebraic simplicity. In order 
to explain the conservation of energy more concisely, we adopt the following product rule of the stochastic trans-
port operator as derived in Resseguier et al. (2017c). For scalar tracers 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 transported by the stochastic flow and 
incorporating smooth-in-time external forcings 𝐴𝐴 𝐴𝐴 𝐴𝐴𝐴 , that is, 𝐴𝐴 𝔻𝔻𝑡𝑡𝑓𝑓 = 𝐹𝐹 d𝑡𝑡 and 𝐴𝐴 𝔻𝔻𝑡𝑡𝑔𝑔 = 𝐺𝐺 d𝑡𝑡 , we have

𝔻𝔻𝑡𝑡(𝑓𝑓𝑓𝑓) = 𝑔𝑔𝔻𝔻𝑡𝑡𝑓𝑓 + 𝑓𝑓𝔻𝔻𝑡𝑡𝑔𝑔𝑔� (A2)

Applying this rule to the definition of PE (Equation A1b) and using the mass Equation 27b, the PE evolution 
reads

𝔻𝔻�PE = �ℎ𝔻𝔻�ℎ = −�ℎ2� ⋅ 𝒖𝒖 d� = −2PE� ⋅ 𝒖𝒖 d�.� (A3a)

Similarly, from both mass equation and momentum Equations 27a–27d, noting that 𝐴𝐴 𝒖𝒖 ⋅ (𝒇𝒇 × 𝒖𝒖) = 0 and recalling 
that 𝐴𝐴 𝐴𝐴𝑏𝑏 = 0 , we derive the evolution of KE (Equation A1a):

𝔻𝔻�KE = ℎ𝒖𝒖 ⋅ 𝔻𝔻�𝒖𝒖 + 1
2
|𝒖𝒖|2𝔻𝔻�ℎ

= −1
2
𝒖𝒖 ⋅ �

(

�ℎ2
)

d� − 1
2
ℎ|𝒖𝒖|2� ⋅ 𝒖𝒖 d� = − (𝒖𝒖 ⋅ �PE + KE� ⋅ 𝒖𝒖) d�.

� (A3b)

Subsequently, we deduce the evolution of the total energy density 𝐴𝐴 E = KE + PE ,

𝔻𝔻�E = − (� ⋅ (𝒖𝒖 PE) + E� ⋅ 𝒖𝒖) d�.� (A4a)
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Expanding the stochastic transport operator (Equation 6b), and including the incompressible constraints (Equa-
tion 27d), the previous equation can be re-written as

d�E = −� ⋅
((

E (� − ��) + PE � − 1
2
��E

)

d� + E �d��

)

.� (A4b)

Let us now assume some ideal boundary conditions for the resolved and unresolved components:

𝒖𝒖 ⋅ 𝒏𝒏|𝜕𝜕Ω = 𝒖𝒖𝑠𝑠 ⋅ 𝒏𝒏|𝜕𝜕Ω = 𝝈𝝈d𝑩𝑩𝑡𝑡 ⋅ 𝒏𝒏|𝜕𝜕Ω = 0,� (A5)

where 𝐴𝐴 𝐴𝐴Ω denotes the boundary of the fluid domain 𝐴𝐴 Ω and 𝐴𝐴 𝒏𝒏 stands for the outward pointing unit normal. Com-
bining Equations A4b and A5, one can show that the total energy (integration of energy density over domain) is 
invariant over time:

d� ∫Ω
E(�, �)d� = −∫�Ω

(

(E (� − ��) + PE � − 1
2
��E) d� + E �d��

)

⋅ � d� = 0,� (A6)

in which the following argument is used

� ⋅ (��E) d� =
∑

�,�=1,2

��(��,� d�)���E =
∑

�=1,2

𝔼𝔼
[

∑

�=1,2

��(�d��)�

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
= 0 at �Ω

(�d��)�
]

���E.
� (A7)

Appendix B:  Parameterizations of Noise
This section describes briefly some existing parametrization methods for the noise structure. For interested read-
ers, more technical details can be found in Resseguier et al. (2020).

