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Fibroblastic reticular cells (FRCs) are the specialized lymphoid stromal cells initially
identified as triggering T-cell recruitment and dynamic motion in secondary lymphoid
organs. Interestingly, FRCs also display antigen presentation capacities and support
lymphocyte survival. CXCR5+CD4+ follicular T cells are important players of B-cell
maturation and antibody response. Our study reported that in vitro-differentiated FRC-
like cells enhanced the growth of the whole CXCR5+CD4+ T-cell compartment, while
enhancing IL-4 secretion specifically by the PD1dimCXCR5+CD4+ cell subset, in a Notch-
and ICAM1/LFA1-dependent manner. In addition, we revealed that in follicular lymphoma
(FL) tissues, previously identified as enriched for PD1hiCXCR5hiCD4+ mature follicular
helper T cells, PD1dimCXCR5+CD4+ T cells displayed an enrichment for Notch and integrin
gene signatures, and a Notch and ICAM-1-dependent overexpression of IL-4 compared
to their non-malignant counterparts. These findings suggest that the crosstalk between
FRCs and CXCR5+PD1dimCD4+ T cells may contribute to the FL IL-4 rich environment,
thus providing new insights in FL lymphomagenesis.

Keywords: IL-4, fibroblastic reticular cells, follicular T cells, T follicular helper cells, follicular lymphoma
INTRODUCTION

T follicular helper cells (Tfh) have been described as a specialized mature CD4pos T cell population
involved in the development and maturation of germinal center (GC) B cells, enabling their survival
and differentiation into high-affinity memory B cells and long-lived antibody-secreting cells (1, 2).
Unlike other helper T cell compartments, follicular CD4+ T cells have been defined by their
localization in secondary lymphoid organs (SLO) at the T/B border or within B-cell follicles,
depending on their maturation stage. Human Tfh are defined by the expression of CXCR5, ICOS,
PD1, and the GC transcription factor Bcl-6, which is essential for their development and
maintenance (3, 4). It is now well known that these cells display a specific gene expression
pattern supporting the hypothesis that they form a separate helper T-cell lineage, even if various
subsets of Tfh producing different cytokines, such as IFN-g, IL-4 or IL-17, have been described (5).
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Besides B and T cells, lymphoid stromal cells represent
important cell organizers enabling naive T- and B-cell
recruitment in SLO. In particular, fibroblastic reticular cells
(FRCs) are found in close contact with T cells allowing for their
recruitment and dynamic motion along cytoplasmic extensions
functioning as guiding paths (6). Several studies have featured the
significant effect of FRCs on T cell survival (7) and their antigen-
presenting cell properties (8), hypothesizing that they could play
other roles in immunological responses by interacting more
strongly with T cells than previously assumed. Accordingly, we
decided to investigate the functional interactions between human
FRCs and follicular CXCR5+CD4+ helper T cells.

Follicular lymphoma (FL), the most frequent indolent B-cell
lymphoma, results from the malignant transformation of GC B
cells. FL tumor cells remain strongly dependent on surrounding
supportive cells (9, 10), including in particular Tfh (11–14) and
lymphoid stromal cells (15, 16). Previous studies revealed that
CXCR5hiPD1hi GC-Tfh are abundant within FL lymph nodes
(LN) (14) and support directly and indirectly FL B cell survival,
especially through IL-4 overexpression (11, 17, 18). Moreover,
immunohistochemistry studies of FL LNs revealed the presence
of an overdeveloped and activated FRC network (19, 20).
Thereby, we considered that FL could be a good model to
fulfill the study of the interactions between FRCs and
CXCR5+CD4+ follicular helper T cells.

