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Abstract: We report the fabrication of a microstructured optical fiber drawn from a soft glass 
3D printed preform. For this proof of concept, a chalcogenide glass that is well known for its 
capability to be shaped at low temperature and its mid-infrared transmission was selected: 
Te20As30Se50. The obtained negative curvature hollow core fiber shows several transmission 
bands in the 2-12 µm range that are reproduced numerically using finite element-based 
simulations and coupled mode theory.  

1. Introduction

Additive manufacturing, or 3D printing has proven to be a powerful elaboration method in 
materials science. Predominantly used for polymers [1-3] additive manufacturing has been 
extended to metals [4], to ceramics [5], and quite recently to glasses [6-12]. In this study, the 
fabrication of a chalcogenide microstructured optical fiber (MOF) drawn from a 3D printed 
preform is reported for the first time. Transmission of infrared light through the fiber core is 
demonstrated, and the recorded main optical transmission bands of the as-prepared fiber are 
successfully compared to simulated ones. For this proof of concept, a soft glass such as 
chalcogenide glass has been chosen because of its well-known capability to be shaped at low 
temperature (T<600 °C) and its mid-IR transparency. Chalcogenide glass fibers have been 
implemented with success in innovative mid-IR systems for versatile mid-IR fiber 
transmission [13,14], supercontinuum generation [15-18], and sensing [19]. The objective of 
this work is to realize a chalcogenide hollow core (HC) MOF for transmission in the mid-IR 
region (2-12 μm) [20,21], by using an original additive manufacturing process. Actually, with 
HC MOF structure, it is possible to obtain transmission beyond the transmission limits of a 
solid core fiber and very low attenuation [22]. Laser power delivery would be greatly 
improved by using such fibers as compared to solid core fibers. It would then be possible to 
propagate a laser beam in the infrared, like CO2 laser at 10.6 μm, for industrial cutting or for 
surgery. In this context the Te20As30Se50 (TAS) chalcogenide glass showing good mid-IR 
transmission and a low glass transition temperature (Tg) suitable for 3D printing by thermal 
filamentation has been chosen. The glass transition temperature of TAS glass is 137°C. 
Thanks to this low Tg, a viscosity of 103-102 Pa.s is obtained around 280°C, which is perfectly 
well adapted for fused filamentation fabrication (FFF) [23]. Such additive manufacturing 
approach allows the fabrication of preforms with complex designs in a single step within a 
couple of hours, with a high degree of repeatability and accuracy of the geometry.  One can 
note that the classical way for making MOF preforms is the stack and draw technique [24], 
which is a time-consuming method and presents limited possible geometries. One can note, 
that for soft glasses like chalcogenide glasses preform extrusion is also an alternative method 
to the stack and draw technique [20]. The 3D printing way for obtaining optical fibers is 
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utilized currently with polymers for which various geometries have been obtained including 
MOF geometries. In addition, it has been shown that a silica fiber can be drawn from 3D 
printed preforms made by stereolithography with UV-curable composite resin containing 
silica particles [11]. However, no MOF obtained from a 3D-printed inorganic glass preform, 
including chalcogenide glass, has ever been reported. The closest related work deals with the 
demonstration of 3D printed bulk As2S3 glass obtained by FFF [12]. 

In this paper, a commercial 3D printer, commonly used with plastic filaments, is modified 
to accept chalcogenide glass rods for the purpose of building structured fiber optic preforms. 
Chalcogenide glasses are fabricated using methods described elsewhere [25,26] in order to 
produce suitable feedstocks. A solid glass cylindrical preform was first produced as a vehicle 
to optimize the 3D printing technique and then drawn into a single-index fiber. This allowed 
to identify optical losses introduced by the 3D printing technique in excess of those from 
traditional fiber drawn from solid melt-cast preforms. The technique is then validated by 
printing a structured preform and drawing that into a hollow-core micro-structured optical 
fiber (HC-MOF). Fiber transmission was measured in the mid-IR and the resulting optical 
performance was then simulated using the finite element method (FEM). 

2. 3D printed chalcogenide glasses  

2.1 Chalcogenide glass synthesis 

For the additive manufacturing study, the TAS chalcogenide glass is prepared by the 
conventional melt-quenching method by, first, introducing high purity As (99.999%), Se 
(99.999%) and Te (99.999%) in a silica ampoule (12 mm inner diameter), which is then 
pumped under vacuum for 3 h. Further, the silica ampoule is sealed and placed in a rocking 
furnace at 850° C during 10 hours to homogenize the melt. The glass is then quenched by 
immersion of the ampoule in water, and annealed above Tg to remove mechanical constraints. 
For obtaining the rods used as raw materials for the 3D printer, the 12-mm diameter rods 
were stretched into 3-mm canes within the drawing tower.  