B1.  Homogeneous Noise

From Definitions (Equations 2 and 4), a homogeneous noise means that its correlation operator 𝐴𝐴 ⃖⃗𝜎𝜎 is a convolution 
operator and the variance tensor 𝐴𝐴 ⃖⃗𝑎𝑎 reduces to a constant matrix. To ensure the incompressible constraint (Equa-
tion 27d) of a two-dimensional noise Resseguier et al. (2017b) proposed an isotropic model defined through a 
random stream function

𝝈𝝈(𝒙𝒙) d𝑩𝑩𝑡𝑡 = ∇⟂ (𝜑̆𝜑 𝜑 d𝐵𝐵𝑡𝑡) (𝒙𝒙),� (B1)

where 𝐴𝐴 ∇⟂ = [−𝜕𝜕𝑦𝑦, 𝜕𝜕𝑥𝑥]𝑇𝑇 denotes the perpendicular gradient and 𝐴𝐴 𝐴𝐴𝐴 𝐴 d𝐵𝐵𝑡𝑡 stands for the random stream function 
with a convolution kernel 𝐴𝐴 𝐴𝐴𝐴 (and the symbol 𝐴𝐴 𝐴 denotes a convolution). Both isotropy and incompressibility of 
the noise result in a (constant) diagonal variance tensor 𝐴𝐴 𝐴𝐴0I⃗2 with the eddy-viscosity-like coefficient 𝐴𝐴 𝐴𝐴0 and the 
two-dimensional identity matrix 𝐴𝐴 I⃗2 . For the current work, the divergence-free constraint of the ISD in Equa-
tion 27d is thus naturally satisfied. In practice, the convolution kernel 𝐴𝐴 𝐴𝐴𝐴 is specified by three parameters: a fixed 
omni-directional spectrum slope 𝐴𝐴 𝐴𝐴 , a band-pass filter 𝐴𝐴 𝐴𝐴BP with support in the range of two wavenumbers 𝐴𝐴 𝐴𝐴𝑚𝑚 and 

𝐴𝐴 𝐴𝐴𝑀𝑀 , and the coefficient 𝐴𝐴 𝐴𝐴0 . In fact, the Fourier transform of the random stream function 𝐴𝐴 𝐴𝐴𝐴 𝐴 d𝐵𝐵𝑡𝑡 can be defined as:

̂�̆⋆ d��(𝒌𝒌)
△
= �

√

Δ�
�BP (‖𝒌𝒌‖)‖𝒌𝒌‖−��̂�(𝒌𝒌) with � = (3 + �)∕2,� (B2)

where 𝐴𝐴 𝐴∙ denotes the Fourier transform coefficient, 𝐴𝐴 𝐴𝐴𝑡𝑡 is a space-time white noise, and 𝐴𝐴 𝐴𝐴 is a constant to ensure 
𝐴𝐴 𝔼𝔼‖𝝈𝝈d𝑩𝑩𝑡𝑡‖

2 = 2𝑎𝑎0Δ𝑡𝑡 (see Equations 3 and 4) with 𝐴𝐴 Δ𝑡𝑡 the size of one time stepping and 𝐴𝐴 𝔼𝔼 the expectation operator. 
In the simulations, the maximal wavenumber 𝐴𝐴 𝐴𝐴𝑀𝑀 of the noise can usually be chosen as the effective resolution 
cutoff, the minimal wavenumber can be set to 𝐴𝐴 𝐴𝐴𝑚𝑚 = 𝑘𝑘𝑀𝑀∕2 , and the theoretical spectrum slope of a two-dimen-
sional flow is given by 𝐴𝐴 𝐴𝐴 = −3 . Note that on the sphere homogeneous noise could be generated through spherical 
harmonics.
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B2.  Heterogeneous Noise

In the following, two parameterizations of the heterogeneous noise are presented. These approaches result from 
the spectral decomposition (Equation 5) used to construct the EOFs of the covariance. However in practice, we 
work with the Eulerian velocity rather than with the Lagrangian displacement.