In this study, we revealed a specific IL-4 over-secretion in a
previously unexplored CXCR5+PD-1dim CD4+ T-cell subset
when cultured with FRCs, which involved ICAM1 and Notch
pathways. This observation was of a particular interest to further
the understanding of the FL supportive microenvironment and
to highlight some of the mechanisms involved in the deregulated
IL-4 expression.
MATERIALS AND METHODS

Cell Samples
All tissues used for this study were obtained from subjects
recruited under institutional review board approval and
informed consent process according to the Declaration of
Helsinki. Human stromal cells from SLO originated from
pediatric patients undergoing routine tonsillectomy.
Uncommitted tonsil stromal cells (TSCs) were obtained from
Percoll-enriched cell fraction maintained in RPMI 1640-10%
FCS, and were stimulated for 3 days by 20 ng/ml TNF-a and 100
ng/ml LT-a1b2 (RD Systems) to generate in vitro-differentiated
FRC-like cells (FRCLs), as described previously (16).
CXCR5hiPD-1h i CD4+CD3+CD25- and CXCR5+PD-
1dimCD4+CD3+CD25- were sorted (Supplemental Figure 1)
and referred as GC-Tfh and R5-PD1dim cells (4). It was
assumed that few CD25- Tfr cells were present in sorted
samples. See Supplemental Materials and methods for details.

Flow Cytometry Analysis
Monoclonal antibodies (mAbs) used are listed in Supplemental
Table S1. Samples were acquired on a Gallios® flow cytometer
Frontiers in Immunology | www.frontiersin.org 2
(Beckman Coulter) and singlets of viable cells were analyzed
using Kaluza Analysis 1.3 software (Beckman Coulter), and
ModFit LT (Verity Software House) for proliferation assessment.

Microarray Data Analysis
Microarray hybridization (see Supplemental Materials and
methods) and analysis were performed on purified R5-PD-1dim

and GC-Tfh isolated from 3 tonsils and 3 FL LN samples, and
from 3 TSCs and 3 FRCLs. Differentially expressed genes were
identified using a moderated t-test carried out with Chipster
software (adjusted p-value <.05, log2 fold change >2). A pre-
ranked Gene Set Enrichment Analysis (GSEA) was performed to
evaluate the enrichment of Notch and integrin pathways in T-cell
subsets. Moreover, GSEA preRanked was used to explore
REACTOME, KEGG, PID, and BIOCARTA pathway
databases. Pearson correlation matrix with pairwise complete
observation was performed using R cor function on non-
redundant transcript normalized values from TSCs, FRCLs,
R5-PD-1dim, and GC-Tfh microarrays, and was visualized
using R heatmap function. The top 20% most variable
transcripts identified by statmod R package were retained to
constitute the matrix. Microarray data are available under GEO
accession number GSE157784 and GSE157801.

Quantitative RT-PCR
Total RNA from R5-PD-1dim, GC-Tfh, and stromal cells was
extracted using Nucleospin RNA kits (Macherey-Nagel) and
either directly transcribed to cDNA with Superscript II reverse
transcriptase (Invitrogen) or amplified with Ovation Pico SL
(Nugen). For quantitative RT-PCR, assay-on-demand primers
and probes (Supplemental Table S2) and the Taqman Universal
Master Mix (Thermo Fisher Scientific) were used. Gene
expression was measured using the StepOnePlus Real-Time
PCR System or the ABI Prism 7900HT Sequence Detection
System (Thermo Fisher Scientific). Appropriate housekeeping
genes were selected as B2M, CASC3, and 18S for T cells, and
CDKN1B and PUM1 for stromal cells.

Proliferation and Survival Assays
For proliferation assays, sorted tonsil R5-PD-1dim and GC-Tfh
subsets were stained with CFSE and cultured in 10% FCS-RPMI
1640 alone or with pre-seeded TSCs or FRCLs (5:1 ratio) for 4
days with anti-CD3 (0.2 ug/ml) and anti-CD28 (0.2 ug/ml)
stimulating antibodies (Sanquin). Cells were then trypsinized
and stained with CD2 and CD105 to analyze CFSE+

CD2+CD105- T cells. For survival assays, sorted tonsil R5-PD-
1dim and GC-Tfh subsets were cultured in 10% FCS-RPMI 1640
alone or with preseeded TSCs or FRCLs (5:1 ratio) for 5 days,
followed by CD2, CD105 and active caspase-3 staining according
to the manufacturer’s instructions. Percentage of active caspase-3
negative cells was evaluated on CD2+CD105- T cells.