For obtaining a higher optical quality glass, the addition of TeCl4 and aluminum (1000 weight 
ppm and 100 weight ppm, respectively) to the raw starting elements permits the capture at 
high temperature of remaining hydrogen, carbon and oxygen by forming HCl, CCl4, Al2O3. 
The mixture is then cooled down to 700 °C, quenched into water by immersion of the 
ampoule, and annealed above the glass transition temperature Tg. Then, the chalcogenide 
glass rod, obtained after opening the ampoule, is placed into a distillation ampoule to be 
purified by several distillation steps. It is first distilled under dynamic vacuum to eliminate 
the low vapor pressure impurities such as carbon tetrachloride and HCl residues. In the 
second step, a distillation under static vacuum permits the elimination of refractory 
impurities, such as carbon, silica, alumina and other refractory oxides. When the distillation 
process is complete, the glass is further homogenized at 850 °C for 10 hours, cooled to 550 
°C, quenched in water, and annealed slightly above Tg. This purified glass rod is used for 
drawing a single-index fiber whose optical attenuation serves as a reference for the results 
obtained with fibers drawn from 3D-printed preforms.  

2.2 3D printing process 

The 3D-printing set-up is based on a customized commercial cartesian Arduino-based 
RepRap-style 3D printer upgraded for soft glasses and running Marlin firmware [27]. 
Especially, the feeding mechanism is customized to handle suitably brittle materials. This 
mechanism is supplied with 500 mm long glass rods of 3 mm diameters that are produced by 
the fiber drawing method. An extruder drives the raw material filament to a nozzle heated 
well above Tg. The printer head moves along the X and Z axes while depositing the TAS 
glass as 100-µm thick layers and the bed plate moves along the Y axis. The temperature of 
the extruder head was fixed at 300 °C. The size of the nozzle, and consequently, the width of 
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the printed filament was about 400 µm. The TAS glass was deposited on a sodalime silicate 
glass bed plate heated around 140 °C (i.e. slightly above Tg) in order to ensure a good 
adherence of the first printed layers. For optimum control of the extrusion and the nozzle 
displacement during printing, a simple G-code input file was written using circular motion 
commands. Let us note that for those proof-of-concept experiments, the 3D printing process 
is not yet done under controlled atmosphere but in ambient conditions. The 3D printer is 
installed under a fume hood in order to protect the room environment from any volatile gases 
that could be generated during printing. Figure 1 shows an example of a 3D-printed 
chalcogenide TAS glass cylinder (preform used for drawing the single index “printed” fiber, 
see Section 3.1) and an inner part of it (obtained by cleaving the cylinder), observed by an 
optical microscope and (inset) a scanning electron microscope. No interface is visible 
between the filaments in the XY-plane or layers along the z-axis of deposited glass, indicating 
a good intrinsic quality of the printing. However, several bubbles are observed due to 
imperfect filaments collapsing and/or gas bubbles formed by the degassing of volatile 
compounds such as arsenic oxides or selenide oxides [26].  

 

Fig. 1. Bulk 3D printed Chalcogenide glass: (a) 8 mm diameter printed chalcogenide TAS 
glass cylinder (during the printing), (b) Inner part of the glass cylinder observed by an optical 

microscope and (c) by scanning electron microscope. 

The physical properties of the printed glass have been compared to the ones of the initial glass 
and reported in Table 1. Energy dispersive spectroscopy (EDS) and differential scanning 
calorimetry (DSC) measurements confirm that the composition and the glass transition 
temperature have not been altered during the printing process. Small bubbles present in the 
glass account for the lower density and result in an increased light scattering that can explain 
the higher optical losses, from 8 to 28 dB/m in the mid-IR (Table 1).  

