
HAL Id: hal-03099983
https://hal.science/hal-03099983

Submitted on 4 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of a shock wave on a heterogeneous foam film
Quentin Raimbaud, Martin Monloubou, Steven Kerampran, Isabelle Cantat

To cite this version:
Quentin Raimbaud, Martin Monloubou, Steven Kerampran, Isabelle Cantat. Impact of a shock wave
on a heterogeneous foam film. Journal of Fluid Mechanics, 2021, 908, �10.1017/jfm.2020.864�. �hal-
03099983�

https://hal.science/hal-03099983
https://hal.archives-ouvertes.fr


J. Fluid Mech. (2021), vol. 908, A27. © The Author(s), 2020.
Published by Cambridge University Press

908 A27-1

doi:10.1017/jfm.2020.864

Impact of a shock wave on a heterogeneous
foam film

Quentin Raimbaud1, Martin Monloubou2, Steven Kerampran2 and
Isabelle Cantat1,†

1Université de Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251,
F-35000 Rennes, France

2ENSTA Bretagne, UMR CNRS 6027, Institut de Recherche Dupuy de Lôme – IRDL,
F-29806 Brest, France

(Received 25 November 2019; revised 5 October 2020; accepted 7 October 2020)

Liquid foams are, amongst other applications, used to mitigate shock waves. This aspect
has received considerable attention at the macroscopic scale. However, the interaction
between foam films and shock waves is still poorly understood and may be an important
missing local information to build mitigation models. In this paper, we experimentally
identify a new process leading to the foam film rupture, which dominates when the
film thickness is sufficiently heterogeneous. Using a two-thickness film with a sharp and
localised thickness gradient, we record the deformation of the interface between the thick
and the thin parts. We observe the growth of an excess liquid area in the thin part and
establish an analytical model and scaling laws which account for this phenomenon. Our
results in this ideal configuration are consistent with actual rupture processes at stake in
heterogeneous foam films.

Key words: foams, shock waves, breakup/coalescence

1. Introduction

Liquid foams are efficient materials to attenuate acoustic (Mujica & Fauve 2002; Kann
& Kislitsyn 2003; Kann 2005; Pierre, Dollet & Leroy 2014) and shock waves (de Krasinski
& Khosla 1974; Raspet & Griffiths 1983; Goldfarb, Shreiber & Vafina 1992; Goldfarb
et al. 1997; Hartman, Boughton & Larsen 2006; Shreiber et al. 2006; Britan et al. 2007;
Britan, Liverts & Ben-Dor 2009; Del Prete et al. 2013; Liverts et al. 2015). The foam/shock
interaction involves a local change of the foam structure, eventually leading to the rupture
of the thin liquid films. This phenomenon has been qualitatively identified as one of the
shock attenuation mechanisms in foams (Borisov et al. 1978), but remains to be fully
characterised. Moreover, foam films are also used as removable membranes in order to
separate different gases and study the Richtmyer–Meshkov instability at the interface
between the two gases, when impacted by a shock (Ranjan et al. 2005).

In the present paper, we focus on the local processes leading to the foam film collapse, in
the weak shock limit. This problem has been first investigated by Bremond & Villermaux
(2005), who identified and modelled a film rupture mechanism. The authors first show,
using Henderson (1989), that the foam film accelerates after the impact during a time
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τ of the order of a few microseconds, and subsequently reaches a uniform velocity U,
proportional to the shock amplitude (in the weak shock limit) and independent of the
film thickness. The acceleration, normal to the gas/liquid interfaces, is responsible for a
Richtmyer–Meshkov instability in the film (Taylor 1950; Richtmyer 1960; Rayleigh 1883;
Brouillette 2002; Velikovich et al. 2007; Liang et al. 2020). The growth rates of the
different modes have been predicted by Keller & Kolodner (1954) for this specific thin
film geometry, in which the motions of both interfaces are coupled. The fastest peristaltic
mode, in which both interfaces are in opposition of phase, grows with a characteristic time
of the order of a millisecond, and eventually leads to the contact between the two film
interfaces, triggering the film burst. This rupture scenario is quantitatively verified by the
authors in the case of a vertical, centimetric foam film, supported on a solid frame and
located at the open end of a shock tube.

In this paper, we show that film thickness heterogeneities, which naturally occur in
films during the gravitational drainage process, for example, induce a completely different
rupture process, occurring one order of magnitude faster than the previous one. The
process is quantitatively studied on films of controlled thicknesses. We use a two-thickness
film, mounted on a frame located right at the exit of a shock tube to investigate the film
dynamics in high-speed imaging. We measured the trajectories of both the thin and the
thick parts. In the vicinity of the interface between both parts, we evidence that these
trajectories differ from those of a film of uniform thickness. The thickness discontinuity
induces important deformations of the film, at the origin of the growth of a liquid
protrusion, eventually leading to the rupture of the film. We propose an analytical model
based on compressible flow dynamics, as well as scaling laws to interpret the observed
behaviour.

2. Phenomenology of the rupture process

The two rupture modes discussed in the introduction are first qualitatively illustrated in
figure 1. Figure 1(a,b) is obtained using the set-up presented in § 3. They are the side views
of a foam film at two different times and illustrate the destabilisation described in Bremond
& Villermaux (2005). The black strip on the left is the solid frame, which initially supports
the film. At time t = 0, the film is impacted by a shock wave, propagating to the right: the
film accelerates, reaches a constant velocity (a) and remains smooth until circular holes
appear and grow (b). The thickness, qualitatively deduced from the interference colours
shown in the inset of (a), is 350 nm at the top part of the film and 700 nm at the bottom
part. Importantly, the top and bottom parts reach the same asymptotic velocity despite
their thickness difference. In this first example the film is vertical, and gravity induces a
stratification: the initial thickness fluctuations are reorganised spatially (before the shock)
so that the thickest parts are at the bottom and the thinnest parts at the top. This minimises
the thickness gradients in the film.

