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Abstract. This research work proposes a fundamental application of the Constructal Theory 

developed by Prof. Adrian BEJAN of Duke University (USA) to prove on a mathematical 

point of view the “Principle” of Maximum Work, used by the theory of plasticity, material 

forming and tribology, as a consequence of the global solution defining a constrained 

variational optimization problem. According to the first and second law of thermodynamics, 

the principal law of Constructal Theory try to complete them with a quantitative prediction of 

the natural tendency of any finite size system to evolve towards an optimal space-time 

configuration minimizing the losses and the entropy generation simultaneously with a required 

maximum of the global entropy. In this sense, regarding a material plastic deformation 

characterising the forming processes, among all possible and admissible flow undergoing well-

specified boundary conditions and loadings, the real one is the one who minimizes the sum of 

the dissipated power of volume deformation and surfaces friction. Thus, all the mechanical 

variables defining the real mechanical state (velocities, stresses, strain and strain rate) are those 

ones which minimize the total dissipated power. A variational minimization problem under a 

lot of defined constraints is then obtained. Using the Principle of Virtual Powers it can be 

shown finally that the “Principle” of Maximum Work, used particularly in metals plasticity, is 

obtained as a consequence of a minimization problem under constraints based on the 

Constructal Theory. This generalizes its application to any type of continuous media (metals, 

polymers, fluid, mushy state) and allows proving an equivalent form for the friction stresses 

occurring on contact interfaces. The convexity properties of both the plastic and the friction 

potential together with their normal rule properties can be also proven using the proposed 

mathematical framework. It is concluded that only the rheological and tribological flow laws 

associated with a potential become to satisfy the second thermodynamics principle completed 

with the Constructal Law. Analytical computations concerning plane and cylindrical crushing 

show the feasibility of the proposed minimization problem formulation to define material flow 

giving accurate approximate solutions. In order to valid the whole presented theory, 

comparisons are made using classical analyses based on the upper and lower bound theorems 

(obtained as consequences of the proposed optimization variational problem), the well-known 

slices method and a finite element modelling (FEM). A second application concerning the 

anisotropic formulation of a Coulomb friction law from a quadratic convex tribologic potential 

will be presented to define contact evolution during rectilinear sliding of a circular pion on a 

plane laminated thick plate surface along different orientations. 
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1. Introduction 
During the last twenty years Prof. Adrian BEJAN of Duke University has developed theoretical and 

applied researches concerning the thermodynamic optimization of complex systems based on the 

principle called as constructal defining any system evolution by the maximization of entropy, 

minimization of generated entropy and minimization of resistance and losses related to local or global 

flows searching to maximize the speed to reach a stable equilibrium state. As mentioned in previous 

scientific works [1-2], the Constructal Theory of Professor A. BEJAN can be seen as a definition and 

resolution of a general problem of optimization under constraints taking into account the postulate 

than: “for a finite-size system to persists in time (to live or to be able to survive), it must evolve in such 

a way that it provides easier access to the imposed (global) currents that flow through it” as to 

facilitate access as much as possible under the constraints flows or which cross them minimizing the 

corresponding losses [1]. In addition, it is also observed that all system search to optimize the 

distribution of their imperfections in order to facilitate the flow and to minimize the local resistance or 

the required transformation powers. Numerous studies concerning thermal problems, fluid or porous 

media flow, nature, economic or societal behavior confirm this principle [2]. Starting from recent 

author’s scientific works, this article proposes to consolidate a general mathematical proof of the 

"Principle" of Maximum Work used in materials plasticity through its definition as a theorem which 

results from the application of the Contructal Principle seen as being a more general postulate from a 

thermodynamic point of view and valid for any type of continuum media [3-5]. It is well known that 

the Maximum Work Principle (MWP) is used by plasticity theory [6] to obtain associated flow laws or 

to define constitutive equations related to describe the material’s strength and to develop analytical or 

numerical computations in particular during forming processes. A lot of previous works [7-8] try only 

to explain and to postulate the Maximum Working Principle by a purely phenomenological approach 

regarding polycrystalline metals starting from local slips of atomic particles planes having a maximum 

density. By exploiting the Virtual Powers Principle (VPP) defining the mechanic dynamic equilibrium 

if is applied the Constructal Theory, the Maximum Work Principle can be obtained as a direct 

consequence of a general variational optimization problem which search to minimize the losses of 

material flow, see to minimize the sum of all the dissipations energies. After theoretical backgrounds 

accompanied by their consequences concerning the convexity and the normality rule law of 

rheological and tribological potentials describing the bulk material behavior and contact interfaces, 

will be recalled the theorems of the upper and lower bound together with applications concerning a 

plane compression and a cylindrical crushing taking into account a rigid-plastic behavior with a Tresca 

plastic friction law. A validation of the proposed analyzes together with all the obtained analytical 

solutions will be made through comparisons between the estimation of the compression loads 

evolution and the corresponding numerical results given by Finite Element Modeling using Forge2®. 

