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ABSTRACT  

CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies 

have focused on the reactions between CN and aromatic molecules. The recent detection of 

benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, 

has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene 

(C7H8) reaction between 15 and 294 K using a CRESU (Cinétique de Réaction en Ecoulement 

Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the 

pulsed laser photolysis – laser induced fluorescence (PLP-LIF) technique. We also present the 

stationary points on the potential energy surface of this reaction to study the available reaction 

pathways. We find the rate constant does not change over this temperature range, with an average 

value of (4.1 ± 0.2) × 10-10 cm3 s-1, which is notably faster than the only previous measurement at 

105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is 

related to enhanced multiphoton effects in the previous work.  

  

Page 2 of 26

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



 3 

Introduction 

The CN radical has long been known to be abundant in the interstellar medium (ISM), where it 

was first detected in 1940s,1-2 and in the atmosphere of Titan, where it leads to the formation of 

nitrile compounds, including C2H3CN and HC3N.3-5 At the low temperatures found in these 

environments, reactions between CN and other compounds are known to have fast rate constants, 

on the order of 10-10 cm3 s-1, and thus must be included in gas-phase models. Reactions between 

CN and hydrocarbons are among the fastest of these rates, and proceed through either an 

abstraction or an addition mechanism.6 A number of cyano-containing molecules linked to these 

reactions have been found in ISM, including molecules as large as HC9N and (CH3)2CHCN.7,8 On 

Titan, the photolysis of these nitrile compounds formed from CN reactions may contribute to the 

formation of particulate matter.9 

On Titan, toluene has been detected in the upper atmosphere by the Cassini Ion and Neutral Mass 

Spectrometer,10 and while it is currently undetected in the lower atmosphere, models suggest it has 

a high abundance there as a product of the fast association reaction between C6H5 and CH3.11 In 

addition to benzene and toluene, a large number of specific polycyclic aromatic hydrocarbons 

(PAHs) have also been identified.12 These PAHs are believed to form from smaller aromatic 

compounds and to be an important component of the thick haze in Titan’s atmosphere.13 

On the other hand, very few specific aromatic molecules have been directly detected in the ISM, 

in part due to their low dipole moments making them difficult to observe by radio astronomy. 

Benzene has been observed through infrared observations,14 and PAHs are widely believed to be 

abundant in the ISM owing to observations of the strong infrared bands characteristic of these 

molecules, but the broad, overlapping nature of these bands has precluded the identification of 
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specific PAHs.15 Despite this lack of definitive identifications, PAHs are believed to hold a large 

fraction of carbon in the ISM,16-17 and so their formation has been the subject of extensive study.18-

20 The formation of the first aromatic ring is believed to be the rate limiting step in PAH 

formation,21 and so understanding the chemistry of these monocyclic aromatic compounds is 

necessary. 

The recent detection of benzonitrile in the ISM22 has suggested a new route for understanding 

aromatic formation. Benzonitrile is believed to be the product from the CN + benzene reaction, 

which we have recently shown to be fast at low temperatures,23 with a rate constant of (4.4 ± 0.2) 

× 10-10 cm3 s-1  over the 15 – 294 K range, in good agreement with earlier work by Trevitt et al. 

down to 105 K.24 Observations of benzonitrile therefore can be used as a proxy for the abundance 

of benzene. Other aromatic nitriles may also serve as proxies for undetected aromatic compounds 

in the ISM, as the addition of the cyano moiety gives these compounds large dipole moments and 

makes them visible to radio astronomy. The identification of additional specific aromatic 

compounds would significantly constrain models of PAH formation in the ISM. 