Figures 1(c) and 1(d) illustrate the evolution of another film, at the same time and space
scales. In that second case, the whole set-up has been rotated by 90◦: the film is horizontal
and the shock propagates vertically. The film velocity is close to the previous case, the
foaming solution is identical and the thickness range in the film is similar, as shown in the
insets of figures 1(a) and 1(c), and the positions of the film relative to the tube are the same.
The only difference lies in the thickness spatial distribution: patches of various thicknesses
are randomly localised in the film and the thickness varies locally over a typical length
scale much smaller than the width of the coloured bands in the vertical film. Thickness
gradients are thus much higher. As shown in figures 1(c) and 1(d), the rupture process is
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FIGURE 1. Side view of the rupture induced by a shock on a foam film with either small
thickness gradients (a,b), or large gradients (c,d). The delays after the shock are (a) ta � 100 μs;
(b) tb = ta + 200 μs; (c) tc � 30 μs; (d) td = tc + 100 μs. The insets in (a,c) are front views of
the two films, in which the thickness field can be deduced from the interference colours (same
scale as the main images).

g

FIGURE 2. Side view of the film 0.5 ms after the shock. The vertical lines at the left of the
figure are the trace of the meniscus and thus indicate the initial position of the film. In that case,
the film is produced in the tube, and boundary effects are smaller. This allows us to visualise the
structures which develop at the rear side of the film. The scale bar is 2 mm.

very different: at less than 30 μs after the shock, the vertical film is still smooth and still
intact, whereas the horizontal film is strongly deformed in the out of plane direction, with
droplets and liquid ligaments which seem to be torn off the film.

Some structures appear at the rear of the film, as shown in figure 2. Note that, in this
case, the film is horizontal, as in figures 1(c) and 1(d), but inside the tube. This avoids the
boundary effects at the end of the tube discussed in § 4.1, and allows for the visualisation
of the film’s rear side.

The behaviour shown in figures 1(c), 1(d) and 2 is not predicted by the theory developed
in Bremond & Villermaux (2005) and is studied on a controlled system in the following.

3. Experimental set-up

3.1. Materials and methods
The shock wave is produced with a shock tube, whose main characteristics are detailed
hereafter. The low-pressure chamber is 1.2 m long and has a square section of 30 mm ×
30 mm. Two opposite sides are made of polycarbonate, which is a transparent plastic. The
high-pressure chamber is 200 mm long. The shock is produced by perforating a 50 μm
thick mylar sheet used as a diaphragm. We visualised the shock wave with a shadowgraph

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

86
4

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 K

ar
ol

in
sk

a 
In

st
itu

te
t U

ni
ve

rs
ity

 L
ib

ra
ry

, o
n 

13
 D

ec
 2

02
0 

at
 0

8:
14

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.864
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


908 A27-4 Q. Raimbaud, M. Monloubou, S. Kerampran and I. Cantat

Pressure sensors

Shock tube

Motor

Thin film

Thick film

z

y HC
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FIGURE 3. Experimental set-up. The shock tube is oriented along the axis x (horizontal).
A frame is pulled out of the foaming solution reservoir at a controlled velocity to produce a
foam film at the end of the tube, in the ( y, z) plane. The high-speed camera (HC) provides a
side view of the film deformation and the spectral camera (SC) records the mirror reflection
of a halogen light on the film, and thus measures the film thickness profile along the vertical
direction z.

to check that no parasit reflection occurs in the tube. Even in the standard illumination
conditions used for the experiments, the shock wave is visible in the images.

The pressure signal is recorded using four pressure sensors, PCB 113B28, located at
85, 115, 145 and 175 mm from the end of the tube. The time resolution τosc = 1 μs is set
by the oscilloscope sampling rate.

The foaming solution is made of a commercial dish-washing product (Dreft, Procter
and Gamble) (10 % in volume) and glycerol (10 % in volume) in water, of density ρw =
103 kg m−3. The liquid/air surface tension is σ = 27 mN m−1. The foam film is produced
at the end of the tube by pulling a metallic frame of width 50 mm, height 100 mm and
thickness 3 mm out of a bath (see figure 3). The inner boundary of the frame is bevelled
and is only 1 mm thick. The equilibrium position of the film is in the rear plane of the
frame (i.e. on the tube side), located 5 mm from the tube exit.

This geometry is similar to the one used in Bremond & Villermaux (2005). The
originality of our study lies in the foam film thickness profile. Using successively a slow
and a fast velocity to pull the frame out of the bath, we obtain a film with two well-defined
thicknesses: the thinner part is in the top half of the frame and the thicker part in the
bottom half, with a well-defined horizontal frontier separating both regions. The motor is
stopped when the frame is centred on the tube axis. At this final position, the frame is fully
out of the bath and we tuned the duration of the slower frame motion for the frontier to
be in the middle of the film. We generate the shock wave 5 s after the motor stops, which
results from a compromise between (i) a delay long enough for the film to stabilise and
(ii) a delay short enough to minimise gravitational drainage in the film.

The chosen reference frame (0, ex , ey, ez) is shown in figure 3: the origin is in the film
plane, in the middle of the frontier, the wave propagates in the x direction and gravity is
−g ez. The time at which the shock reaches the film is considered as the origin of times.

The thickness is measured as a function of z using a spectral camera, Resonon Pika L.
The camera makes the image of a vertical line, ranging from the top to the bottom frame
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Impact of a shock wave on a heterogeneous foam film 908 A27-5

edge, in the central part of the film. This is a one-dimensional image, in the spatial
direction of the camera sensor. The film is lit with a halogen lamp at an incidence angle
α = 30◦ and the spectrum reflected by each point of the imaged line is recorded in the
spectral direction of the camera sensor. There are 900 pixels in the spatial direction, and
600 pixels in the spectral one, with a spectral resolution of approximately 1.06 nm. The
wavelength of the light is in the range [389–1025] nm.

The intensity I reflected by a point z of the imaged line is given, in the limit of large
transmission coefficient, by

I(z, λ) = I0

[
1 − cos

(
4πh(z)
λ

√
n2 − sin(α)2

)]
, (3.1)

with λ the wavelength, I0 the incoming intensity, α the incidence angle, n the refractive
index of the solution and h(z) the local thickness of the film.