 

2. Theoretical framework 
According to the theory of continuum mechanics for all material flow in a well-defined body volume

Ω , the dynamic mechanical equilibrium can be written from the Virtual Powers Principle (VPP):   

                   [ ] * * d d * *

' ''

dv*
: dV v dS T v dS' T v dS' ' f v dV v* dV

dtΩ Ω Ω Ω Ω Ω

σ ε τ ∆ ρ ρ
∂ ∂ ∂

  + − ⋅ = ⋅ + ⋅ + ⋅ − ⋅ ∫ ∫ ∫ ∫ ∫ ∫
�

�� �� � � � �
ɺ             (1) 

It is known that this principle, equivalent to Newton's fundamental law, is valid for any field of 

admissible virtual speeds *
v
�

 respecting the boundary conditions taking into account the Cauchy stress 

tensor [ ]σ , the virtual strain rate tensor *ε  ɺ = [ ] [ ]{ }T1
grad( v*) grad( v*)

2
+� �

, the friction stress vector τ�  

acting on the contact surface or on the surface of velocities discontinuities ∂Ω , the specific loading T
�

, the imposed velocities d
v
�

 on the body border part '∂Ω , the specific imposed loads dT
�

  on the body 

border part ''∂Ω , the specific mass forces f
�

 and the specific density ρ . For the real velocity field v
�

of 

material flow the dynamic equilibrium is described by the Power Work Principle (PWP):  

                [ ] [ ] d d

' ''

dv
: dV v dS T v dS' T vdS'' f vdV vdV

dtΩ Ω Ω Ω Ω Ω

σ ε τ ∆ ρ ρ
∂ ∂ ∂

+ − ⋅ = ⋅ + ⋅ + ⋅ − ⋅∫ ∫ ∫ ∫ ∫ ∫
�

�� �� � � � � �
ɺ          (2) 
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2.1. Theorem of « Maximal Work Principle » 

Using the constructal law, in the case of a deformable material or during a forming process, we can 

postulate that the flow of the material takes place such that it minimizes the sum of the dissipated 

powers corresponding to the flow of the material, to the friction at the contact interfaces or velocities 

discontinuities and to the imposed loads. Consequently, the real values of all the kinematic and 

mechanical variables (velocities, stresses, strains, strain rates) are those which minimize the total 

power of dissipation. Thus, for any state of material defined by virtual mechanics variables, the real 

ones must minimize the functional of total dissipation power. It can be then concluded that, for all 

plastic materials (metallic or non-metallic, fluids or polymers) and for any virtual state, the real strain 

rate tensor [ ]εɺ  and the real Cauchy stress tensor [ ]σ  corresponding to the material flow can be 

obtained by minimizing the sum of the dissipated plastic power, of the friction power or of the 

velocities discontinuities and of the imposed loads power. In addition, the plasticity of the material is 

generally governed in terms of the stress tensor and the friction vector through the definition of a 

plastic criterion defined by a multi-variables scalar function [ ]( )pΦ σ =0 together with a similar form 

regarding the friction term i.e. ( )fΨ τ�  = 0. In this case, from all other admissible virtual speed fields 

v* (different with respect to the real one) characterized by a virtual strain rate tensor [ ]*ε ε  ≠ ɺ ɺ  and a 

virtual plastic constraints tensor *σ    ( ( )*

pΦ σ   = 0 et ( )*

fΨ τ�  = 0), the real material plastic flow 

state can be obtained by minimizing the functional defined through the virtual total dissipated power: 

                     ( )
''

* * * * * * d *

d d dW Min W with W : dV v dS T v dS''
Ω Ω Ω

σ ε τ ∆
∂ ∂

   = = + − ⋅ + − ⋅   ∫ ∫ ∫
�� � �ɺ ɺ ɺ ɺ               (3) 

Using the boundary conditions concerning the kinematics and the loading of the material, a 

variational minimization problem under constraints is then obtained. As shown by the Constructal 

Theory the optimization solution is obtained for the real flow state. So for all virtual states it is 

required to have the following inequality: 