Cytokine Secretion Assay
Sorted tonsil or FL R5-PD-1dim and GC-Tfh were cultured for 3
days in 10% FCS-RPMI 1640 with pre-seeded TSCs or FRCLs
(5:1 ratio) in presence of anti-CD3 (0.2 ug/ml) and anti-CD28
October 2020 | Volume 11 | Article 559866
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(0.2 ug/ml) stimulating antibodies. After 3 days, a restimulation
step was done with 100 ng/ml phorbol myristate acetate and 750
ng/ml ionomycin for 6 h, supplemented with GolgiPlug (Becton
Dickinson) for the last 4 h. For inhibition experiments, Notch
chemical inhibitor L685,458 (Sigma Aldrich) or blocking
antibodies (bAbs) (Supplemental Table 1) were used. The
percentage of singlet viable T cells producing IL-4, IL-21, and
IFN-g was determined by staining with live/dead fixable yellow
dead cell stain (Thermo Fisher Scientific) and CD2, followed by
fixation in paraformaldehyde 4% for 15min, permeabilization
with saponin 0.5%, and staining for intracellular cytokines.

Statistical Analysis
Statistical analyses were performed with Graphpad Prism 6
software suite (GraphPad Software) using non-parametric
Wilcoxon test for matched pairs, or Mann Whitney U test.
RESULTS

FRCs Stimulate the Expansion of Follicular
CXCR5+ CD4+ T-Cell Compartments
Having identified two subsets of human CXCR5+CD4+ follicular
T cells based on their differential expression of CXCR5 and PD-1
(Supplemental Figure 1), we decided to explore the impact of
FRCs on both GC-Tfh and R5-PD1dim cells. Indeed, FRCs
express high levels of adhesion molecules, extracellular matrix
components, and LN chemokines, and promote B and T cell
recruitment, adhesion, and survival (7, 21, 22) in both T-cell
zone, inter-follicular area, and at follicle border, the place of
T-cell priming for Tfh differentiation. In addition, FRCLs
obtained by in vitro differentiation of uncommitted TSCs have
been proposed as a good model to perform functional FRC
evaluation (16, 23).

Tonsil R5-PD1dim and GC-Tfh were prone to die ex vivo
when removed from their microenvironment and were efficiently
rescued from death by coculture with both TSCs and FRCLs
(Figure 1A). In addition, TSCs and FRCLs similarly enhanced
the proliferation of R5-PD1dim and GC-Tfh (Figure 1B). FRCLs
and TSCs displayed thus similar capacities to sustain the growth
of R5-PD1dim and GC-Tfh. In order to decipher the specific
impact of FRCLs on follicular CD4+ T cells, we then compared
their gene expression profile (GEP) with those of TSCs.
Unsupervised Pearson correlation performed on the top 20%
most variable transcripts adequately segregated TSCs and FRCLs
(Figure 1C). We then focused on genes overexpressed in FRCLs
(Supplemental Table 3). Unexpectedly, pathway enrichment
analysis using REACTOME database revealed a strong
enrichment of FCRL signature for Notch-1 and Noctch-2
signaling. Moreover, several genes known to be involved in
adhesion and antigen presentation to T cells were found in this
FRCL signature and could impact CD4+ T-cell behavior. Among
733 genes, the adhesion molecule ICAM1 was the most upregulated
gene. ICAM1 and CD58, which was also overexpressed in FRCL,
are two molecules involved in adhesion process through binding of
LFA-1 and CD2, respectively. Several inflammatory chemokines,
Frontiers in Immunology | www.frontiersin.org 3
such as CCL2, CCL5, CCL11, and CXCL10 were also found
overexpressed, and could be involved in the recruitment of CD4+