The delay between two images is 4 ms, which is much larger than the dynamics of
interest, but much shorter than the spontaneous evolution time of the film, before the
shock. We thus only analyse the last image before the shock, which allows us to compute
the thickness profile of the film h(z, t = 0) at the time of the shock. We assume a thickness
invariance in the y direction, which is validated by visual inspection.

Finally, the film motion is recorded using a fast camera Photron FASTCAM SA-X2
type 1080k used at a rate between 100 000 and 144 000 frames per second. The film is
observed in transmission, using a Dedolight DLH400DT spot, powerful enough to use an
exposure time of 0.3 μs. Most of the experiments have been performed with the direction
of observation being along the y direction (hereafter called the ‘side view’ position). Some
additional observations have been made with a direction of observation making an angle
of 15◦ with the x direction, in the (x, y) plane (hereafter called the ‘front view’ position).
In that case, the film is lit through the polycarbonate sides of the tube, which considerably
degrades the image quality.

The fast camera and the pressure sensors are synchronised, and triggered by the arrival
of the shock wave at the first pressure sensor. A dedicated reference image has been taken
using the spectral camera and the fast camera to convert the spatial coordinates of both
into the same reference frame.

3.2. Film thickness profiles
To produce the film, we first pull the frame, initially fully immersed, at a velocity V1 ≈
0.6 mm s−1. When approximately half the frame is out of the bath, the motor velocity
switches abruptly to a much higher, tuneable, velocity V2. It is well known that, when
a film is pulled out of a bath, its thickness increases with the pulling velocity (Mysels,
Shinoda & Frankel 1959). The film occupying the lower part of the frame will therefore
be thicker than that occupying the upper part. In all of the following, and despite the fact
that all thickness values are of the same order of magnitude, we shall therefore talk about
thin (upper part, z > 0) and thick films (lower part, z < 0).

A raw space-spectrum image of the resulting film, made just after the motor stops, is
shown in figure 4, as well as the corresponding film thickness profile, deduced from (3.1).
The thickness gradients in the transition domain are too large and the interference pattern
is lost. The width of the unresolved zone is of the order of 1 mm, which is our error bar on
the frontier position z = 0, located in the middle of this zone.
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FIGURE 4. Characterisation of the film profiles. (a) Example of raw image of the spectral
camera (last image before the shock). (b) Corresponding film thickness profile h(z) obtained
using the relation (3.1). (c) Film thicknesses h1 (diamonds) and h2 (full circles) as a function of
the motor velocity V2.

The thin part of the film is very uniform and the thickness h1 is defined as h1 = 〈h(z, t =
0)〉z>0. The thickness of the lower part slightly varies with z, and we call h2 the thickness
measured at the first resolved point near the frontier, on the thick region side.

We attempted to tune the film thicknesses by varying V2, in the range [10–200] mm s−1.
However, as shown in figure 4, no significant thickness variation was obtained, and we
have h1 = (1.12 ± 0.1) and h2 = (2.1 ± 0.2) μm for the whole set of data presented in
this paper. The relevant dimensionless parameter in the problem is (h2 − h1)/h1 ≈ 1. The
fact that this ratio is of order unity in the problem justifies the denominations ‘thin’ and
‘thick’ films, which indicate the relative thickness and not the absolute one.

The thickness in the thick film increases in a band of width 5 mm along the
frontier and then saturates. The order of magnitude of this gradient is dh/dz = −(0.13 ±
0.05) μm mm−1.

3.3. Wave properties
Typical pressure signals obtained with the empty tube are shown in figure 5 as a function of
time. The high-pressure chamber of the tube is filled with air at the desired pressure. The
diaphragm is then punched, ensuring the creation of the shock wave whose Mach number
is perfectly determined. To investigate the influence of the Mach number on the system
dynamics, experiments were performed with Mach numbers lying in the range [1.15–1.35].
The corresponding pressure jump across the shock wave, according to Rankine–Hugoniot
relationships, then lies in the range [0.4–1] bar. The duration of the pressure plateau shown
in figure 5 is limited by the reflection of the shock on the tube exit, leading to a rarefaction
wave propagating backwards. The fast camera acquisition starts as the wave reaches the
first pressure sensor, which synchronises both measures.
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FIGURE 5. Pressure signals as a function of time for the empty tube, at sensors 1 (orange),
2 (green), 3 (blue) and 4 (dark blue); the different apparatus of the set-up are triggered by the
sudden increase of the signal at sensor 1. Note that this graph is a raw experimental recording
and has therefore a different time origin (wave arrival at sensor 1) than that we are using for our
analysis in the following (wave impact on the film).

The shock Mach number is measured in the tube, at 10 cm from the end of the tube.
The pressure front arrives, respectively, at times t1 and t4 at sensors 1 and 4 separated by
a distance � = 90 mm. The Mach number is therefore M = �/[a0(t4 − t1)], where a0 =√

γ rT0 = √
γ P0/ρ0 = 340 m s−1 is the sound velocity in air, in the reference state. Here,

r and γ = 1.4 are the specific ideal gas constant and the adiabatic exponent; T0, P0 and ρ0
are the temperature, pressure and density of the driven gas at rest.

When exiting the tube, the wave undergoes a progressive decay due to the large and
abrupt area change, causing a diffraction phenomenon. According to Sloan & Nettleton
(1975), for a cylindrical shock tube of diameter D, the shock decay on the symmetry axis
will only become significant after a distance Ldecay measured from the tube exit, given by

Ldecay = 1
2

D cot β, with tan2 β = (M2 − 1)
[
(γ − 1)M2 + 2

]
(γ + 1)M4

. (3.2)

For the explored Mach number range in our study, and considering the hydraulic
diameter of the tube, Ldecay varies between 2.8 and 3.4 cm, which is much larger than
the 5 mm distance separating the tube exit and the frame. Given those considerations, in
a central part near the axis, the wave properties remain constant until it impacts the liquid
film (figure 6). In the outer part, further from the axis, because of wave curvature and
decay, the propagation of the wave and its interaction with the film are more complex.
This will induce a delay in putting the film into motion in this area. The global shape of
the film after impact will then be similar to that of the shock wave just before impact.