  [ ] [ ] d * * * * d *

'' ''

: dV v dS T v dS'' : dV v dS T v dS''
Ω Ω Ω Ω Ω Ω

σ ε τ ∆ σ ε τ ∆
∂ ∂ ∂ ∂

   + − ⋅ + − ⋅ ≤ + − ⋅ + − ⋅   ∫ ∫ ∫ ∫ ∫ ∫
� �� � � � � �

ɺ ɺ (4) 

For consistent materials and quasi-static conditions, the mass and the inertial forces can be 

neglected, so the VPP principle can be then written in the following simplified form:   

  [ ] [ ] [ ]d * * d *

'' ''

: dV v dS T v dS'' : dV v dS T v dS"
Ω Ω Ω Ω Ω Ω

σ ε τ ∆ σ ε τ ∆
∂ ∂ ∂ ∂

 + − ⋅ + − ⋅ = + − ⋅ + − ⋅ ∫ ∫ ∫ ∫ ∫ ∫
� �� � � � � �

ɺ ɺ     (5) 

Starting from (4) and (5), it can be concluded that for any virtual stress state *σ   ( ( )*

pΦ σ   = 0) 

or any virtual friction *τ�  ( ( )*

fΨ τ�  = 0) and for any body Ω  is obtained the below equivalent form: 

    [ ]( ) ( )* * * *

'

: dV v dS' 0
Ω Ω

σ σ ε τ τ ∆
∂

   − + − ⋅ ≥   ∫ ∫
� � �

ɺ                                     (6) 

This condition requires having positive values for each term i.e.: 

[ ]( ) ( )* * * *

p: 0, , 0σ σ ε σ Φ σ       − ≥ ∀ =       ɺ  and  ( ) ( )* * * *

fv 0, , 0τ τ ∆ τ Ψ τ− − ⋅ ≥ ∀ =� � � � �
      (7) 

Indeed if one considers that there exists a virtual state of the stresses or friction for which the terms 

are negative, one could build another identical virtual state with real state of stresses outside the field 

for which the terms of the integrals are negative (therefore with zero integrals values outside this 

domain) and one would obtain a negative value for the inequality (6) which contradicts the positive 

value to be respected. In the opposite sense, taking into account the real plastic flow characterized by 

the velocity field v, the strain rate tensor [ ]εɺ and the Cauchy stress tensor  [ ]σ , any other state of the 

admissible stresses must also verify the following inequalities: 
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  [ ]( ) [ ] ( )* * *

p: 0, , 0σ σ ε σ Φ σ     − ≥ ∀ =     ɺ  and ( ) ( )* * *

fv 0, , 0τ τ ∆ τ Ψ τ− − ⋅ ≥ ∀ =� � � � �
         (8) 

Starting from the above obtained relationships (7) and (8), it is possible to prove mathematically 

the convex shape of the potential functions defining the plastic and friction criteria and subsequently 

the known property of normality to the criterion. Consequently the strain rate should be proportional to 

the gradient of the plastic criterion with respect to each components of the stress i.e .: 

           [ ] [ ]p p p/ , 0ε λ Φ σ λ= ∂ ∂ ≥ɺ                                                       (9) 

In the same sense the associated friction law can be written in the form: 

                                                             f f fv / , 0∆ λ Ψ τ λ= − ∂ ∂ ≥� �
                                                     (10) 

In this case, based on the property of the convexity of plastic criteria ( )*

pΦ σ    and ( )*

fΨ τ� ,  the 

two inequalities expressed by (8) can be extended to the virtual stress and friction shear respecting 

( )*

p 0Φ σ  ≤   and ( )*

f 0Ψ τ ≤�
. It is then possible to conclude that for any state of virtual stresses is 

obtained: 

    [ ]( ) [ ] ( )* * *

p: 0, , 0σ σ ε σ Φ σ     − ≥ ∀ ≤     ɺ  and ( ) ( )* * *

fv 0, , 0τ τ ∆ τ Ψ τ− − ⋅ ≥ ∀ ≤� � � � �
     (11) 

The first inequality is known in the plasticity theory as the Maximum Work Principle [4-8]. It is 

proved here that this can be obtained as a consequence of Constructal Theory [1], [3] and of the 

Principle of Virtual Powers. The second inequality reflects the same principle applied to the friction 

stress state. 