However, little is known about the reaction of CN with other aromatic molecules and whether 

these reactions also result in the formation of nitrile compounds. Only one rate constant for the 

reaction between CN and toluene, one of the simplest aromatics, has been measured, by Trevitt et 

al.24 They studied this reaction at 105 K and found a rate constant of (1.3 ± 0.3) × 10-10 cm3 s-1 using 

pulsed laser photolysis – laser induced fluorescence (PLP-LIF) measurements in conjunction with 

a pulsed Laval nozzle. This rate constant is a factor of 3 lower than the rate constants measured 

for the CN + benzene reaction measured in the same study as well as our own,23,24 suggesting that 

the structure of aromatic molecules can play a large role in the reaction rates. Furthermore, they 

observed non-exponential decays of CN at room temperature in the presence of toluene and were 
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 5 

therefore unable to measure a rate constant, in contrast with their measurements of benzene under 

the same conditions. They suggested that this could be due to dissociation of the products back to 

the CN + toluene reactants, and that further studies would be necessary to better understand these 

results. 

The difference between the rate constants of the CN + benzene and CN + toluene reactions would 

seem to suggest that the structure of an aromatic compound can play a large role in the reaction 

dynamics. This makes it questionable whether nitrile compounds may be formed from the 

reactions of CN with larger, more complex aromatic compounds, and it is essential to verify the 

reliability of using cyano-substituted compounds as a proxy for larger aromatic species. To that 

end, we have conducted measurements of the CN + toluene rate constant between 16 and 294 K 

to gain further insight into this reaction, especially at the low temperatures relevant to the ISM and 

Titan. Furthermore, we have computed stationary points on the potential energy surface (PES) of 

the CN + toluene reaction to better understand the possible products and mechanism of this 

reaction. 

Experimental Section 

Rate constants were determined using the PLP-LIF technique. Temperatures down to 15 K were 

achieved using the CRESU technique (Cinétique de Réaction en Ecoulement Supersonique 

Uniforme; reaction kinetics in uniform supersonic flow), which has been described in detail 

previously.6, 25-26 Briefly, toluene (Sigma Aldrich, 99.9%) was introduced into the gas flow with a 

Controlled Evaporation and Mixing system (Bronkhorst CEM), as described in Gupta et al.27 The 

toluene and ICN (Acros Organics, 98%), used as the CN precursor, were mixed in a buffer gas of 

He (99.995%, Air Liquide), Ar (99.998%, Air Liquide) or N2 (99.995%, Air Liquide), depending 
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 6 

on the desired CRESU conditions. Concentrations of toluene and ICN were kept < 1% of the total 

density in order not to affect the uniformity of the gas flow. The mixture was flowed isentropically 

from a high pressure reservoir through specifically designed convergent-divergent Laval nozzles, 

into a low pressure chamber to generate a uniform supersonic flow at the appropriate temperature 

with a density of 1016 – 1017 cm-3. Each nozzle was characterized with Pitot probe impact pressure 

measurements prior to experiments to determine the temperature, density and uniformity of the 

gas flow. For measurements at 294 K, where a supersonic expansion is not required, the pumping 

speed was decreased such that the pressure in the reservoir and the chamber were equal, while 

maintaining complete gas turnover for each laser shot.  

CN radicals were generated by the 248 nm photolysis of ICN using a KrF excimer laser (Coherent 

LPXPro 210) operating at 10 Hz, with a laser fluence of 25 mJ cm-2. The third harmonic of a 

Nd:YAG laser (Continuum, Powerlite Precision II), also operating at 10 Hz, was used to pump a 

dye laser (Laser Analytical Systems, LDL 20505) containing Exalite 389 (Exciton) in 1,4-dioxane 

(Sigma Aldrich, 99.8%) to produce ∼389 nm light to excite the CN B2Σ+ - X2Σ+ (0,0) transition. 

Fluorescence was detected from the CN (0,1) transition at ∼420 nm by a photomultiplier tube 

(Thorn EMI 6723) preceded by a 420 nm bandpass filter (Ealing Optics). The delay time between 

the excimer and the Nd:YAG pump laser was varied from -5 to 200 microseconds to record the 

time dependence of the CN signal. The LIF signal was recorded by a gated integrator for 400 

evenly spaced points and averaged 5 times. The resulting kinetic trace was fit to an exponential 

decay starting ≥ 10 μs after photolysis to allow for rotational thermalization of CN.  