The impact of the shock wave on the film sets the latter into motion, leading to the
creation of another shock wave downstream of the film. This wave will hereafter be
referred to as the transmitted wave. The corresponding mechanism is described in § 5.1.
The resulting wave can be tracked from the images (see figure 6b) and its Mach number
Mex t can be retrieved. In figure 7, we plot the Mach number ratio Mex t/M as a function of
M, which appears to remain smaller than unity. The downstream wave is therefore always
slower than the incident one, and this effect is more pronounced as M increases. In all
the following, data (averaged over approximately three experiments) are displayed for five
different averaged Mach numbers, as shown in figure 7: 1.17, 1.22, 1.26, 1.29 and 1.32.
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908 A27-8 Q. Raimbaud, M. Monloubou, S. Kerampran and I. Cantat

(b)Shock tube Liquid film

Frame

Shock

wave

3
 c

m

0.5 cm Ldecay ≈ 3 cm

x

Shock

(a)

FIGURE 6. (a) Schematic side view (in the y or z direction) of the propagation of the shock
wave at the exit of the tube. The decay length Ldecay is given by (3.2). (b) Image of a transmitted
shock wave, propagating to the right, in front of the film.

0.88
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M

 (–
)

1.30 1.35

FIGURE 7. Transmitted to incident shock wave Mach number ratio as a function of the incident
shock wave Mach number. For the sake of clarity, results were grouped and averaged over five
different Mach number ranges, hence justifying the horizontal error bars. Vertical error bars stand
for the experimental dispersion on the transmitted shock wave Mach number measurements.

4. Experimental results

4.1. Qualitative behaviour
Figure 8 shows the film dynamics after the shock has impacted the film. Because of the
divergence of the flow at the exit of the tube, the lateral parts of the film (which is slightly
larger than the tube exit) are accelerated by a smaller overpressure and reach a smaller
velocity, therefore inducing a film curvature, as shown in figure 6(a). This effect accounts
for the domain with fluctuating grey levels in figure 8, which grows as the film is put
into motion. In figure 8(b), the well-defined frontier separating the uniform, light grey,
background at large x and the darker part of the image, is thus the position d(z, t) of the
film in its planar, central part. In the following, we focus on that central part of the film
and we assume that the problem does not depend on the y coordinate.
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Impact of a shock wave on a heterogeneous foam film 908 A27-9

3 mm

x

z

O

d1 (z,t)

d2 (t)

(a)

(b) (iii)(i) (ii) (iv)

(v) (vi) (vii) (viii)

FIGURE 8. (a) Definitions of d1(z, t) and d2(t), the horizontal positions of, respectively, the thin
and thick films (in the domain close to y = 0, i.e. the central part of the film). The origin of the
x axis is located at the back of the solid frame, the latter corresponding to the uniform dark grey
area; the origin of the z axis is at the boundary between the thick and the thin parts of the film: the
transparent orange strip coincides with the domain of unresolved thickness between both parts
of the film, as measured with the spectral camera, and the point z = 0 is set in the middle of
the strip. The image used to define those quantities is the same as image (iv) on the right part
of the figure. (b) Side views of the film after the shock impact. Image (i) is taken at t = 0 (time
of the impact on the film). The time interval between each frame is constant and is 20 μs. The
shock Mach number for this experiment was M = 1.28.

At impact, the suspended film is strongly accelerated and is torn from the frame and
from its bounding menisci. Considering that the free boundary of the film retracts at the
Taylor–Culick velocity (Taylor 1959; Culick 1960; Keller 1983), vTC = [2σ/(ρwh)]1/2 ≈
10 m s−1 (in the film plane), the retraction after 0.5 ms is thus of the order of 5 mm. It is
therefore reasonable to assume that the dynamics of the central part of the film remains
unaffected by this process, in the observation time range.

As visible in figure 8(b) (and quantified in figure 11b), the whole film moves at a constant
velocity after the shock. The thick part of the film, located at z < 0, remains relatively flat
and parallel to its initial ( y, z) plane. On the contrary, the thin part shows a very different
behaviour: it tilts and deforms, and the piece of film located close to the frontier moves
slightly faster than the remaining part of the film.

After a delay of the order of 100 μs, the generation of a vortex is usually observed in the
vicinity of the frontier, as shown in figure 9: the fastest point wraps around itself and holes
appear in this strongly deformed region, as shown in figure 10, obtained with the camera in
front view position. In the latter figure, the dark domain growing along the frontier position
indicates a large tilt of the film with respect to its initial orientation. The first holes appear
in this deformed region (figure 10d), and some rapidly expanding circular holes are clearly
visible on the next images. The expansion velocity in this example is 7 m s−1, consistent
with the Taylor–Culick velocity of a 1 μm thick film.

4.2. Quantitative analysis of the film dynamics

4.2.1. Film’s geometrical properties
In order to quantify the film dynamics before its rupture, we systematically extracted

different geometrical quantities from the side view images, as shown in figure 11(a). The
film shape, observed in its central part, is characterised by the equation x = d(z, t). As
previously discussed, the foam film is expected to be initially in the rear plane of the
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908 A27-10 Q. Raimbaud, M. Monloubou, S. Kerampran and I. Cantat

1 mm(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 9. Magnified view of the images displayed in figure 8, focusing on the growth of the
perturbation at the interface between the thin and thick parts of the film.

2 mm

z

y

(a) (b) (c) (d ) (e) ( f ) (g)

FIGURE 10. Front views of the film after the shock impact. The first image is taken at time
t = 67 μs. The time interval between each frame is 40 μs. In (a), the darker line is located
along the boundary between the thin and the thick parts of the film, initially at z = 0 in (a). The
width of this deformed strip increases with time. In (d), the first holes appear in the middle of the
dark strip and expand in the following images, at the Taylor–Culick velocity. The black arrows
in images (d,e) allow us to follow the growth of a particular hole.

frame, which we chose as reference for x (see figure 8a). The first image where the shock
is visible at the right of the frame is our experimental definition of the reference time
t = 0. With these conventions, d(z, 0) = 0 and d(z, t) > 0 at later times.