2.2. Practical Consequences and Synthesis 

 

Figure 1. Flowchart concerning the formulation of the dissipation variational minimization problem 

based on the Constructal Theory and the proof of the "Principle" of Maximum Work (MWP) together 

with the characteristic properties and theorems [3-5] 

Using the theoretical proofs presented above, it can be concluded that the Maximum Work 

Principle can be applied for any type of continuous media: fluid, solid or pasty material, metallic or 

non-metallic, as well as to define in a similar form the principle of maximum power concerning the 

friction stresses. Specific expressions concerning the convex criterion of plasticity or of friction 

[ ]( )pΦ σ = 0, ( )fΨ τ� = 0 can be proposed and used to define the isotropic or anisotropic plastic 

behavior of materials, respectively of the constitutive laws defining sliding at the contact interfaces. It 

is also possible to obtain and prove the theorems of the Lower and Upper Bound (Figure 1) [6-8].  

Dissipations Minimization 
Variational Minimization Problem  

Theorem of Maximal Work “Principle“ – MWP  
applied to both bulk and shear stresses  

 Thermodynamics 

Power Work Principle 

Theorem of 

 Upper Bound 

Theorem of 

 Lower Bound 

Potential Convexity 

Normallity Rule Law 

Constructal Theory 
(Prof. A drian BEJAN) 
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These can also be considered as variational optimization formulations and are frequently used to 

obtain analytical estimations of the loads applied during a material forming process under particular 

assumptions. They are also used to compare and validate the results obtained by Finite Element 

Modeling (FEM). Regarding the Upper Bound Theorem [8], it is observed that it is indeed obtained an 

equivalent form of the variational minimization problem (3). One can thus conclude on the coherence 

and especially on the equivalence between the Maximum Work Principle and the Principle of 

Minimization of the total dissipations or losses defined by the Constructal Theory. 

 

3. Applications: plane compression and cylindrical crushing 

In order to validate the variational minimization principle of dissipations expressed by the 

optimization problem (3) postulating the real state of a material plastic deformation, two cases of 

simple forming are considered: plane compression and cylindrical crushing ( Figure 2a and Figure 2b). 

          

x 

F 

-F 

ac(h) 
V 

-V 

O 

h 

l(h) 

y 

        

-F 

r 

F 
Rc(H) 

V 

-V 

 

O 
H 

z 

Rm(H

 
                                            a)                                                                 b)  

Figure 2. Simple forming operations [5]: a) plane compression, b) cylindrical crushing 

It is assuming a material with a perfect rigid-plastic behaviour defined by a constant value of the 

equivalent Von-Mises stress 0σ  (i.e. ( )* *

p 0 0Φ σ σ σ  = − =  ). In view of large plastic deformations 

generated during a plane compression or crushing process on a double-action press at constant speed 

V, a Tresca friction is taken into account on the specimen-tool surface contacts 0m / 3τ σ=  with 

[ ]m 0,1∈ . Corresponding to the coordinate systems of Figure 2, taking into account the axial, 

respectively revolution symmetry, for each time instant t the geometry of the plane compression 

parallelepiped sample is defined by a transverse surface St = 2a x 2h and a longitudinal surface           

Sp = 2a x L considering ca l( h ) a ( h )≈ ≈ , while in the case of cylindrical crushing the specimen is 

defined by a cylindrical surface Sc of radius m cR R ( H ) R ( H )≈ ≈ and a height 2H. To be able to 

exploit the variational principle expressing the real state of the flow through the minimization problem 

(3), it can be defined a virtual kinematics through an incompressible velocity field ( *div( v ) 0=�
) and 

kinematically admissible (in accordance with the boundaries conditions defined in Figure 2) by 

expressing the velocities components using the below expressions proposed by Avitzur in the case of a 

plane compression respectively of a cylindrical crushing [9]: 

          

( ) ( )

( ) ( )
( ) ( ) ( )

[ ] [ ] [ ]

*

*

* * *

, exp /

exp / 1 /

0, 0, 0 0,

/ 1 exp( , 0, , 0,

x

y

x y y

x
v x y AV y h

h

v y AV y h

v y v v h V

A x a y h

β

β β

β β

= −

 = − − 

= = = −

= − − ∈ ∈

        

( ) ( )

( ) ( )
( ) ( ) ( )

[ ] [ ] [ ]

*

*

* * * *

, ' exp / 2

4 ' exp / 2 1 /

0, 0, ( , ) 0, 0 0,

' / 4 1 exp( / 2) , 0, , 0,

r

z

r z z

r
v r z A V z H

H

v z A V z H

v z v r z v v H V

A r R z H

θ

β

β β

β β

= −

 = − − 

= = = = −

= − − ∈ ∈

     (12) 