B2.1.  Off-Line Learning of EOFs

The first method consists in calibrating EOFs from the off-line simulation data with the EOFs assumed to be 
time-independent. To this end, let us consider a set of velocity snapshots 𝐴𝐴 {𝒖𝒖o(𝒙𝒙, 𝑡𝑡𝑖𝑖)}𝑖𝑖=1,...,𝑁𝑁𝑡𝑡

 , that have been a priori 
coarse-grained from high-dimensional data. Applying the singular value decomposition (SVD) for the fluctua-
tions 𝐴𝐴 𝒖𝒖′

o = 𝒖𝒖o − 𝒖̄𝒖o (where 𝐴𝐴 𝐴∙ denotes a temporal average) enables us to build a set of EOFs 𝐴𝐴
{

𝝓𝝓𝑖𝑖
}

𝑖𝑖=1,...,𝑁𝑁𝑡𝑡
 . In addition, 

we suppose that the fluctuations of the large-scale flow live in a subspace spanned by 𝐴𝐴
{

𝝓𝝓𝑖𝑖
}

𝑖𝑖=1,...,𝑚𝑚−1 (with 𝐴𝐴 𝐴𝐴 𝐴 𝐴𝐴𝑡𝑡 ) 
and that the small-scale random drift 𝐴𝐴 𝝈𝝈d𝑩𝑩𝑡𝑡∕Δ𝑡𝑡 lives in the complemented subspace spanned by 𝐴𝐴

{

𝝓𝝓𝑖𝑖
}

𝑖𝑖=𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡
 such 

that

1
Δ𝑡𝑡

𝝈𝝈(𝒙𝒙) d𝐁𝐁𝑡𝑡 =
𝑁𝑁𝑡𝑡
∑

𝑖𝑖=𝑚𝑚

√

𝜆𝜆𝑖𝑖𝝓𝝓𝑖𝑖(𝒙𝒙)𝜉𝜉𝑖𝑖,
1
Δ𝑡𝑡

𝒂𝒂(𝒙𝒙) =
𝑁𝑁𝑡𝑡
∑

𝑖𝑖=𝑚𝑚

𝜆𝜆𝑖𝑖𝝓𝝓𝑖𝑖(𝒙𝒙)𝝓𝝓𝑇𝑇
𝑖𝑖 (𝒙𝒙),� (B3)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 is the eigenvalue associated to the spatial mode 𝐴𝐴 𝝓𝝓𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑖𝑖 is a standard Gaussian variable. In practice, 
there exists an open question in (Equation B3), that is how to adequately choose the “splitting mode” 𝐴𝐴 𝝓𝝓𝑚𝑚 . Recently 
Bauer, Chandramouli, Li, et al. (2020) proposed to fix it by comparing the time-averaged energy spectrum of the 
observations and the one from a coarse-grid deterministic simulation.

B2.2.  On-Line Learning of EOFs

The previously described data-driven calibriation of EOFs is a quite efficient procedure. However, such observa-
tion data are not always available Bauer, Chandramouli, Chapron, et al. (2020); Resseguier et al. (2020) proposed 
an alternative approach in which some local fluctuations, called pseudo-observations (PSO), are generated direct-
ly from a coarse-grid simulation. Then, the SVD is applied on those PSO to estimate a set of EOFs such that the 
noise associated with its variance tensor will be built in the same way as in (Equation B3). Finally, the magnitude 
of the noise and variance should be scaled down to smaller scales based on a similarity analysis.