Kinetic measurements were taken under pseudo-first order conditions with [toluene] >> [CN]. 

Typical toluene concentrations were on the order of 1012 – 1013 cm-3, while we estimate the CN 

concentration to be roughly 1010 cm-3 based on the ICN concentration (∼1012 cm-3) and 248 nm 
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 7 

absorption cross section of 4.7 × 10-19 cm2.28 More than 90% of the CN radicals from the photolysis 

of ICN at 248 nm are in the ground vibrational state29 and we do not observe any influence of the 

relaxation of excited vibrational states on our kinetic measurements. 

Computational Details 

Investigation of possible channels for the reaction between CN and toluene, with identification of 

all the stationary points (minima, complexes, and transition states), was done using Gaussian 09 

software30; all included channels can be seen in Figure 1. All the species, including the reaction 

complexes and transition states were optimized at (U)M06-2X/aug-cc-pVTZ level31-33 and zero-

point corrected energies were calculated for each. In addition, intrinsic reaction coordinate (IRC) 

calculations were performed at (U)M06-2X/6-311G to determine the minimum energy path that 

the transition states followed to confirm the connection between the appropriate reactants and 

products. Gibbs energies (∆rGº (298 K)) for all included channels were also calculated at (U)M06-

2X/aug-cc-pVTZ method. Both addition-elimination channels, leading to nitrile formation, and 

abstraction channels, leading to HCN formation, are considered. While reactions involving the CN 

radical may produce both cyano- and isocyano- compounds, only the former pathways are 

considered in these calculations. Previous work on the CN + benzene reaction34 showed a 

significant barrier (28 kJ mol-1) to isocyano products, which suggests that this pathway will not be 

relevant in the ISM. 
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 8 

 

Figure 1: The reaction pathways of the CN + toluene reaction and possible products of the 

abstraction (R1-R4) and CN-addition (R5-R8) channels that are considered in the theoretical 

calculations.  

Results 
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 9 

 

 

Figure 2: Typical experimental kinetics of the CN radical measured using PLP-LIF, showing the 

decay of the CN signal and resulting second-order plot at 83 K.  
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 10 

 

 

Figure 3: Typical experimental kinetics of the CN radical measured using PLP-LIF, showing the 

decay of the CN signal and resulting second-order plot at 294 K.  

Typical LIF decays of CN at 83 K and 294 K and the second-order plots can be seen in Figures 2 

and 3, respectively. The non-zero intercepts seen on the second-order plots arise from the loss of 

CN via side chemistry and diffusion out of the region probed by LIF. From experiments at room 

temperature, using N2 as a buffer gas and varying the total density of the gas flow, we found that 
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 11 

the rate constants had no pressure dependence, implying that the reaction is either a bimolecular 

reaction, or a termolecular reaction in the high pressure limit in our experimental conditions. 

Unlike the room temperature measurements of Trevitt et al., we see no evidence for non-

exponential decays at any toluene concentration or total gas density used in these experiments, and 

the measured rate constants are in good agreement with our values at all other temperatures. 

Additional experiments at room temperature demonstrate that changing the buffer gas from N2 to 

He does not affect our measured rate constants. 

Results of the experiments between 15 and 294 K are shown in Table 1 and Figure 4. At least nine 

points with varying toluene concentrations were taken for each measurement under pseudo-first 

order conditions, with toluene in excess. At high reactant concentrations, the formation of toluene 

dimers causes nonlinear behavior in the second-order plots at the lowest temperatures. This 

therefore imposes an upper limit on the toluene concentration used in experiments in order to 

minimize any effect of the reaction between CN and toluene dimers on our measurements. 

Table 1: Rate coefficients determined for the CN + toluene reaction between 15 and 294 K, along 

with experimental parameters for each measurement. Uncertainties in the rate constant are the 95% 

confidence interval from the appropriate Student’s t test combined in quadrature with a 10% 

systematic error. Bolded values represent the weighted average and uncertainty for temperatures 

with multiple measurements. 