We determined the frontier position z = 0 as the beginning of the film deformation,
on the fastcam images. We checked that this point is consistent with the frontier position
determined from the spectral camera data (see figure 8). As the thick film remains flat, its
position d2(t) is obtained from an average over the whole z < 0 domain. All the pixel lines
between the image bottom and z = 0 are first summed up. Along this averaged profile,
the grey level shows a sharp decrease: the middle of this jump is automatically detected,
providing the experimental definition of d2(t).

For the thin part of the film, we extracted d1,max , which is the position d(zmax) of the
fastest point. Finally, we measured the whole area A between the thin film profile x =
d1(z, t) and the thick film position x = d2(t) for 0 < z < ztop where ztop is the upper limit
of the image

A(t) =
∫ ztop

0
[d1(z, t) − d2(t)] dz. (4.1)
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Impact of a shock wave on a heterogeneous foam film 908 A27-11

d1, max

d2

Ax = 0

25

20

15

10

5

0 0.1 0.2

t (ms)
d 2

 –
 x

0 
(m

m
)

0.3 0.4

(b)(a)

FIGURE 11. (a) Definition of the geometrical quantities d2, d1,max and A. (b) Position d2 of
the thick part of the film as a function of time. The displayed lines correspond to the averaged
Mach numbers defined in § 3.3: 1.17 (dark blue), 1.22 (blue), 1.26 (turquoise), 1.29 (green) and
1.32 (orange). The shaded area stands for the experimental dispersion on the turquoise curve
(M = 1.26). The initial position of the film, x0, obtained from the fitting procedure described in
§ 4.2.2, has been subtracted from d2 for better readability.

4.2.2. Film trajectory
The thick film trajectory, characterised by the time evolution of d2, is shown in figure 11.

The acceleration time scale, of the order of a microsecond, is below our temporal
resolution, and the dominant observed feature is thus a global motion of the whole
film at a constant velocity U. Consistently, all the trajectories are well fitted by the law
d2(t) = x0 + Ut.

We defined the origin of the x axis as the rear side of the frame, which is the equilibrium
position of the foam film. Consistently, the initial positions deduced from the fits verify
〈x0〉 = 0, when averaged over all the data. However, the standard deviation δx0 = 2 mm is
large, and cannot be explained by the uncertainty on the impact time, which is the 10 μs
delay between two images. This dispersion is probably due to some foam film vibrations
induced by the fast pulling of the frame. The initial position has been subtracted on the
trajectories shown in figure 11.

In figure 12, the obtained thick film velocities U are plotted as a function of the Mach
numbers M and Mex t (defined in § 3.3). Whatever the chosen definition for the Mach
number, we observe a global trend suggesting an increase of the film terminal velocity
with the shock magnitude. The comparison with the film velocity Ulin predicted in § 5
shows that the film velocity is compatible with an actual shock Mach number between M
and Mex t.

4.2.3. Local film deformation at the border between its thin and thick parts
The film deformation can be characterised by the difference d1,max − d2, which is plotted

as a function of time in figure 13. This quantity regularly increases after the shock impact,
until it reaches typically one millimetre after a fraction of a millisecond. The fastest
point therefore moves at a velocity of the order of 3 mm s−1 relatively to the thick part,
which is much smaller than the average film velocity U, of the order of 50 m s−1: the
thickness difference does not affect the global motion of the film. The one millimetre shift
is in contrast very large compared to the film thickness, and corresponds to a dramatic
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FIGURE 12. Velocity of the thick film U as a function of the Mach numbers M (circles) and
Mex t (squares). This film velocity is compared to the prediction of (5.9) (solid line).
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FIGURE 13. Film position difference d1,max − d2 as a function of time. The displayed lines
correspond to the same averaged Mach numbers presented in figure 11. The shaded area stands
for the experimental dispersion on the turquoise curve (M = 1.26).

deformation, leading to the film burst. The largest Mach numbers lead, on average, to
slightly larger shifts, but the difference observed is smaller than the data dispersion.

A more global characterisation of the deformation is the area A defined in (4.1). This
will be discussed in § 5.3.

5. Model

5.1. Shock impact on a uniform film

5.1.1. Assumptions of the model
The model discussed below to describe the shock impact on a film of uniform thickness

has been proposed in Bremond & Villermaux (2005). For the sake of clarity, the main
features are recalled hereafter.

We consider an ideal, inviscid gas of specific heat ratio γ = 1.4, initially at rest at
pressure P0 and density ρ0 (state 0). An incoming planar, steady, shock wave propagates
in the gas at celerity c. Figure 14 shows a wave diagram of the phenomena at stake. The
incident shock wave is characterised by its Mach number M = c/a0. Behind the shock
wave, the gas is brought to pressure Pa and velocity ua (state (a) in figure 14), which can
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Impact of a shock wave on a heterogeneous foam film 908 A27-13

Ref lected
shock

Incident
shock

Foam film

Transmitted
shock(b)

(a)

(0)

(0)

(c)

t

t*

x* x

FIGURE 14. Schematic of the different waves during the acceleration stage. The dotted lines
indicate the characteristic lines used to relate the properties of the gas at a point on the film to
its known properties in the state (0) (downstream) or in the state (a) (upstream). The position x∗
and time t∗ at which the transmitted shock appears are also indicated. See text for further details.

readily be determined using Rankine–Hugoniot relationships, which read

ua = 2a0

γ + 1

(
M − 1

M

)
, (5.1)

Pa = P0
2

γ + 1

(
γ M2 − γ − 1

2

)
. (5.2)

At t = 0, the shock wave reaches the foam film, which is assumed to remain rigid
and airtight. Since the film has a much higher acoustic impedance than the surrounding
medium, the shock wave is fully reflected as a shock moving upstream. The gas properties
behind the reflected shock wave are thus ub = 0, and Pb (state (b) in figure 14), given by
(Courant & Friedrichs 1999)

Pb

Pa
=

(3γ − 1)
Pa

P0
− (γ − 1)

(γ − 1)
Pa

P0
+ (γ + 1)

. (5.3)

The foam film, at position xf , is accelerated by the pressure difference P(x−
f , t) −

P(x+
f , t). Just after the shock impinges on the film, P(x−

f , 0) = Pb and P(x+
f , 0) = P0.