Here β  represents a dimensionless parameter varying the shape of the virtual velocity field. Based 

on the variational problem formulated by (3), the real total dissipations power dWɺ must verify: 
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                                                              * *
d d dW Min W Min W ( )β= ≤ɺ ɺ ɺ                                                    (13) 

Since we have dT 0=
�

 the subfamily of the virtual total power of the dissipations is defined by: 

                        * * * * * * *

d 0 0W ( ) : dV v dS dV ( m / 3 ) v dS
Ω Ω Ω Ω

β σ ε τ ∆ σ ε σ ∆
∂ ∂

   = + − ⋅ = + ⋅   ∫ ∫ ∫ ∫
� � �ɺ ɺɺ     (14) 

where: 

                            { }2
* *

( 2 / 3 )Traceε ε =  
ɺ ɺ and *ε  ɺ = [ ] [ ]{ }T1

grad( v*) grad( v*)
2

+� �
                 (15) 

The summary of the analytical computations of all the terms involved by the evaluation of *
dWɺ  is 

presented in Table 1 using the assessments detailed by the author in previous works [3-5] on the basis 

of design principles and material forming theory presented in [7-11]. Given the complexity of 

analytical evaluation the optβ which minimize *
dW ( )βɺ , this study is limited to the necessary condition 

* *
d d dW Min W ( ) W (0 )β≤ ≤ɺ ɺ ɺ .  

Table 1. Definition of the slenderness factor e, of the shape functions with respect to the 

dimensionless kinematic parameter β , of the total reference power P and of the functional expressing 

the virtual power of dissipations *
dWɺ [5] 

 Plane Compression Cylindrical Crushing 

e 

(slenderness) 
a/h R/H 

V’ (volume) 2ahL πR
2
H 

Sp, Sc (area) 2aL π R
2 

 

( )α β  

0β ≠  e / 2β  e / 2β  

0β →  0 0 

 

( )φ α β    
 

0β ≠  
2

2
ln ( ) 1 ( )

1 ( )
( )

α β α β
α β

α β

 + +  + +  
( ) ( ) ( )( )

3/ 2 3/ 2
2 21

8
12

α β α β α β− −  
 + − 
   

 

0β →  2 1 

( )ϕ β  0β ≠  [ ]exp( ) / 1 exp(β β β− − −  [ ]2( / 2 )exp( / 2 ) / 1 exp( / 2β β β− − −  

0β →  1 2 

 

optβ  

Condition nécessaire   

 
d d

2 me 0
d d

φ ϕ
β β

+ = d d
m 0

d d

φ ϕ
α β

⇔ + =  

Condition nécessaire 

d me d
2 0

d d3 3

φ ϕ
β β

+ = d m d
0

d d3 3

β φ ϕ
β α β

⇔ + =      

P  

(Ref. Power) 0 0 p

4 2
aLV S V '

3 3
σ σ=  

2
0 0 cR V S V 'σ π σ=  

*
dW ( )βɺ  [ ]P ( ) me ( ) / 2φ α β ϕ β +   [ ]P 2 ( ) me ( ) / 3 3φ α β ϕ β + 

 

*
dW (0 )ɺ  ( )*

d
e

W 0 2P 1 m
4

 = + 
 

ɺ  ( )*
d

e
W 0 2P 1 m

3 3

 
= + 

 

ɺ  

Thus concerning the plane compression the real load F must verify: 

                                [ ]
*
d 0W (0 ) 4aL

F F 1 me / 4
2V 3

σ
≤ = = +

ɺ
ɶ = [ ]0 p2 S

1 me / 4
3

σ
+                                 (16) 

Starting from the lower bound theorem, using a specific statically admissible virtual stress state

[ ]*Div( ) 0σ = ) [3], while relying on the virtual power principle and on the MWP as a consequence of 

the minimization problem (3), it can be written:  
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                            204aL
F F 1 m me / 4

3

σ  ≥ = − +
  

ɶɶ  = 
0 p 2

2 S
1 m me / 4

3

σ  − +
  

                        (17) 

It is easy to see that the real compressive load could be approximated by the mean value 

(F F) / 2
ɶɶ ɶF ≈ +  with a maximal estimation error of 2(1 1 m ) / (1 me / 4 )− − +  with [ ]m 0,1∈ .  

In the particular case of a compression without friction ( m 0= ) F F
ɶɶ ɶ=  and F = 04aL

3

σ
= 0 p

2
S

3
σ .  

