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Abstract
A varying Q factor with depth induces modifications of seismic wave features due to anelastic
propagation but also reflections at the discontinuities. Standard signal analysis methods often
neglect the reflection contribution when assessing Q values from seismic data. We have
developed an analytical quantification of the cumulative effects of both the propagation and
reflection contributions by considering Kjartansson’s model and a seismic plane wave at normal
incidence on a step-like discontinuity. We show that the cumulative effects are equivalent to a
frequency filter characterised by a bandform and phase that both depend on the ratio between
the elastic and anelastic contrasts. When considering this filter applied to a Ricker wavelet, we
establish an analytical expression of the peak-frequency attribute as a function of propagation
and reflection properties. We demonstrate that this seismic attribute depends on the anelastic
contrast, which cannot be neglected when assessing Q factors: the error in Q estimate is not
linearly dependent on the anelastic contrast and we establish an analytical expression for the case
where this contrast is weak. An unexpected phenomenon for a step-like interface is an increase in
the peak frequency that is observed when the anelastic and elastic contrasts have opposite signs,
with a constraint on the anelastic propagation properties. This behaviour allows for assessment of
the elastic and anelastic parameters.

Keywords: seismic attenuation, Q factor, anelasticity, seismic data analysis

1. Introduction

In the framework of exploration seismology, wave propa-
gation in attenuating media has been extensively studied
to understand amplitude loss, frequency content reduction
and phase distortion induced by anelastic processes (Kolsky
1956; Futterman 1962; Toksöz & Johnston 1981). Over the
last decades, intensive research efforts have been dedicated
to the quantification of seismic attenuation through the
estimate of the quality factor Q (Dasgupta & Clark 1998;
Reine et al. 2009; Tary et al. 2017), the attenuation compen-
sation of seismic data through Q-inverse filtering methods
(Wang 2002, 2008), Q compensation in migration (Wang
2008a; Dutta & Schuster 2014; Zhu et al. 2014; Li et al.

2016) and seismic inversion (Causse et al. 1999; Innanen
& Lira 2010; Brossier 2011; Innanen 2011). Most of these
studies focused on the attenuation effects on a seismic wave
during its propagation in an anelastic medium, which can be
characterised by a Q factor varying with depth. However, it
has been shown that Q-contrast effects may also affect the
seismic wave during its reflection by an anelastic reflector
(White 1965; Bourbié & Nur 1984; Lines et al. 2014). This
contribution is commonly neglected in analytical modelling.
Developing quantitative analyses that takes into account
the effect of anelastic propagation and reflection contribu-
tions on seismic waves remains of first-order importance
in the understanding and exploitation of reflected seismic
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data. Currently, frequency-dependent seismic anomalies
observed on seismic data have been attributed to strong
absorptive reflection coefficients associated with contrasts of
both P-wave velocities and Q factor properties between two
layers (Chapman et al. 2006; Odebeatu et al. 2006; Ker et al.
2014; Wu et al. 2015). In particular, the P- and Q-contrasts
are negative/negative or positive/negative for seismic re-
flectors associated with carbonate reservoirs (Adam et al.
2009; Takam Takougang & Bouzidi 2018), rocks saturated
with heavy oil (Gurevich et al. 2008) and hydrate bearing
sediments (Guerin & Goldberg 2005; Marin-Moreno et al.
2017). To explain such absorptive reflection coefficients
(Castagna et al. 2003), different mechanisms can be con-
sidered in the framework of anelastic, i.e. viscoelastic (Lam
et al. 2004; Borcherdt 2009; Zhao et al. 2018) or poroelastic
(Chapman et al. 2006;Quintal et al. 2009)wave propagation.

In the case of anelastic interfaces, White (1965) intro-
duced the concept of absorptive reflection and Bourbié &
Nur (1984) experimentally identified pure anelastic reflec-
tion respectively associated with a Q-contrast between two
anelastic layers. Lines et al. (2014) confirmed these obser-
vations by developing innovative laboratory experiments.
The motivation in studying anelastic reflections, related to
the imaginary part of the complex seismic impedance con-
trolled by the quality factor (White 1965; Lines et al. 2008;
Morozov 2011), is better interpreting reflected wave ampli-
tude (Bourbié & Nur 1984) and phase rotation (Lines et al.
2014). But these studies do not deal with an anelastic upper
layer, i.e. anelastic propagation is not considered before the
reflection and the impact of the Q-contrast magnitude on
the reflected wave is still not quantified. A full understanding
of the impact of both anelastic propagation and reflection
on an incoming seismic wave has not been provided yet and
constitutes the aim of this work.