However, at later times, the film motion produces a compressive wave downstream which
increases the value of P(x+

f ) and a relaxation wave upstream which decreases P(x−
f ). After

a characteristic time τ discussed below, the upstream and downstream pressures converge
to the same value and the foam film reaches its asymptotic velocity U.

To compute the foam film motion xf (t), we need to determine the pressures P(x−
f , t)

and P(x+
f , t) on both sides of the film. The film, essentially playing the role of a rigid

piston, moves towards a gas of initial properties P0, u0 = 0, at a velocity dxf /dt. The
ensuing compressive wave turns into a shock wave after a time t∗ = (2/(γ + 1))(a0/Γ0)

(Courant & Friedrichs 1999), where Γ0 = (Pb − P0)/μ is the initial acceleration of the
film, and μ the mass of the film per unit surface. The corresponding position is x∗ = a0t∗.
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908 A27-14 Q. Raimbaud, M. Monloubou, S. Kerampran and I. Cantat

For the pressure levels involved in our study, t∗ is of the order of a microsecond. Due to the
non-isentropic nature of both reflected and transmitted shock waves, and their respective
interactions with the expansion and compression waves, it is not possible to obtain an
analytical expression for P(x−

f , t) and P(x+
f , t) for any given Mach number M. This can

nevertheless be achieved for a weak incident shock wave (i.e. M ≈ 1 + ε).

5.1.2. Weak shock limit
Assuming all the involved shock waves are weak, the expansion and compression

waves generated by the motion of the piston can be considered as simple waves. Indeed,
Riemann invariants vary as ((PII − PI)/PI)

3 across a shock connecting generic states
(I) and (II), which leads to negligible variations across a weak shock wave (Courant &
Friedrichs 1999). In that framework, states (b) and (c) shown in figure 14 are simple waves
propagating respectively behind the reflected and transmitted shock waves. Consequently,
taking into account the fact that, for an ideal gas, a2 = γ P/ρ, the Riemann invariant
conservation for the compression and expansion waves, read, respectively (Courant &
Friedrichs 1999)

2
γ − 1

√
γ P(x+

f )

ρ(x+
f )

− dxf

dt
= 2

γ − 1

√
γ P0

ρ0
, (5.4)

2
γ − 1

√
γ P(x−

f )

ρ(x−
f )

+ dxf

dt
= 2

γ − 1

√
γ Pb

ρ2
. (5.5)

Finally, the film motion obeys

ρwh
d2xf

dt2
= P(x−

f ) − P(x+
f ), (5.6)

and (5.3)–(5.6) constitute a closed set of equations predicting the film motion and the main
properties of the pressure fields.

In the limit of small overpressures, we get, at first order in Pa − P0, Pb − P0 = 2 (Pa −
P0), P(x+

f ) = P0(1 + (γ /a0)dxf /dt) and P(x−
f ) = Pb(1 − (γ /a0)dxf /dt). The equation of

motion thus becomes
d2xf

dt2
+ 2P0γ

a0ρwh
dxf

dt
= 2

Pa − P0

ρwh
, (5.7)

and the film velocity is given by

dxf

dt
= a0

Pa − P0

γ P0

(
1 − e−t/τ

)
, (5.8)

with τ = a0ρwh/(2γ Pa). For a thickness h = 1.5 μm, the characteristic time is τ =
1.5 μs, leading to an acceleration time of the order of 5τ ≈ 7.5 μs. The asymptotic
velocity,

Ulin = a0
Pa − P0

γ P0
= 2a0

γ + 1

(
M2 − 1

)
, (5.9)

is independent of the thickness.
In the linear limit, this asymptotic film velocity verifies Ulin = ua, with ua the gas

velocity behind the initial shock (see (5.1) and (5.2), Courant & Friedrichs 1999).
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Impact of a shock wave on a heterogeneous foam film 908 A27-15

As it also equals the gas velocity behind the transmitted shock, the initial and transmitted
shocks are characterised by the same gas velocity, and thus by the same Mach number.

In figure 12, we plot U as a function of the Mach number measured in the tube
and at the tube exit. We show that the prediction of (5.9) is between both data series,
which confirms that M overestimates the Mach number for which the model would fit
the experimental data, and that Mex t underestimates it. The observed deviations between
the one-dimensional model and our experimental results are consistent with the fact
that multi-dimensional effects are most likely not negligible in the experiments. The
validation of such a model requires a dedicated experimental set-up to ensure a purely
one-dimensional gas dynamics. This topic will be covered in a forthcoming paper.

5.2. Shock impact on the two-thickness film

5.2.1. One-dimensional model
The film trajectory is easily obtained, in the weak shock limit, by integrating (5.8)

xf = Ulin
[
t − τ

(
1 − e−t/τ

)]
. (5.10)

The asymptotic velocity is independent of the film thickness, but the acceleration time
varies as h, and is thus τ1 for the thin part and τ2 for the thick part, with τ1 < τ2.
Assuming that each part of the film evolves independently of the other, and therefore that
the one-dimensional (1-D) model of § 5.1 remains valid, we predict from (5.10) that the
distance between both film parts should be

Δx = Ulin
(
τ2 − τ1 + τ1 e−t/τ1 − τ2 e−t/τ2

)
. (5.11)

This theoretical shift can be considered as constant value after 5τ2 ≈ 10 μs. Its
corresponding asymptotic value is

Δx∞ = Pa − P0

2γ P0

ρw

ρ0
(h2 − h1), (5.12)

which is of the order of 100 μm. The shift predicted by this 1-D approach is noticeably
smaller than the experimental value d1,max − d2 (figure 13). As a consequence, it cannot
be accounted for by the kinematic of each independent part of the film. In the following
section we show that the dynamics of the film deformation is instead governed by the
existence of transverse phenomena.