This expression is the same with that obtained by an analytical study based on the resolution of the 

differential incompressibility equation (defining the real velocities by ( ) / hxv x Vx= , ( ) /yv y Vy h= − ), on 

the static equilibrium equation and of the law of normality of the potential rigid-plastic (giving the 

stresses defined by 0 00, 2 / 3, / 3xx yy zzσ σ σ σ σ= = − = − ) [6]. It is important to note that in this case, 

by choosing 0β =  (because as can be seen in the Table 1 opt 0β =  if m 0= ), one finds practically the 

overall minimum of the expression (13), which proves well that the real flow is the solution of the 

variational optimization problem (3). A similar analysis for the cylindrical crushing gives: 

                                         
*

2d
0

W (0 )
F F R 1 me / 3 3

2V
π σ  ≤ = = + 

ɺ
ɶ  = 0 cS 1 me / 3 3σ  +                    (18) 

Starting from the detailed results in [4] it is obtained: 

                                2 2
0F F R 1 m me / 3 3π σ  ≥ = − +
  

ɶɶ  = 2
0 cS 1 m me / 3 3σ  − +

  
              (19) 

The average crushing load may be defined by (F F) / 2
ɶɶ ɶF ≈ + with a maximal estimation error around

( )2
(1 1 m ) / 1 me / 3 3− − + . For a crushing without friction ( m 0= ) 2

0F F
ɶɶ ɶF Rπ σ= = =  i.e F = 

0 cSσ . 

Similarly, it is found that this coincides with the analytical solution (real velocity defined by 

( ) /rv r Vr H= , ( ) /zv z Vz H= −  and diagonal stress tensor 00, 0,rr zzθθσ σ σ σ= = = − ) [6]. The 

same conclusion is reached i.e. we have practically opt 0β = what again justifies the achievement of the 

overall minimum of the optimization problem (3), see the condition expressed by (13). 

 
                                                a)                                                                                         b) 

Figure 3. Comparisons of the compression load-crushing rate evolutions obtained by analytical and 

numerical estimations: a) plane compression, b) cylindrical crushing 

To illustrate the degree of accuracy of the analytical estimates of the forming forces compared to a 

Finite Element (EF) modeling using the Forge2® software, a parallelepiped sample of dimensions    

20 mm x 20 mm x20 mm with an initial slenderness e0 = 1 and a cylindrical specimen of equivalent 
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volume defined by a radius of 10 mm, a height of 20 mm and the same initial slenderness e0 = 1. 

Assuming 0 250σ =  MPa and an average friction defined by m 0.35=  the load-stroke evolution curves 

are shown in Figure 3a and Figure 3b. It is easy to see that in both cases (plane compression and 

cylindrical crushing) the EF solution of the evolution of the load is well between the upper Fɶ  and 

lower F
ɶɶ theoretical limits with values very close to those given by the estimated average (F F) / 2

ɶɶ ɶF ≈ +  

(error less than 1%) while the load estimation error is maximum 6.5%. for a crushing rate of 0,5 with a 

logarithmic deformation of about 70%, seen by the difference of the variation between the lower and 

upper limit.  

In the ideal case without friction the analytical curves are superposed and have values practically 

equal to the numerical finite elements ones. Furthermore, for an identical initial slenderness and an 

almost equivalent material volume (with a ratio of 4 / π ) the cylindrical crushing force have values 

approximately 1.15-1.25 times greater than in the case of a plane compression, thus regaining the ratio 

2 / 3 between the two modes of deformation. 

 

4. Conclusions 
During the content of this article, it was proved that for a plastic flow of all continuous media, starting 

from the general principle defined by the Constructal Theory concerning the minimization of the total 

dissipated energy characterizing the evolution of a finite size system, in particular a deformable 

material body, one obtains and one proven in a more general form the “Principle” of Maximum Work 

both with regard to the state of material bulk stresses and that of friction ones. The application for a 

plane compression and a cylindrical crushing of a rigid-plastic material shows the feasibility of the 

proposed formulation through the solve of a corresponding variational minimization problem 

expressed in terms of total dissipated energy, with possibilities to obtain analytical estimations of the 

required material forming loads evolution. Thus the expressions and the optimal analytical values of 

the upper and lower limits corresponding to the evolution of the compression load must be seen as a 

consequence of the proposed variational optimization problem obtained as a consequence of the 

Constructal Theory. The comparisons with the simulation results obtained by finite element modeling 

show the feasibility and especially the high degree precision of obtained analytical values. 
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