We develop an analytical analysis to quantify the cumula-
tive effects of both the propagation and reflection contribu-
tions by considering Kjartansson’smodel and a seismic plane
wave at normal incidence on a step-like discontinuity. In sec-
tion 2, we review the anelastic seismic wave propagation and
reflection associated with the constant-Q model (Kjartans-
son 1979) that is widely used in seismicmodelling, inversion
and analysis (Morgan et al. 2012; Chen et al. 2018; Ker et al.
2019) and we revisit these wave phenomena in terms of
frequency filtering. We develop a comprehensive analysis
by introducing new constitutive parameters, related to both
propagation and reflection. In section 3, we present the filter
related to the cumulative effects of both anelastic propaga-
tion and reflection and describe its frequency behaviour. In
section 4, we investigate the effect of this cumulative filter
on a seismic source signal approximated by a Ricker wavelet
and develop analytical descriptions of peak-frequency pa-
rameters to quantify the wavelet shape distortions induced
by the cumulative filter. This investigation provides some

Figure 1. Step-like reflector defined by two homogeneous anelastic lay-
ers: an anelastic propagation of a normal plane incomingwave in the upper
layer and an anelastic reflection of the wave at the discontinuity.

insights and pitfalls related to the use of the peak-frequency
attribute when estimating Q values or interpreting seismic
data.

2. Frequency filters associated with anelastic
propagation and reflection

2.1. Principles of the approach

We assume a 1D plane-wave seismic propagation and a step-
like reflector defined between two anelastic layers M1 and
M2 (figure 1). As a consequence, a reflected seismic wave𝜓 ′

is the result of two contributions induced on the incoming
wave 𝜓 , i.e. (i) a propagation in the upper anelastic layer
and (ii) a reflection at the anelastic interface. To develop a
quantitative analysis of these effects, our proposed method
consists of defining frequency filters (bandform and phase)
associated with these two contributions in terms of both
modulus and phase expressed in the frequency domain.

2.2. Modulus and phase associated with the anelastic
propagation contribution

Seismic propagation occurs in the upper anelastic layer M1
characterised by a density 𝜌1, a reference velocity c1 and a
quality factor Q1. The attenuation quantified by Q1 induces
a complex P-wave velocity v∗1(𝜔), which depends on the
angular frequency𝜔 of the seismic wave. Based on Kjartans-
son’s model (Kjartansson 1979), v∗1(𝜔) can be expressed as
a function ofQ1 and c1 according to:

v∗1 (𝜔) = c1

(
𝜔

𝜔h

) 1
𝜋
arctan 1

Q1
[
1−i tan

(
1
2
arctan 1

Q1

)]−1
,

(1)
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where the reference angular frequency 𝜔h ensures the com-
pliance with the Kramers–Kröning dispersion relation and
corresponds to the highest frequency of the seismic source
frequency content (Wang&Guo 2004;Wang 2008b). In the
following, we consider the approximate form of the complex
velocity:

v∗1 (𝜔) ≃ c1

(
𝜔

𝜔h

) 1
𝜋Q1
[
1 + i

2Q1

]
, (2)

which induces an error lower than 1.5% for a quality factor
larger than 5. According to this approximation, the phase ve-
locity and attenuation associated with the real and imaginary
parts of the complex wavenumber k∗1 = 𝜔∕v∗1(𝜔), respec-
tively, can be used to highlight that the anelastic propagation
acts as a filter defined by the modulusMp(𝜔) = exp(− 𝜔𝜏

2Q1
)

and the phase Pp(𝜔) = 𝜏𝜔(1 − ( 𝜔
𝜔h
)−

1
𝜋Q1 ) where 𝜏 is the

travel time in the upper anelastic layerM1.
By introducing the ratio:

Γ =
4Q1

𝜋𝜏
, (3)

which has the dimension of a frequency, and assuming
𝜋Q1 >> 1, we can finally write:

Mp (𝜔) = exp
(
−2𝜔
𝜋Γ

)
, (4a)

Pp (𝜔) =
4𝜔
𝜋2Γ

ln
(
𝜔

𝜔h

)
, (4b)

which highlights that the anelastic propagation in the upper
layer acts as a filter that depends on the frequency parameter
Γonly. This means that the filter related to the anelastic
propagation is unchanged when both the travel time and the
attenuation proportionally increase or decrease.