 
Table 1. Physical properties of as-prepared and printed Te20As30Se50 

 
Composition* 

(± 1 %) 
Tg (°C) 
(± 2 °C) 

Fiber transmission 
range (µm) 

Density 
(g/cm3, ± 1 %) 

Attenuation at 7 µm** 
(dB/m, ± 5%) 

Initial Te20As30Se50 137  2-12 4.86 8 

Printed glass Te21As29Se50 136 2-12 4.63 28 

*From EDS analysis, **more details Section 3.1 
 
  
 
 
 
 

(a) (b) (c) 
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2.3 Hollow core 3D printed preform 

The selected geometry for investigating the realization of 3D printed preform is a simple 6-
capillary ring of an anti-resonant structure [28-30] as shown in Fig. 2. After 4 hours of 
printing, a 30-mm long hollow-core chalcogenide preform has been obtained. The outer 
diameter is 16 mm, the inner diameter 12 mm, and the 6 capillaries show a diameter of 3.4 
mm with a thickness close to 0.4 mm (Fig. 2), which is actually the size of a single trace of 
the printing nozzle. Let us note that the cladding is made from 5 traces. 

 

 
Fig. 2. The printed preform: (a) computed view of the targeted design, loaded on the software 
of the customized 3D printer, (b) cross-section view of the chalcogenide printed preform, (c) 

side view of the printed preform with a centimeter scale 

 
Table 2. Geometrical parameters of the printed preform and the obtained fiber 

 
Clad (µm, ± 1 %) Capillaries (µm, ± 1 %) Core size  

Outer ⌀ 
Inner ⌀ Inner/outer 

ratio 
Outer ⌀ 

Inner ⌀ Inner/outer 
ratio 

(µm, ± 1%) 

Printed preform 16000 11800 0.74 3400 2600 0.76 5050 

Fiber from printed 
preform 412 322 0.78 66 40 0.61 217 

 

2.4 Drawing process 

The printed preform was used to manufacture an anti-resonant hollow-core fiber by using a 
homemade drawing tower specifically designed for low- Tg glasses. The preform is placed in 
a narrow drawing furnace that can permit to draw short preforms. When the furnace reaches 
the drawing temperature around 270 °C, a glass drop appears and falls down under gravity 
forming a glass fiber which is then reeled on a spool in rotary motion. At the same time, the 
preform is moved down, feeding the drawing furnace. For a given feeding speed of the 
preform, the diameter of the fiber is controlled by the spool speed. A helium gas flow of 2.5 
L/min provides an inert atmosphere around the preform. Usually, during the drawing of 
MOFs, a differential pressure is applied in the core and in the different capillaries in order to 
control the geometry. However, for this proof of concept study, no differential pressure was 
applied. Consequently, the geometry of the capillaries has changed during drawing due to 
surface tension, more particularly the ratio between the inner and the outer diameter (Table 
2). Nevertheless, it has been demonstrated that a preform obtained by additive manufacturing 
can be drawn into a fiber in which the initial shape is globally maintained (see Fig. 3). The 
final parameters of the fiber are summarized in Table 2. Although the printed hollow core 
preform is only 3 cm long, several meters of fibers have been obtained. 
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Fig. 3. “Printed” hollow core fiber cross-section. 

 

3. Mid-IR optical measurements 

Attenuation of optical fibers were measured by means of a Fourier-transform infrared (FTIR) 
spectrometer (Bruker, Vector 22) equipped with a mercury-cadmium-tellurium (MCT) 
detector. Four types of fibers have been analyzed: a single-index fiber made from purified 
glass, a single-index fiber made from unpurified glass, a single-index fiber made from printed 
unpurified glass, and a hollow-core fiber made from printed unpurified glass. 

 

3.1 Bulk single-index fibers 

 

 
Fig. 4. Optical properties of the Te20As30Se50 chalcogenide glass fiber in the mid-IR region. 
Single index optical fiber attenuation: black solid line with the left vertical scale, refractive 

index: blue dashed line with the right vertical scale.  

The intrinsic mid-IR window of the TAS glass fiber was determined by measuring the 
attenuation of a single-index fiber made from purified glass (see Fig. 4). The measurement 
was realized by the classical cut-back method applied to a fiber of 12-meter initial length. The 
attenuation curve in Fig. 4 corresponds to the average of 3 measurements, the final length of 
the fiber being equal to 1 meter. Considering that the transparency limit corresponds to a 10 
dB/m absorption, one can conclude that a TAS fiber made of purified glass transmits light 

Acc
ep

ted
 M

an
us

cri
pt



between 2 and 12 µm, with a minimum attenuation of 1 dB/m at 7.5 µm. The peak at 4.55 µm 
is due to Se-H absorption, which results from a contamination by residual hydrogen adsorbed 
on the silica ampoules utilized for TAS glass synthesis [25,26]. 