Temperature 
(K) 

Buffer 
Gas 

Total Density (1016 
cm-3) 

[Toluene] (1012 
cm-3) 

Number of 
Points 

Rate Constant (10-

10 cm3 s-1) 
15 He 5.04 1.87 – 10.4 10 4.4 ± 0.8 
24 He 4.83 1.76 – 19.5 11 4.7 ± 0.6 
36 He 5.27 1.25 – 17.7 14 5.9 ± 0.8 
36 He 5.32 1.28 – 12.7 9 4.9 ± 1.0 
     5.7 ± 0.7 

70 He 6.00 2.54 – 15.2 11 4.4 ± 0.7 

Page 11 of 26

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



 12 

70 He 6.09 1.34 – 18.7 13 4.2 ± 0.7 
     4.3 ± 0.6 

83 N2 4.63 3.48 – 48.8 14 3.9 ± 0.5 
83 N2 4.63 1.72 – 31.3 14 3.8 ± 0.4 
      3.9 ± 0.4 

110 Ar 2.71 1.28 – 14.1 11 3.3 ± 0.5 
197 N2 5.32 2.13 – 21.4 11 3.7 ± 0.6 
294 N2 10.5 15.4 – 92.9 11 3.7 ± 0.6 
294 N2 3.75 9.50 – 47.6 9 4.3 ± 0.6 
294 N2 8.20 17.7 – 78.9 9 4.3 ± 0.5 
294 He 9.41 18.0 – 54.0 11 4.5 ± 0.5 

     4.3 ± 0.5 
 

To test whether the photolysis of toluene at 248 nm affected our measurements, we also conducted 

experiments varying the power of the excimer laser at 110 K, with [Toluene] = 9 × 1012 cm-3. We 

found no significant change in the measured k1st as a function of our laser power. With the excimer 

laser fluence of 25 mJ cm-2 and the toluene absorption cross section at 248 nm of 2.9	× 10-19 cm2,35 

we expect roughly 1% of the toluene to photolyze if the photolysis quantum yield is 1, which 

should not measurably affect the observed rate constants. It has also been suggested that two-

photon absorption at 248 nm can photolyze toluene to form H atoms among other potential 

processes,36 with the total absorption cross section for the second photon experimentally 

determined to be 1.7 × 10-17 cm2. For the highest toluene concentrations used (~1 × 1014 cm-3), we 

estimate at most 4.8 × 1011 cm-3 of toluene undergoes two-photon absorption, though it is likely 

much less than that, as discussed in greater detail in the following section, and is unlikely to affect 

the rate constants measured.  
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 13 

 

Figure 4: The experimental measurements for the CN + toluene rate constant from this work 

(circles) and Trevitt et al. (triangle); the weighted average value of the measurements presented in 

this work, 4.1 × 10-10 cm3 s-1, is also plotted. 

Table 2: Zero-point corrected reaction energies and Gibbs energies of the reaction products 

calculated in this work. Note that some reaction pathways result in the same products. 

Reaction channel products   Reaction energy ∆rUº 
(kcal mol-1) 

Gibbs energy ∆rGº (298 K) (kcal 
mol-1) 

R1 (o-C6H4CH3 + HCN) -18.1 -18.1 
R2 (m-C6H4CH3 + HCN) -18.3 -18.6 
R3 (p-C6H4CH3 + HCN) -17.8 -18.2 
R4 (C6H5CH2 + HCN) -39.1 -38.1 
R5a ( = R5c, o-C6H4CH3CN + H) -28.0 -23.6 
R5b ( = R8, C6H5CN + CH3) -35.4 -35.5 
R5c ( = R5a, o-C6H4CH3CN + H) -28.0 -23.6 
R6 (m-C6H4CH3CN + H) -26.8 -22.5 
R7 (p-C6H4CH3CN + H) -27.2 -23.8 
R8 ( = R5b, C6H5CN + CH3) -35.4 -35.5 