The frequency response of the filter associated with wave
propagation in the upper anelastic layer is described by
the partial derivatives of both the modulus and phase with
respect to the angular frequency𝜔. This is given as:

𝜕Mp(𝜔)

𝜕𝜔
= − 2

𝜋Γ
Mp (𝜔) , (5a)

𝜕Pp(𝜔)

𝜕𝜔
= 4
𝜋2Γ

(
ln
(
𝜔

𝜔h

)
+ 1
)
, (5b)

and highlights that the modulus is a monotonous decreasing
function of𝜔, with a limit value of

MPh = exp
(
−
2𝜔h

𝜋Γ

)
. (6)

Additionally, the phase reaches a minimum value:

PPm = −
4𝜔h

e𝜋2Γ
, (7)

Table 1. Frequency behaviour of the filter associated with anelastic
propagation (modulusMp and phase Pp).

𝜔 0 𝜔h
e

𝜔h

Mp(𝜔) +∞ ↘ Mph

Pp(𝜔) 0 ↘ PPm ↗ 0

this occurs at the angular frequency𝜔h∕e where e = exp(1)
(Table 1). Thismeans that the anelastic propagation acts as a
low-pass filter associated with a frequency-dependent phase
rotation.

2.3. Modulus and phase associated with the anelastic
reflection contribution

The seismic reflection that occurs at the anelastic interface
is modelled by a step-like discontinuity between the up-
per anelastic layer M1 where the seismic wave propagates,
and a lower anelastic layer M2 characterised by a density
𝜌2, a reference velocity c2 and a quality factor Q2. Similar
to M1, M2 is associated with a complex P-wave velocity

v∗2(𝜔) ≃ c2(
𝜔

𝜔h
)

1
𝜋Q2 [1 + i

2Q2
] and the reflection coefficient

can thus be expressed as:

R∗ (𝜔) =
𝜌2c2
(
𝜔

𝜔h

) 𝜂

𝜋

(
1 + i

2Q2

)
− 𝜌1c1

(
1 + i

2Q1

)
𝜌2c2
(
𝜔

𝜔h

) 𝜂

𝜋

(
1 + i

2Q2

)
+ 𝜌1c1

(
1 + i

2Q1

) ,
(8)

where we introduce the parameter

𝜂 = 1
Q2

− 1
Q1

, (9)

that quantifies the anelastic contrast between the two layers.
To understand the filtering effects induced by the anelas-

tic reflection coefficient on a normal incident plane wave,
both the modulus and phase of R∗ have to be expressed ana-
lytically. Such developments require expressing the anelastic
reflection coefficient as the sum of its real and imagery parts.
To do so, we use the decomposition R∗(𝜔) = RE + RA(𝜔)
established by Bourbié &Nur (1984) where

RE =
𝜌2c2 − 𝜌1c1
𝜌2c2 + 𝜌1c1

, (10)

represents the elastic impedance contrast that depends on
the velocity and density parameters, and

RA (𝜔) =
𝜂

2𝜋
ln
(
𝜔

𝜔h

)
+ i
𝜂

4
, (11)

represents the anelastic contribution that is complex and
depends on 𝜂 (equation (9)) and frequency. By introducing
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Table 2. Frequency behaviour of the filter associated with anelastic reflection (modulusMr and phase Pr).