5.2.2. Transverse flows
During the acceleration time, transient pressure gradients appear in the z direction,

inducing gas fluxes across the plane z = 0. We determine the scaling and the order
of magnitude of these fluxes below, in the weak shock limit. To do so, we consider a
simplified motion of the film, described hereafter.

From the 1-D model of paragraph 5.1, we consider that, schematically, for t ∈ [0; τ1] the
incident shock wave has been reflected on the film, which is assumed to remain motionless.
At t = τ1, the thin film is instantaneously put into motion at velocity Ulin (figure 15).
Consequently, pressures behind and ahead of the thin part are the same and read P0 + ΔP.
For t ∈ [τ1; τ2], which is the case shown in figure 16, the thin part moves at velocity Ulin
and the incident shock has been rebuilt downstream in the z > 0 domain, whereas the thick
film can still be considered as motionless; for t > τ2, both parts of the film move at velocity
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FIGURE 15. Velocity of the film, rescaled by the linear asymptotic velocity Ulin (5.9), as a
function of dimensionless time t/τ1. Blue and red solid lines represent the 1-D model predictions
for thin and thick parts, respectively (5.8). The dashed steps represent the simplified motion we
are considering in this section. Based on the measured film thicknesses, and the definition of τ
in § 5.1.2, we have taken τ2 = 2τ1.

u = Ulin

c ≈ a0

u = 0

Lu

Ld
x x

zz (b)(a)

FIGURE 16. Schematic view of the pressure and velocity fields on both sides of the thin film
(z > 0) and thick film (z < 0), in the weak shock limit, at a time t between τ1 and τ2. The red,
solid lines represent the shock waves, moving at a velocity c ≈ a0; the black arrows represent
the gas velocities (with black dots for gas at rest); the grey background is representative of the
pressure level: P0 in white, P0 + ΔP in light grey and P0 + 2ΔP in dark grey. The velocity
of the film being noticeably smaller than that of the shock waves, we neglect the motion
of the thin part at the considered time. (a) Prediction of the 1-D model of § 5.1, leading to
unphysical discontinuities along the line segments Lu and Ld. (b) Compression and rarefaction
waves (respectively red and blue dashed lines) propagating along the z-direction at a velocity
a0, inducing a vertical flux downwards (respectively upwards) downstream of (respectively
upstream) the film.

Ulin and the initial shock has been rebuilt downstream for all z. In a very crude approach,
we will determine the transverse fluxes as perturbations to this reference situation.

As shown in figure 16(a), the above reference scenario involves a pressure discontinuity
along two segments Lu and Ld, respectively upstream and downstream of the film, over a
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Impact of a shock wave on a heterogeneous foam film 908 A27-17

time interval δτ = τ2 − τ1. Assuming that the sound velocity variations can be neglected
in the weak shock limit, the segment lengths scale as a0δτ and the associated pressure
jump as ΔP = Pa − P0, the initial shock amplitude. The system cannot sustain such a
pressure discontinuity along the z = 0 line, and waves propagating in the z direction are
generated, as shown in figure 16(b). The transverse velocities shown in this figure are
consistent with the appearance of a vortex at these times, and with its orientation.

Along the segment Lu, the vertical gas velocity w1 induces (i) a compressive wave
invading at the sound velocity a gas at pressure P0 + ΔP in the z > 0 domain; (ii) a
rarefaction wave invading a gas at pressure P0 + 2ΔP in the z < 0 domain. Taking into
account only the vertical component of the flow, Riemann invariant conservation yields

P(Lu) = (P0 + ΔP)

(
1 + γ

w1

a0

)
, (5.13)

P(Lu) = (P0 + 2ΔP)

(
1 − γ

w1

a0

)
. (5.14)

The continuity of velocities and pressures along Lu finally leads to

w1 = a0

2γ

ΔP
P0

= 1
2

Ulin. (5.15)

As the compressive and rarefaction waves propagate at the sound velocity, the gas set
into motion at time τ2 at velocity w1 is in a domain of height a0δτ in the z direction. The
corresponding pressure field is shown schematically in figure 16.

The same process arises along the segment Ld, with a resulting negative z-velocity
w2 = −w1.

At later times, for t > τ2, the whole system is set into motion at the velocity Ulin in the x
direction, and the pressure field around the film has relaxed towards Pa. However, the gas
having a vertical velocity at time τ2 keeps moving by inertia. In the weak shock limit, the
resulting downstream flux across the line z = 0 along Ld ∼ a0δτ is of the form Q = w1Ld

Q = K
a0

2γ

ΔP
P0

a0δτ, (5.16)

with δτ = a0ρwδh/(2γ P0). In this equation, we have added an unknown numerical
factor K which underlines that, given the strong simplifications made in the model,
this prediction should be considered as a scaling law, providing the dominant functional
dependencies and the order of magnitude.

Since the transverse velocities are bounded by w1, given by (5.15), the induced density
variations remain small in our case. The model therefore predicts that the excess volume
change in time (per unit length in the y direction) dA/dt can be approximated by the
transverse flux Q, given by (5.16), independent of time. Using δτ as the relevant time unit
for the problem we finally predict

A
A0

= K
t

δτ
with A0 = 1

2γ

ΔP
P0

(a0δτ)2. (5.17)

As the transverse wave propagates at the velocity w1, the penetration depth of the film
deformation should scale has zdef (t)=w1t in the z direction. Using A ∼ zdef (t)(d1,max −d2),
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FIGURE 17. (a) Rescaled excess area A(t)/A0, averaged over all data, as a function of time for
all the experiments. The grey shaded area represents the dispersion of the data. The red, solid
line is the linear prediction of (5.17) with the prefactor K = 1.5. (b) Film position difference
d1,max − d2 as a function of time, rescaled by a0δτ (same data as in figure 13). The displayed
lines correspond to different Mach numbers (same convention as in figure 11). The shaded area
stands for the experimental dispersion on the turquoise curve (M = 1.26). The grey dotted line
is the prediction of (5.18) with the prefactor K′ = 2.

we obtain
d1,max − d2 = K ′a0δτ, (5.18)

with K ′ a second numerical prefactor. With our simple model, the amplitude of the film
deformation in the x direction is thus a constant. A transient is of course expected,
before saturating at this maximal deformation. These predictions are compared to the
experimental results in the next section.