activated T cells expressing CCR1, CCR2, CCR3, CCR4, CCR5, or
CXCR3 (Table 1). In agreement to the previously demonstrated
antigen-presenting cell properties of mouse LN stromal cells (8), we
also observed an overexpression of CD74, which is involved in the
formation and transport of MHC class II protein (24), as well as
CD83 which is known to deliver costimulatory signals for naive and
memory T-cell activation (25). We also revealed a high expression
of immunosuppressive molecules such as HLA-G and CD274, in
agreement with the recently proposed role of FRCs in immune
tolerance (26–28). Finally, we found an overexpression of cytokines
involved in CD4+ T-cell development: IL-15 involved in CD4+

T-cell homeostasis (29), IL-6 involved in Tfh differentiation (30),
and IL-33 leading to secretion of Th2 associated cytokines (IL-4, IL-
5, IL-13) and increase of immunoglobulin levels (31, 32). Overall,
our microarray data suggest that human FRCs can modulate
follicular CD4+ T-cell behavior.

FRCs Specifically Enhance IL-4 Secretion
by R5-PD1dim T Cells in a Notch- and
ICAM1-Dependent Manner
It is now well-described that different subsets of follicular T cells
could be defined based on their cytokine profile expression (33,
34). Comparing R5-PD1dim cultured with TSCs versus FRCLs, no
modification of IL-21 and IFN-g secretion was observed (Figure
1D). Similarly, a coculture of GC-Tfh with either TSCs or FRCLs
did not affect their secretion of IL-21 and IFN-g, despite a lower
overall cytokine secretion ability compared to R5-PD1dim

(Figure 1D). Interestingly, we found that in presence of
FRCLs, R5-PD1dim specifically upregulated IL-4 production,
unlike paired GC-Tfh (Figures 1D, E). Together with the
similar impact of TSCs and FCRLs on R5-PD1dim proliferation
and survival (Figure 1A), this finding suggests specific signaling
pathways between FRCLs and R5-PD1dim, involving molecules
favoring IL-4 production.

It has been recently described in mice that the ICAM-1-
binding CD11a/CD18 heterodimer (LFA-1) controls Tfh
generation and maintenance, and is involved in the development
of IL-4 producing Tfh and Th2 cells during helminth infection
(35). Of note, ICAM1 was the most upregulated gene in FRCLs
compared to TSCs, and was highly expressed, together with
VCAM1, on FRCL membrane (Figures 1F, G). In addition, as
already described in the case of other CD4+ T cell subsets (36),
tonsil R5-PD1dim expressed CD49d, CD29, CD11a, and CD18
integrin subunits (data not shown). Interestingly, we reported a
significant decrease of IL-4 secretion by R5-PD1dim cocultured with
FRCLs in the presence of anti-ICAM1, and not anti-VCAM1,
blocking Abs (Figure 1H, Supplemental Figure 2). These findings
highlight a specific involvement of ICAM1/LFA-1 pathway in IL-4
overexpression of R5-PD1dim in contact with FRCLs.

Furthermore, it has been demonstrated that Notch affects Tfh
differentiation (37, 38), and mounting evidence suggest that
Notch signaling is involved in activation of IL-4 secretion by
Tfh. Indeed, activation of IL-4 expression in mouse Tfh was
shown to be predominantly dependent on the 3’ enhancer CNS2
October 2020 | Volume 11 | Article 559866
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FIGURE 1 | Survival, proliferation, and cytokine secretion of follicular CD4+ T cells cocultured with stromal cells. (A, B) Sorted tonsil R5-PD1dim or GC-Tfh were
cocultured alone (ø), or in presence of unpolarized TSCs, or FRCLs. Survival (A) and proliferation (B) were assessed by active caspase 3 and CFSE staining,
respectively. Highly proliferative cells gathered cells that undergone more than one cycle of proliferation. *P < 0.05. (C) Pearson correlation matrix of microarray data
obtained from 3 TSCs and 3 FRCLs. (D) IL-21, IFN-g, and IL-4 secreting cells were assessed by flow cytometry. Results are expressed as the percentages of
cytokine-secreting cells obtained from culture with TSCs (empty symbols) or FRCLs (full symbols). *P < 0.05. (E) Example of IFN-g and IL-4 staining by flow
cytometry for R5-PD1dim cultured in the presence of TSCs or FRCLs. (F) Flow cytometry analysis of ICAM1 and VCAM1 expression at the cell surface of TSCs and
FRCLs. MFI: mean fluorescence intensity. *P < 0.05. (G) One representative ICAM1 and VCAM1 flow cytometry staining for TSCs and FRCLs. (H) Sorted R5-PD1dim