Complementary measurements were carried out to better understand the effects of 3D printing 
on the glass optical properties. In this study, where the objective is to demonstrate the concept 
of making microstructured optical fibers from a printed preform, unpurified TAS glasses were 
implemented. The preparation of unpurified glasses is more straightforward than that of 
purified ones. Attenuation curves were obtained by using the cut-back method on 1-meter 
long fibers drawn from the initial glass preform, made from the same raw glass composition 
as the one used for feeding the 3D printer, and from a printed glass cylinder (8 mm diameter). 
Results are shown in Fig. 5. Comparison of Figs. 4 and 5 indicates that single-index fibers 
possess the same overall Mid-IR transparency window, from 2 to 10 µm, whether the glass is 
initially purified or not. However, the minimum loss is significantly higher in the unpurified 
fiber with a value of nearly 8 dB/m at 7.5 µm. Also, two intense absorption peaks at 2.9 µm 
and 6.3 µm due to, respectively, OH chemicals bonds and molecular H2O chemicals bonds 
were observed. OH and H2O are classical pollutants in unpurified chalcogenide glasses [25]. 
Compared to these two intense absorptions, the Se-H peak at 4.55 µm is too weak to be 
observed in Fig. 5. Above 10 µm, the apparent decrease of attenuation is an artefact due to 
degraded signal intensity at the output of the fiber. The single-index fiber obtained from a 
printed glass shows an important increase of the optical losses, which reach 28 dB/m at 7.5 
µm. This important increase can be explained by two main reasons: the presence of scattering 
bubbles (already observed in a bulk 3D printed TAS glass, Fig. 1) and some weak 
crystallization of the glass occurring during printing, which is done under ambient air for 
those proof of concept experiments. Moreover, in addition to the OH and molecular H2O 
signatures at 2.9 µm and 6.3 µm, numerous other IR absorption peaks are observed. The peak 
at 3.3 µm is due to C-H chemical bonds induced by an organic pollution, while Se-H bonds 
are responsible for the absorption at 4.55 µm. Carbon impurities, which are not present in 
fibers prepared by the classical method, are likely to originate from traces of hydrocarbons 
present in the 3D printer. The reappearance of hydrogen results from a chemical reaction 
between the glass and moisture in ambient atmosphere, during printing. The origin of bands at 
5.8 µm, 6.8 µm, and 7.2 µm could not be established. Finally, the 7.9 µm and 9.1 µm 
absorption peaks could be attributed to metal-oxygen vibrations due to a weak oxidation of 
the chalcogenide glass during printing. 

 

 
Fig. 5. Attenuation spectra of the initial glass fiber (red curve) and the printed glass fiber (blue 

curve). 
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imaginary parts of their effective indices are above 10-3 (while the imaginary part of the 
effective index of the fundamental mode is typically in the [10-6-10-5] range). It is worth to 
mention that only the results for the transverse coefficient sum for the modes are shown in 
Fig. 8(a), because like for most fibers, the longitudinal coefficients are typically one order of 
magnitude smaller than the transverse ones. 
As illustrated Figs. 8(a) and 8(b), the transmission peaks correspond to wavelength ranges 
with a smaller sum of these modulus coefficients between the fundamental core mode and 
other modes (highlighted spectrum part in Fig. 8) while low transmission regions originate 
from a large sum of the coupling coefficients to higher-order modes. Since the longitudinal 
variations of the fiber cross-section are not available, the coupled mode theory-based analysis 
cannot be taken further. Thus, this limitation can explain the small differences between the 
central wavelength positions of the computed transmission bands and the measured ones. 
Nevertheless, the negative curvature fiber guidance mechanism with the localization of its 
transmission bands is demonstrated. 

5. Conclusion 

In conclusion, the proof of concept of 3D printing of chalcogenide glass preforms has been 
demonstrated and such preforms have been drawn into guiding optical fibers (single index 
fiber and hollow core fiber).  
This first ever chalcogenide “printed” hollow core fiber shows significant light transmission 
bands in the 4-12 µm window. The spectral positions of the most intense bands are confirmed 
by numerical simulations, considering the recorded fiber cross-section. The important optical 
losses should strongly be improved by using high optical quality raw glasses, by printing the 
preforms under controlled atmosphere, and by a better control of the geometrical parameters 
during fiber drawing. Those results open a new way for the elaboration of chalcogenide and 
other soft-glass based components such as optical fibers, especially hollow-core MOFs, and 
also types of other waveguides or lenses. 
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