RE
𝜂
≤ 0 RE

𝜂
> 0

𝜔 0 𝜔h 0 𝜔c 𝜔h

Mr(𝜔) +∞ ↘ Mrh +∞ ↘ Mrm ↗ Mrh

Pr(𝜔) 𝜋 ↘ Prh ≥
𝜋

2
𝜋 ↘ 𝜋

2
↘ Prh > 0

the parameter:

D (𝜔) =
RE

𝜂
+ 1

2𝜋
ln
(
𝜔

𝜔h

)
, (12)

this allows the reflection coefficient R∗ to be expressed as:

R∗ (𝜔) = 𝜂D + i
𝜂

4
, (13)

which tends toRE as 𝜂 approaches 0 as expected for an elastic
reflector. As a result, it is now straightforward to establish
analytical formulations of the modulus Mr =

√
R2
x + R2

y

and phase Pr = atan2(Rx, Ry) of the reflection coefficient
R∗ = Rx + iRy:

Mr (𝜔) =
|𝜂|
4

√
1 + 16D2 (𝜔), (14a)

Pr (𝜔) = atan2 (1, 4D (𝜔)) . (14b)

These equations highlight that an anelastic reflection acts
as a complex frequency filter that depends on both the
anelastic contrast 𝜂 and the ratio RE∕𝜂 between the elastic
and anelastic contrasts.

The frequency response of the filter associated with the
reflection on an anelastic interface is described by the partial
derivatives of both the modulus and phase with respect to
the angular frequency𝜔. We can show that

𝜕Mr (𝜔)
𝜕𝜔

=
𝜂2D (𝜔)

Mr (𝜔) 2𝜋𝜔
, (15a)

𝜕Pr (𝜔)
𝜕𝜔

= − 𝜂2

8𝜋𝜔M2
r (𝜔)

, (15b)

where the modulus increases or decreases with𝜔 depending
on RE∕𝜂 and the phase is a monotonous decreasing function
of 𝜔. The asymptotic values of the partial derivatives when
𝜔 tends to 0 are+∞ and 0, respectively, and

Mrh =
|𝜂|
4

√
1 +
(
4
RE

𝜂

)2

, (16a)

Prh = atan2
(
1, 4

RE

𝜂

)
, (16b)

when𝜔 tends to𝜔h (Table 2). Thismeans that the frequency
filter associated with an anelastic reflection is asymmetric
with respect to RE∕𝜂 whereby:

- if RE∕𝜂 ≤ 0, the modulus and phase are monotonous
decreasing functions of 𝜔: the anelastic reflection acts
as a low-pass filter, the phase response is nonlinear and
ranges between an opposite and quadrature phase;

- if RE∕𝜂 > 0, the modulus is characterised by an ex-
tremum, i.e. Mrm = |𝜂|∕4, that is located at the critical
angular frequency

𝜔c = 2𝜋𝜔h exp
(
−2𝜋

RE

𝜂

)
, (17)

and is associated with a quadrature filter. At lower and higher
frequencies, the modulus decreases and increases with 𝜔,
respectively, i.e. the anelastic reflection is not a simple low-
pass filter and acts as a complex attenuating filter, ranging
between an opposite and in-phase response.

3. Cumulative effects induced by anelastic propagation
and reflection

3.1. Modulus and phase associated with the anelastic
propagation contribution

The frequency filter that takes into account both a seismic
propagation in an upper anelastic layer and a reflection by
an anelastic interface is the cumulative frequency filter. It is
defined by the following modulusM and phase P:

M (𝜔) = Mp (𝜔)Mr (𝜔) , (18a)

P (𝜔) = Pp (𝜔) + Pr (𝜔) . (18b)

The global filter is characterised by a frequency-dependent
phase rotation because Pp(𝜔) has a minimum located at the
angular frequency𝜔h∕e and Pr(𝜔) is amonotonous decreas-
ing function of 𝜔: additive contributions of the anelastic
propagation and reflection effects occur when 𝜔 < 𝜔h∕e
and the opposite occurs when 𝜔 > 𝜔h∕e. The frequency
response of the phase can thus be assessed analytically based
on equations (5b) and (15b).
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Table 3. Frequency behaviour of the filter associated with anelastic reflection (modulusM and phase P).