cells were cocultured with FRCLs in the presence of anti-ICAM1 or anti-VCAM1 blocking antibodies before the quantification of IL-4 secreting cells by flow cytometry.
Results are expressed as percentages of cytokine secretion for R5-PD1dim cultured with FRCLs. Statistical analyses compared T-cell IL-4 secretion in FRCL+anti-
ICAM1 and FRCL+anti-VCAM1 conditions versus that of FRCL alone as a control. *P < 0.05, n = 7. (I) JAG1, JAG2, DLL1, and DLL4 expression in FRCLs
compared with TSCs performed by quantitative RT-PCR. The arbitrary value of 1 has been assigned to TSCs (n = 3). (J) Sorted R5-PD1dim were cocultured with
FRCLs in presence or not of L685,458 before the quantification of IL-4 secreting cells by flow cytometry. Results are expressed as percentages of cytokine secretion
for R5-PD1dim cultured with FRCLs. *P < 0.05, n = 7.

Misiak et al. Follicular T Cell Polarization
(39), and Notch intracellular domain was previously shown to
bind selectively to CNS2 (40). Interestingly, JAG1, DLL1, and
DLL4 Notch ligands were overexpressed in FRCLs compared to
TSCs (Figure 1I). Using L685,458, a gamma-secretase inhibitor
that fully blocks Notch signaling, a significant decrease of IL-4
secretion was observed for R5-PD1dim cocultured with FRCLs
(Figure 1J, Supplemental Figure 2). This result suggests that in
addition to ICAM1, Notch signaling also participates in IL-4
secretion of R5-PD1dim cells in contact with FRCLs.

FL LN-Infiltrating R5-PD1dim Cells Secrete
High Levels of IL-4
Based on FL LN histochemistry studies revealing an
overdeveloped FRC network (19), an over-representation of
GC-Tfh (11, 14), and an IL-4 rich microenvironment (18), we
hypothesized that stromal cell/follicular CD4+ T-cell interactions
could play a key role in FL lymphomagenesis. Like in tonsils, FL
CD4+ T-cell characterization revealed the presence of three
CD4+ T-cell subsets based on CXCR5 and PD-1 expression: a
CXCR5lowPD-1low subset representing FL non-Tfh, and two
CXCR5 expressing subsets, CXCR5+PD-1dim (FL R5-PD1dim)
and CXCR5+/hiPD-1hi (FL GC-Tfh) (Figure 2A). Of note, tonsils
and FL LN samples displayed similar R5-PD1dim and GC-Tfh
frequencies (Figure 2B).

In order to highlight the specific features of FL follicular T
cells, we analyzed the GEP of R5-PD1dim and GC-Tfh subsets
isolated from FL LN and tonsils. Strikingly, an unsupervised
Pearson correlation performed on the top 20% most variable
genes segregated adequately follicular CD4+ T not only based on
their phenotype, i.e. R5-PD1dim versus GC-Tfh, but also based
on their malignant versus non-malignant origin (Figure 2C).
Frontiers in Immunology | www.frontiersin.org 5
However, supervised stringent analysis identified only few
differentially expressed genes between tonsil and FL LN R5-
PD1dim: 47 upregulated and 38 downregulated genes
(Supplemental Table S4). Using Gene Set Enrichment
Analysis (GSEA) and looking for a priori defined genelists,
three genesets were found enriched in FL R5-PD1dim: PID
Notch pathway, KEGG cell adhesion molecules and Biocarta
Integrin Pathway (Figures 2D–F); the latter two comprising all
described adhesion molecules and integrin downstream
molecules, respectively. To have a more accurate phenotype of
FL LN CD4+ T-cell subsets, expression of typical Tfh genes was
evaluated by quantitative RT-PCR. Even though FL R5-PD1dim