5.3. Comparison with experimental data
For each series, we determine the time, tmax , at which the theoretical value zdef (t) reaches
the upper limit of the field of view. After this time, some part of the deformation is
predicted to be out of the field of view and thus not measurable anymore. We measure the
excess area A as explained in § 4.2.1 for the time range [0 tmax ] and we rescale the measured
area by A0 defined in (5.17); A0 depends on δP, which is determined for each series from
the averaged asymptotic film velocity (see figure 12), using (5.1). The characteristic time
δτ = a0ρwδh/(2γ P0) is determined using δh = 1 μm. Finally, we average the rescaled
values A/A0 over all series. The result is plotted in figure 17(a) as a function of the rescaled
time. Given the error bar, the result is compatible with the predicted linear law and a fitting
of the experimental data leads to K = 1.5.

The distance between both films, already shown in figure 13, is rescaled according
to (5.18) and compared to a plateau in figure 17(b). As the vortex strongly deforms the
film close to the frontier, the agreement is less good, but the order of magnitude is
here again well predicted. The lateral extension of the deformation in the z direction
zdef (t) = w1t, i.e. should be of the order of 3 mm after 0.1 ms (with Ulin = 60 m s−1 (see
(5.15))). This quantity is more difficult to define experimentally and has therefore not been
systematically quantified. However, its order of magnitude that can be observed at short
times, in figure 8, for example, and is in agreement with the prediction.

Despite its simplicity, the model thus correctly predicts the growth of the excess area in
time, and the qualitative shape of the film.

We believe that the patterns observed in figure 2 are due to the same phenomenon: some
thick patches are left behind the film, with their boundaries wrapping around themselves
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g
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FIGURE 18. Zoom on an individual structure in the deformed film, at times 15, 20, 25, 30 and
60 μs after the shock (which propagates downwards). The red and green segments in figure (c)
represent respectively the lengths R2 and 2R1 of the structure of interest; the horizontal white
line is the position xf of the film as defined in the text. Panel (d) shows the last measurable image
of the sequence, as a hole, underlined in blue, appears. The scale bar in (a) is 1 mm.
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FIGURE 19. Volume trapped in the individual structure of figure 18 as a function of time. The
black solid line is the prediction from (5.19).

downstream, thus forming the observed mushroom shapes. The typical thickness pattern
in the film is shown in the inset of figure 1(c): the thickness varies in the range [300–800]
nm, with disordered patterns involving many length scales. The amplitude of the induced
film deformations can only be seen in the side views, but, as these images are only 2-D
projections of the shape, most of these fluctuations are hidden by one another. However,
the slowest and fastest pieces of film are visible. In some cases, a relatively regular shape
without a hole is observed (most often at the rear side of the film), for which the volume
evolution can be measured. We have only a few examples satisfying these requirements,
but we can deduce orders of magnitude of transverse fluxes from them. As discussed
below, they compare nicely to our model.

One example is shown in figure 18. The average position xf of the film is extracted
and provides the film velocity dxf /dt (see (5.8)). We measure at different times the width
2R1 of an individual structure and the position xmin of its slowest part. We define R2 =
xf − xmin and the gas volume trapped in the structure as Ω(t) = π(R2 − R1)R2

1 + 2πR3
1/3,

approximating the structure shape by a cylinder with a hemispherical end. The volume is
plotted as a function of time in figure 19 and shows a linear evolution, only due to the
increase of R2. The value of R1 is constant with time and is interpreted as the radius of the
initial patch of higher thickness. Following the assumption of our model, we expect a flux
Qu given by (5.16) to occur along the perimeter 2πR1 of this thick patch. The prediction is
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R1 (mm) 0.29 0.36 0.61 0.18 0.16 0.19
ΔP/P0 (–) 0.47 0.35 0.26 0.23 0.22 0.17
δh (nm) 250 220 235 95 315 90

TABLE 1. Examples of analysed structures at the rear of the films. The structure width R1 is
measured on a few successive images and averaged over time; the incoming shock amplitude ΔP
is deduced from the film mean asymptotic velocity U; the thickness difference δh is deduced
from the structure volume variation rate, using the prediction (5.19), in which K has been set to
1.5 (see figure 17).

thus

Ω th = K2πR1t
ρw

ρ0

a0

4γ

ΔP
P0

δh, (5.19)

where K is the same numerical pre-factor as that introduced in (5.16). The pressure
difference ΔP is deduced from the asymptotic film velocity Ulin using (5.9), R1 is the
structure radius, averaged on the successive images, and the thickness difference δh is
kept as an adjustable parameter, to fit the measured values Ω(t).

The characteristics obtained for six structures are summarised in table 1. Quantitative
comparisons with experiments would require us to measure the thickness field, which is
out of the reach of our temporal and spatial resolutions. However, the colour pattern of
figure 1(c) indicates thickness fluctuations with an order of magnitude of a few hundred
nanometres (which is the thickness variation from one green strip to a pink one). The
predicted thickness difference is thus in the expected range.

6. Conclusion

When a foam film is impacted by a shock wave, a previously established model showed
that the asymptotic velocity U reached by the film does not depend on the film thickness.
In this paper, we have studied the dynamics of a two-thickness liquid film subjected
to a moderate shock wave. We evidenced that a sharp frontier between the thin and
the thick films is strongly deformed, leading to the development of a liquid protrusion
downstream of the thin film. This induces a strong and localised film deformation along
the frontier, which turns into a tear line separating both parts of the film. This process
has been quantified on films with controlled thickness gradients. An analytical model
involving transverse fluxes was developed to explain those features in the weak shock limit.
A scaling law was derived for the transverse flux, which was found to be in good agreement
with the experimental results. We believe that the process at stake is also responsible for
the original rupture patterns observed on horizontal films, which spontaneously exhibit
patches of different thicknesses. It may thus play an important role in the destabilisation
of 3-D foams interacting with a shock wave, and potentially influence the droplet size
distribution resulting from the foam collapse. The link between these processes and the
wave mitigation remains to be identified.
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