RE
𝜂
≤ 0 RE

𝜂
> 0

𝜔 0 𝜔h 0 𝜔c′ 𝜔c′′ 𝜔h

If 𝜂 < 𝜂c(𝜏)
M(𝜔) +∞ ↘ MphMrh +∞ ↘ min ↗ max ↘ MphMrh

If 𝜂 > 𝜂c(𝜏)
+∞ ↘ MphMrh

Similarly, the cumulative filter is characterised by a
frequency-dependent modulus but the frequency response
defined as

𝜕M (𝜔)
𝜕𝜔

= Mp (𝜔)
𝜕Mr (𝜔)
𝜕𝜔

+Mr (𝜔)
𝜕Mp (𝜔)

𝜕𝜔
(19)

does provide straightforward analytical solution. The fre-
quency response depends on RE∕𝜂 and its behaviour can be
summarised as follows (Table 3):

- if RE∕𝜂 ≤ 0, Mpand Mr are both monotonous de-
creasing functions of the angular frequency 𝜔, i.e. the
cumulative filter is equivalent to a low-pass-filter with
additive contributions of the anelastic propagation and
reflection effects;

- if RE∕𝜂 > 0, Mpis still a monotonous decreasing func-
tion of 𝜔 but Mr is characterised by a minimum value
Mrm located at the critical frequency 𝜔c. The number
of roots for equation (19) depends on the physical
parameters. Consequently, a numerical solution is re-
quired if further quantitative analysis is to be performed,
allowing the descriptions reported in Table 3.

A numerical application with realistic values of the phys-
ical parameters is now performed to quantitatively assess
the contributions of both the anelastic propagation and
reflection in the frequency domain for different elastic RE
and anelastic 𝜂 contrasts.

3.2. Numerical investigation

The aim of the numerical evaluation, performed over a large
range of physical parameters, is to quantify the frequency
filtering effects that include both the anelastic propagation
and reflection contributions.

For the anelastic propagation contribution, we consider
Q1 = 100 and 𝜏 = 100 ms, which corresponds to Γ = 1273
Hz. The attenuation (20 logMp) and the phase Pp are repre-
sented as functions of the normalised frequency fn = 𝜔∕𝜔h
in the frequency bandwidth 0–150 Hz (figures 2a and 3a).
For the anelastic reflection contribution, which depends on
RE∕𝜂, we determine the attenuation (20 logMr) and phase
Pr for three elastic reflection coefficients RE = −0.025, 0

and 0.025 and 𝜂 ranging from 0 to 0.2 with Q1 = 100
(figures 2b1–3 and 3b1–3). Note that changing Q1 to a
lower value while keeping 𝜂 constant only affects the propa-
gation contribution, both in amplitude and phase according
to equations (4a) and (4b), but does not affect the reflection
contribution. The case RE = 0 corresponds to a pure anelas-
tic reflection induced by the constant-Q contrast only: for
instance, when 𝜂 ≃0.1, the attenuation is about 30 dB. Note
that this is similar to the attenuation of 32 dB associated with
the pure elastic case 𝜂 = 0 with RE = ± 0.025. The cumu-
lative effects of both the anelastic propagation and reflection
are solved numerically to display the attenuation (20 logM)
and P (figures 2c1–3 and 3c1–3) of the cumulative
filter.

As expected by the previous analytical developments, (i)
the filter associated with the anelastic propagation is equi-
valent to a low-pass filter with a frequency-dependent phase
rotation, (ii) the filter associated with the anelastic reflection
is equivalent to a low-pass filter with a frequency-dependent
phase rotation when RE ≤ 0 and characterised by a critical
frequency when RE > 0, and (iii) the cumulative filter is
equivalent to a low-pass filter with a frequency-dependent
phase rotation when RE ≤ 0. The numerical investigation
highlights three main effects induced by the interaction of
the propagation and reflection contributions when RE > 0:
(i) it removes the critical frequency 𝜔c when 𝜂 > 𝜂c where
𝜂c is a critical value of 𝜂 above which the modulus of the cu-
mulative filter becomes a monotonous decreasing function
of the frequency (𝜂c ≃0.11 in the present case), (ii) modifies
𝜔c into 𝜔c′ when 𝜂c′ < 𝜂 (figure 2c3, solid line) and (iii) in-
duces a second critical frequency 𝜔c′′ > 𝜔c′ when 𝜂c′′ < 𝜂c′
(figure 2c3, dot-dashed line). We show that these critical
curves (𝜔c′ , 𝜂c′) and (𝜔c′′ , 𝜂c′′) depend on 𝜏 (figure 4) and as
a result, the cumulative filter modulus can be characterised
by zero, one (case 𝜏 → 0) or two critical frequencies, i.e.
the filter can be a low-pass, a band-pass or a high-pass filter
depending on 𝜂 and 𝜏 when RE > 0 (figure 2c3).