The approach proposed first defines 𝐴𝐴 𝐴𝐴𝑜𝑜 PSO (denoted as 𝐴𝐴 𝒖𝒖′ ) at each grid point. For a given time 𝐴𝐴 𝐴𝐴 and a current 
coarse velocity 𝐴𝐴 𝒖𝒖 , we build the PSO by sliding a local window of size 𝐴𝐴 𝐴𝐴𝑤𝑤 ×𝑁𝑁𝑤𝑤 over the spatial grid (with 𝐴𝐴 𝐴𝐴𝑤𝑤 
the grid number in one direction of the local window). We denote the spatial scale of the window by 𝐴𝐴 𝐴𝐴 = 𝑁𝑁𝑤𝑤𝑙𝑙 , 
where 𝐴𝐴 𝐴𝐴 is the smallest scale of the simulation. At every grid point 𝐴𝐴 𝒙𝒙𝑖𝑖𝑖𝑖𝑖 , we list the 𝐴𝐴 𝐴𝐴2

𝑤𝑤 velocity values contained 
in the window centered at that point:

𝐼𝐼(𝒙𝒙𝑖𝑖𝑖𝑖𝑖 , 𝑡𝑡)
△
=
{

𝒖𝒖(𝒙𝒙𝑝𝑝𝑝𝑝𝑝 , 𝑡𝑡)||𝑝𝑝 − 𝑖𝑖| ≤ 𝑁𝑁𝑤𝑤 − 1
2

, |𝑞𝑞 − 𝑗𝑗| ≤ 𝑁𝑁𝑤𝑤 − 1
2

}

.� (B4)

Note that appropriate boundary conditions (replication, periodicity, etc.) are adopted when looking at a point 
on the border. Then, independently for each 𝐴𝐴 𝐴𝐴 ∈ {1,… , 𝑁𝑁𝑜𝑜} and for each point 𝐴𝐴 𝒙𝒙𝑖𝑖𝑖𝑖𝑖 , we set the value of the PSO 

𝐴𝐴 𝒖𝒖′(𝒙𝒙𝑖𝑖𝑖𝑖𝑖 , 𝑡𝑡𝑡 𝑡𝑡) by randomly choosing a value in the set 𝐴𝐴 𝐴𝐴(𝒙𝒙𝑖𝑖𝑖𝑖𝑖 , 𝑡𝑡) . After this, we average over the realization index 
𝐴𝐴 𝐴𝐴 to build an empirical covariance. Then, from the SVD we obtain a set of EOFs 𝐴𝐴

{

𝝓𝝓(𝐿𝐿)
𝑖𝑖

}

𝑖𝑖=1,...,𝑁𝑁𝑜𝑜
 , and a spectral 

representation of the small-scale velocity:

1
Δ𝑡𝑡

𝝈𝝈(𝐿𝐿)(𝒙𝒙, 𝑡𝑡) d𝑩𝑩𝑡𝑡 =
𝑁𝑁𝑜𝑜
∑

𝑖𝑖=1

𝝓𝝓(𝐿𝐿)
𝑖𝑖 (𝒙𝒙, 𝑡𝑡)𝜉𝜉𝑖𝑖.� (B5a)

Since the PSO 𝐴𝐴 𝒖𝒖′ have been generated at a spatial scale of the window 𝐴𝐴 𝐴𝐴 = 𝑁𝑁𝑤𝑤𝑙𝑙 , they must be scaled down to 
the “simulation scale” 𝐴𝐴 𝐴𝐴 . In 3D, according to an auto-similarity assumption of the velocity fluctuations (Kadri 
Harouna & Mémin, 2017), the small-scale flow 𝐴𝐴 𝝈𝝈(𝑙𝑙)d𝑩𝑩𝑡𝑡 associated with its variance tensor 𝐴𝐴 𝒂𝒂(𝑙𝑙) can be rescaled as
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𝝈𝝈(𝑙𝑙)d𝑩𝑩𝑡𝑡 =
( 𝑙𝑙
𝐿𝐿

)1∕3
𝝈𝝈(𝐿𝐿)d𝑩𝑩𝑡𝑡, 𝒂𝒂(𝑙𝑙) =

( 𝑙𝑙
𝐿𝐿

)2∕3
𝒂𝒂(𝐿𝐿).� (B5b)

In our case, noting that the small-scale fluctuations are still 3D (even though the vertical component is not 
known), we keep the same scaling. As shown in Section 4.2, such flow-dependent noise has a good performance 
in long-term simulation, yet the drawback is that the computational costs are significantly higher compared to the 
previous off-line procedure, as the SVD is computed at each time step.