   
As shown in the Figure 5, both stationary points (reactants, products, intermediates, transition 

states) for both the abstraction (R1-R4) and addition-elimination (R5-R8) channels were 
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 14 

characterized for the reaction between CN and toluene. An additional substitution channel, leading 

to the formation of benzyl cyanide, was found to be exothermic at (U)M06-2X/aug-cc-pVTZ, but 

has a large barrier (~20 kcal mol-1), and hence will not be relevant under interstellar conditions and 

is excluded. The relative reaction energy ∆rUº and Gibbs energy at 298 K ∆rGº for all calculated 

product channels can be seen in Table 2. Intermediates formed from the addition of CN to the 

aromatic ring were found to form barrierlessly, subsequently followed by submerged barriers 

leading to the formation of stable nitrile products. This mechanism closely resembles the 

mechanism of benzonitrile formation from the reaction of benzene and CN,34, 37 although it does 

differ from the reaction between toluene and OH, which features both pre-reactive complexes and 

barriers before formation of the addition product.38 The energies determined for the addition-

elimination channels are generally similar to those calculated for the CN + benzene reaction done 

at G3//B3LYP and BCCSD(T)//B3LYP.34 

Abstraction pathways, shown in blue in Figure 5, were found to have slightly submerged transition 

states, and therefore are possible products at low temperatures. However, higher level calculations 

are needed to confirm these barrier values, as similar abstraction pathways from aromatic 

compounds have been shown to possess positive barriers37-38. At the level of theory used, these 

barrier values are likely within the error of the calculations. An important point to note is that no 

transition state or complex could be characterized for the abstraction channels, though we do not 

rule out the existence of these stationary points.  
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Figure 5: The stationary points for PES for the CN + toluene reaction, performed at (U)M06-

2X/aug-cc-pVTZ including zero-point energy corrections, showing the abstraction (abs-) 

pathways (blue) and addition-elimination (add- and elim-) pathways (red), the latter of which can 

undergo an internal hydrogen shift (-bridge). Note that neither a barrier leading to the formation 

of C6H5CH2 + HCN nor any pre-reactive complexes for the abstraction pathways are included, 

though we do not preclude their existence.  

Discussion 

As Figure 4 demonstrates, we find that the rate constant of the CN + toluene reaction is independent 

of temperature over the 15 – 294 K range, with a weighted average value of (4.1 ± 0.2) × 10-10 cm3 

s-1. Our results are in contrast to the results of Trevitt et al., who measured a rate constant of (1.3 

± 0.3) × 10-10 cm3 s-1 at 105 K in their LIF experiments. They used a similar LIF method to detect 

CN, under similar experimental conditions of total density, and CN and toluene concentrations.  
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Furthermore, this group measured  CN + benzene rate constants that agree well with recent results 

from our group,23 which suggests that this discrepancy is related to the toluene system.  

Trevitt et al. reported observing non-exponential decays of CN at room temperature, which they 

suggested might be due to back-dissociation of adduct complexes. However, no such behavior was 

observed in this work, suggesting that the discrepancy might have arisen from differences in the 

photolysis step. Trevitt et al. photolyzed their sample at a wavelength of 266 nm, with a laser 

fluence of 40 mJ cm-2 (5.0 ´ 1016 photons cm-2, in a probable 3-6 ns long pulse),  in contrast to the 

248 nm laser beam with a fluence of 25 mJ cm-2 (3.1 ´ 1016 photons cm-2, 22 ns long pulse) used 

in this work. The ICN photolysis cross sections are similar at these two wavelengths.28, 39 . At room 

temperature, the toluene absorption cross section to the S1 state at 266 nm is 1.3 ´ 10-19 cm2.40 The 

S1 state fluoresces with a lifetime of 86 ns when excited at 266 nm at low pressures.41 At 248 nm, 

the cross section is larger (2.9 ´ 10-19 cm2)40 but the fluorescence lifetime is much shorter due to 

rapid internal conversion to S0, displaying approximately equal intensity 3 ns and 26 ns 

components at low pressures.42 As discussed above, multiphoton absorption at 248 nm of toluene 

is known to lead to photolysis,36 and may additionally lead to photoionization, as the excited 

toluene is higher in energy than the ionization onset of toluene (8.3 eV).43 Both of these processes 

are also likely to occur in the 266 nm experiments.  