expressed lower levels of BCL6 and IL21 compared to tonsil R5-
PD1dim, the expression of those two genes was lower than in
paired FL GC-Tfh (Figure 2G), and higher than in paired FL
non-Tfh (data not shown). This finding allowed us to
hypothesize that R5-PD1dim could correspond to Tfh
precursors. Like FL GC-Tfh, FL R5-PD1dim expressed LTA and
LTB, as well as high levels of TNFA (Supplemental Figure 3), all
known to be involved in FRC differentiation (41), suggesting that
these FL R5-PD1dim could participate, as well as FL GC-Tfh (16)
to the FRC network expansion found in FL LNs. Finally, we
highlighted an IFN-ghi IL-4hi IL-17low phenotype in FL R5-
PD1dim besides the already described specific IFN-ghi IL-4hi

IL-2hi IL-17low profile of FL GC-Tfh (Figure 2H) (11, 13).
Interestingly, IL-4 was the most differentially overexpressed
cytokine in FL R5-PD1dim compared to tonsil counterpart. We
hypothesized that this IL-4 overexpression could be linked to the
stimulation of FL-Tfh with integrins and/or Notch ligands
expressed by the expanded FL-FRC network. In agreement, a
significant decrease of IL-4 secretion was observed in purified FL
R5-PD1dim cultured with FRCLs in the presence of either ICAM1
blocking antibodies or L685,458 Notch inhibitor (Figure 2I).
DISCUSSION

The primary goal of this study was to define the interactions
between lymphoid stromal cells, and follicular CD4+ T cells.
Numerous studies revealed an immunosuppressive effect of
stromal cells on CD4+ helper T cells [reviewed in Duffy MM
et al. (42)]. In particular, we and others have shown that IFN-g
secreted by CD4+ T cells induce the expression of the
TABLE 1 | Selected genes upregulated in FRC-like cells (FRCLs) compared to
uncommitted tonsil stromal cells (TSCs).

Probeset ID Gene Symbol Fold Change
FRCL/TSC

p-value

209619_at CD74 5,5 0,0033
204440_at CD83 13,7 0,0195
202638_s_at ICAM1 1018,8 0,0004
217371_s_at IL15 3,5 0,0060
209821_at IL33 5 0,0185
205207_at IL6 61,6 0,0021
October 2020 | Volume 11 | Article 559866
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FIGURE 2 | Characterization of R5-PD1dim infiltrating FL LN as an IL-4-secreting subset. (A) PD1 and CXCR5 expression of viable FL LN CD4+CD25- T cells as
evaluated by flow cytometry. Shown is one example of staining. 1: non Tfh; 2: R5-PD1dim; 3: GC-Tfh. (B) Frequencies of R5-PD1dim and GC-Tfh among viable
CD4+CD25- T cells in tonsils (Tons) and FL LN (FL). (C) Pearson correlation matrix of microarray data obtained from GC-Tfh and R5-PD1dim subsets isolated from
tonsils and FL LN. (D–F) Gene expression profile of R5-PD1dim isolated from FL LN (FL) and tonsils (Tons) were compared, and GSEA enrichment plots for PID
Notch pathway (D), Kegg cell adhesion molecules (E), and Biocarta integrin pathway (F) were drawn. The green curve represents the running sum of the weighted
enrichment score. (G, H) Quantitative RT-PCR analyses were made on sorted R5-PD1dim and GC-Tfh isolated from tonsil (Tons) and FL LN (FL). Tonsil and FL LN
samples are represented by white and black symbols, respectively. The arbitrary value of 1 has been assigned to blood naive CD4+ T cells, used as an internal
control. *P < 0.05. (I) Sorted FL R5-PD1dim were cocultured with TSCs or FRCLs in the presence or not of ICAM1 blocking antibodies or L685,458 before the
quantification of IL-4 secreting cells by flow cytometry. Shown is one experiment out of two.
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tryptophane-catabolizing enzyme indoleamine 2,3-dioxygenase
(IDO) in human stromal cells, inhibiting CD8+ and CD4+ T-cell
proliferation (43, 44). Although a subset of both GC-Tfh and R5-
PD1dim cells secreted IFN-g, a higher proliferation rate has been
observed in this study during Tfh and stromal cell cocultures
suggesting that follicular CD4+ T cells exhibit a specific
mechanism of protection against IDO activity.