Appendix C:  Discretization of LU Terms
Starting with a given predicted velocity vector with edge values 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 , we first have to reconstruct the full velocity 
vector field from these normal values. We use the reconstruction of the vector field in the interior of each triangle 
proposed by Perot et al. (2006):

𝒖𝒖𝑖𝑖 =
1
|𝑇𝑇𝑖𝑖|

∑

𝑘𝑘=𝑗𝑗𝑗𝑗𝑗− ,𝑖𝑖+

|𝑒𝑒𝑖𝑖𝑖𝑖|(𝒙𝒙𝑒𝑒𝑖𝑖𝑖𝑖 − 𝒙𝒙𝑇𝑇𝑖𝑖 )𝑉𝑉𝑖𝑖𝑖𝑖,� (C1)

where 𝐴𝐴 𝒙𝒙𝑒𝑒𝑖𝑖𝑖𝑖 are the coordinates of the edge midpoint and 𝐴𝐴 𝒙𝒙𝑇𝑇𝑖𝑖 are the coordinates of the triangle circumcenter. By 
averaging values from neighboring triangles, we obtain the corresponding values at the edge midpoints or verti-
ces (see Bauer, 2013 for details).

This reconstructed velocity vector field will be used to generate the noise as described in Appendix B. After the 
noise has been constructed on the Cartesian mesh, we evaluate the discrete noise vector 𝐴𝐴 (𝝈𝝈d𝑩𝑩𝑡𝑡)𝑖𝑖𝑖𝑖 and the discrete 
variance tensor 𝐴𝐴 (𝒂𝒂)𝑖𝑖𝑖𝑖 at the triangle edge midpoints. This information will then be used to calculate the LU noise 
terms in Equation 42c and 42d.

To calculate the derivatives in these stochastic terms, we use the normal and tangential gradient operators, that 
is, the gradient operator of Equation 32. To use it, we have to average values, for example, the term 𝐴𝐴 (𝑎𝑎𝑘𝑘𝑘𝑘𝐹𝐹 ) , to 
cell centers and vertices and the resulting differential will be an expression located at the edge midpoint. In more 
detail, we can represent the partial derivative in Cartesian coordinates by

(𝜕𝜕𝑥𝑥𝑙𝑙𝐹𝐹 )𝑖𝑖𝑖𝑖 = (Grad𝑛𝑛 𝐹𝐹 )𝑛𝑛𝑙𝑙𝑖𝑖𝑖𝑖 + (Grad𝑡𝑡 𝐹𝐹 )𝑡𝑡𝑙𝑙𝑖𝑖𝑖𝑖 , 𝑙𝑙 = 1, 2.� (C2)

Concretely, to discretize (Equation 44), we first compute 𝐴𝐴 (𝜕𝜕𝑥𝑥𝑙𝑙 (𝑎𝑎𝑘𝑘𝑘𝑘𝐹𝐹 ))𝑖𝑖𝑖𝑖 using Equation C2. The subindex 𝐴𝐴 𝐴𝐴𝐴𝐴 indi-
cates that the resulting term is associated to the edge midpoint. To apply the second derivative in Equation 44, that 
is, (��� (��� (���� ))��)�� , we proceed analogously, that is, we first average the terms describing the first derivative 
to cells and vertices and then apply once more Equation C2. We proceed similarly to represent the term 𝐴𝐴 ∇𝐹𝐹  in 
Equation 43.

Data Availability Statement
The code to reproduce the results is available at https://github.com/RudigerBrecht/RSW-LU (Brecht et al., 2021). 
The scripts and data to reproduce the figures can be obtained from https://zenodo.org/record/5576233.
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