The above considerations suggest that single photon excitation of toluene is occurring at both 

photolysis wavelengths, but only multiphoton effects are likely to give rise to interferences. 

Possible pathways for CN generation on the timescale of the experiment exist by either two-photon 

photodissociation or two-photon ionization, particularly at 266 nm by quadrupled Nd:YAG lasers.  

Such effects are likely to be significantly lower when toluene is excited at 248 nm light produced 
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by an excimer, due to the longer pulse duration and rapid internal conversion of the S1 state.  This 

is in good agreement with the experimental measurements reported here, showing no relationship 

between excimer power and k1st, and no evidence for non-exponential decays. In the experiments 

of Trevitt et al. at 266 nm, however, the long lifetime of the S1 state, short photolysis pulse duration 

and higher laser fluence may have caused larger amounts of multi-photon absorption to occur, 

such that photodissociation or photoionization products could have affected their measurements 

for toluene. Such effects would not be observed upon 266 nm excitation of benzene, however, as 

266 nm lies below the absorption threshold for the benzene S1 state and so two-photon dissociation 

would have to occur by a non-resonant process. 

Further work from Trevitt et al. measured branching ratios at room temperature, using slow flow 

reactors in conjunction with product detection by multiplexed photoionization mass spectrometry 

(MPIMS) to identify species by mass and photoionization spectrum. They found that the reaction 

between CN and toluene exclusively forms tolunitrile (methylbenzonitrile), with no evidence for 

the hydrogen abstraction channels or for benzonitrile formation. Due to the similarities in the 

calculated photoionization spectra of the ortho-, meta-, and para- isomers of the tolunitrile, they 

were unable to distinguish the precise isomers of tolunitrile formed from this reaction. They found 

a similar result for the reaction of CN with benzene, with benzonitrile being the only detected 

product. Lenis and Miller also measured the products of the CN + toluene reaction using the 254 

nm photolysis of ICN and analyzing the resulting products with GC-MS44 and observed both 

tolunitrile and a small yield (9%) of benzonitrile. While it is unclear if this benzonitrile is formed 

as a result of CN + toluene or side chemistry, particularly in light of its non-detection in the MPIMS 

experiments by Trevitt et al., our calculations do show potential pathways to benzonitrile formation 

from ortho- or ipso- addition of CN to the aromatic ring. 
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The rate constants measured here are in good agreement with the value of (4.4 ± 0.2) × 10-10 cm3 

s-1, independent of temperature over 15 – 295 K range, that we determined for the reaction between 

CN and benzene.23 In conjunction with the similarities in products measured by MPIMS, this 

suggests that the major mechanism is the same for reactions between the CN radical and either 

benzene or toluene, and results in formation of cyano-substituted aromatic compounds. 

Investigation of other substituted compounds, such as xylenes or deuterium-substituted benzene, 

may yield further insight into whether this mechanism is general for these reactions. This will aid 

in future astronomical searches to improve our understanding of the formation of small aromatic 

rings in the ISM. 

The submerged barriers found for the various channels using quantum chemical calculations 

highlight the diversity of the products that could be formed from this reaction at low temperatures. 

While the abstraction channels were found to have slightly submerged barriers, calculations at 

higher level of theory are necessary to correctly estimate their energies. Furthermore, the transition 

state(s) and/or a possible complex in the case of the hydrogen abstraction from the methyl group 

pathway remain to be explored further. This will also provide the accuracy necessary for master 

equation calculations, which would further elucidate the mechanism and product branching ratios 

of this reaction.  