Moreover, this study highlights a higher frequency of IL-4+ R5-
PD1dim in the presence of FRCLs compared to unpolarized TSCs,
whereas the proportions of IFN-g+ and IL-21+ R5-PD1dim were
unaffected. Besides GC-Tfh, well-known to produce IL-4, an
important cytokine involved in T-dependent antibody responses
(45), R5-PD1dim may thus also participate in the IL-4 rich
environment in SLO. Since no difference in survival and
proliferation rates was observed between R5-PD1dim cocultured
with TSCs and FRCL, the activation of signaling pathways
enhancing IL-4 secretion by R5-PD1dim was more likely than a
specific anti-apoptotic/pro-proliferative effect on IL-4+ R5-PD1dim.
Both Notch and ICAM1/LFA1 were involved in this IL-4 over-
secretion. Interestingly, expression of Notch ligands by FL-
infiltrating stromal cells has already been involved in their
capacity to polarize recruited monocytes into supportive tumor-
associated macrophages (46). We can speculate that Batf or c-maf
(47), that have been described as important for IL-4 synthesis in
follicular CD4+ T cells, could be engaged in stimulated follicular T
cells, even if no correlation between their gene expression and IL-4
gene expression in R5-PD1dim has been found (data not shown).

An important hallmark of FL is the major role of the
microenvironment in malignant B cell survival, growth, and
drug resistance (10). Deciphering the specific features of FL
cell niche components and understanding their relationship with
neoplastic cells should be helpful in improving the design of
targeted therapies in this still fatal malignancy. Helper T cells
represent a prominent non-malignant cell subset in FL. GEP of
total CD4pos T cells has revealed an altered expression of
numerous genes related to T-cell activation, motility, and
polarization, including an upregulation of IL4 compared to
tonsil T helper cells (48). However, such approaches do not
consider the functional diversity of CD4+ T-cell subsets. FL GC-
Tfh have been described as a major component of the FL niche
due to their localization in malignant follicles and their
malignant B cell supportive properties, in part due to their
high IL-4 secretion (16). Here, we further reveal that R5-
PD1dim could also be an important actor in the formation of
the peculiar FL LN microenvironment. Indeed, FL R5-PD1dim

displayed an IL-4 over-secretion, probably caused in part by their
Frontiers in Immunology | www.frontiersin.org 7
interaction with FL-FRCs, in a Notch- and ICAM-1-dependent
manner. More extensive experiments need to be performed to
decipher if IL-4-secreting FL GC-Tfh actually derive from FL R5-
PD1dim. Furthermore, FL LNs display an overdeveloped FRC
network, that have been demonstrated to be supportive for
malignant FL B cells (19), and could be in part a consequence
of TNF-a secretion by FL R5-PD1dim and FL GC-Tfh. Overall,
follicular CD4+ T cells seems to be central supportive cells for
malignant FL B cells.

In summary, we report a close collaboration between two
poorly explored compartments of SLO, FRCs and R5-PD1dim, for
IL-4 secretion in both physiological conditions and in the context
of FL. This study enhances our current understanding of the
multipartite cell interactions occurring in the FL cell niche and
encourages their deeper characterization in order to develop
targeted therapeutic agents.
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