On Titan, the CN radical is mainly generated from the photolysis of HCN, which is formed through 

reactions of N(4S) or through ion chemistry.4-5 Once formed, CN reacts primarily with the highly 

abundant CH4 to reform HCN. This cycle can be interrupted, however, by CN reactions with other 

compounds, most commonly C2H2 or HC3N. While this reaction has not explicitly been included 

in models, recent work has suggested that the concentrations of benzene and toluene in the Titan 

atmosphere are similar, peaking at a mole fraction of 10-6 at an altitude of roughly 1000 km above 
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the surface.11 Benzonitrile has not been detected on Titan and is predicted to be formed in low 

quantities, largely due to CN being sequestered by reaction with CH4. Even with the larger rate 

constants measured in this work, this is likely also the case for the products of the reaction between 

CN and toluene, though implementation of these results into Titan models may still be beneficial 

to determine if they have any influence in the atmosphere. 

Astronomical searches for toluene and the tolunitrile products of this reaction would test the 

robustness of using cyano-containing species as proxies for the unsubstituted hydrocarbons. While 

benzene has no permanent dipole moment, toluene has a small one (0.37 Debye)45 and may be 

observable via radio astronomy, thought it would have to be present in higher abundance than, say 

benzonitrile, to be detectable. The use of velocity stacking, which averages the signal of multiple 

transitions together to increase the signal-to-noise ratio,46-48 may assist in searching for toluene in 

the ISM. While there have been no previous detections of toluene in the ISM, it has been argued 

that the protonated toluene ion, C7H9
+,49 and methyl-substituted PAHs50-51 are possible carriers of 

the 6.2 and the 3.4 μm unidentified infrared bands, respectively. Definitive detection of toluene 

and related compounds, such as these, would allow us to constrain aromatic pathways and, in 

particular, could test the bottom-up mechanism for PAH formation, wherein small molecules, such 

as toluene, react progressively to form large clusters.  

The origin of the first aromatic ring in the interstellar medium in molecules such as benzene and 

toluene remains unknown. It has been argued that the reaction between C2H and isoprene (C5H8; 

2-methyl-1,3-butadiene), a barrierless reaction that produces toluene, may be a source of it at low 

temperatures,52 but it is unknown whether isoprene is present in the ISM – isoprene is not included 

in astrochemical databases such as the Kinetic Database for Astrochemistry53 (kida.obs.u-
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bordeaux1.fr, accessed July 2020). Other mechanisms, such as ion-neutral reactions, may also 

contribute, but further investigation is necessary. 

In order to better understand the potential formation pathways of these products of this reaction in 

the ISM, more accurate measurements of the product ratios are required, and specifically, the 

branching ratio for the tolunitrile and potential benzonitrile products. While challenging for many 

techniques due to the similarities of the isomers, recent work has coupled low temperature 

supersonic uniform flows to microwave spectrometers54-55 in order to determine branching ratios 

relevant for astrochemistry. As each of these compounds will have a unique rotational spectrum, 

this technique is well suited for quantitatively measuring the product branching ratio of this 

reaction. 

Conclusions 

We have measured rate constants for the CN + toluene reaction between 15 and 294 K and find 

that the rate constant is independent of temperature over this range. These results closely match 

our recent study on the reaction of CN with benzene but are higher than the only previous 

measurement of this rate constant at 105 K, for reasons that remain unresolved, but may be related 

to multiphoton effects at the higher laser intensities and 266 nm photolysis wavelength used in that 

study. This similarly suggests that the reactions between CN and simple aromatics proceed through 

an analogous mechanism, which is supported by our theoretical calculations and previous product 

measurements. Further work, particularly on the products formed from this reaction, would be 

beneficial to determine their potential detectability in the ISM. The ability to detect and use cyano-

substituted aromatics, which have large dipole moments, as proxies for unsubstituted aromatic 

compounds in the ISM would help advance our knowledge of PAH formation. 
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