This result means that for some particular cases, high fre-
quencies of a seismic signal may be less attenuated than low
frequencies when anelastic reflection is taken into account:
this unexpected behaviour is controlled by the sign of the
parameter D described in equation (12). These quantita-
tive analyses are of first importance to better understand
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Figure 2. (a) Modulus spectrum associated with the anelastic propagation contribution (normalised frequency fn = 𝜔∕𝜔h). Modulus spectra associ-
ated with the anelastic reflection contribution for a negative (b1), null (b2) and positive (b3) RE. (c1, c2 and c3) Modulus spectra associated with the
cumulative effects of both the anelastic propagation and reflection for the three RE values. The dashed curves follow the critical frequency𝜔c (equation
(17)) associated with the anelastic reflection contribution. The critical value 𝜂c is indicated with a black star. The solid and dot-dashed curves follow the
minimum and maximum amplitude values, respectively (numerical solution).

the effects of both the anelastic propagation and reflection
phenomena on seismic signals.

4. Anelastic effects induced on a seismic source

4.1. Peak-frequency attributes associated with a Ricker
source wavelet

In this section, we investigate the effect of the cumulative fil-
ter associated with both anelastic propagation and reflection
on a seismic signal by approximating the seismic incoming
signal 𝜓(t) with a Ricker wavelet. This wavelet, widely used
to model a seismic source in geophysical prospecting (Wang
2015a), is a zero-phase signal expressed in the frequency
domain byWang (2015a):

Ψ (𝜔) = 2𝜔2√
𝜋𝜔3

p

exp

(
−𝜔

2

𝜔2
p

)
, (20)

where 𝜔p = 2𝜋FP, with FP the peak frequency defined as
the frequency associated with the maximum amplitude of
Ψ(𝜔). The peak frequency can be analytically described in
the framework of propagation effects of anelasticity (Zhang

& Ulrych 2002; Tary et al. 2017) for evaluating the Q factor.
The present work extends these developments by including
the reflection contribution. This cannot be undertakenwhen
considering the central frequency (Wang 2015a), which can
only be solved numerically. The use of the peak frequency
constitutes a quantitative support for seismic analysis to
better understand the physical phenomena discussed in the
present study.

The signal 𝜓 ′(t) measured after a seismic propagation of
the Ricker wavelet through the anelastic upper layer and a
reflection at the anelastic interface is defined by the modulus
M′(𝜔) = Ψ(𝜔)M(𝜔) and the phase P(𝜔). The peak fre-
quencyFP is changed into thepeak-frequency attributeF′p de-

fined as the solution𝜔′
p = 2𝜋F′p of

𝜕M′

𝜕𝜔
= 0 (Ker et al. 2012;

Wang 2015b). In the following, the amplitude A′
p and phase

𝜁 ′p of 𝜓
′(t) at F′p are the peak-frequency attributes used as

complementary attributes in thepresent quantitative analysis
of the wavelet distortion induced by the anelastic processes.
The shape changing of the seismic wavelet, during propaga-
tion in the upper anelastic layer and reflection at the interface
with the lower layer, is implicitly considered in thepresent an-
alytical solution. The peak-frequency attribute is influenced
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Figure 3. (a) Phase spectrum associated with the anelastic propagation contribution (normalised frequency fn = 𝜔∕𝜔h). Phase spectra associated with
the anelastic reflection contribution for a negative (b1), null (b2) and positive (b3)RE. (c1, c2 and c3) Phase spectra associated with the cumulative
effects of both the anelastic propagation and reflection for the three RE values. The dashed curves follow the critical frequency 𝜔c (equation (17))
associated with the quadrature filter induced by the anelastic reflection contribution. The solid curve follows the quadrature filter induced by both the
anelastic propagation and reflection (numerical solution).

by the increasing asymmetry of the amplitude spectrum of
the reflected wavelet generated by both propagation and re-
flectionfilters. In addition, thephase attribute𝜁 ′p is influenced
by the effect of thewavelet shape changing inducedby the cu-
mulative filter on the phase spectrumof the reflectedwavelet.

Based on the analytical developments presented in the
previous section, we show that the peak-frequency attribute
of the reflected signal associated with a Ricker seismic source
wavelet is given by

F′p = Fp
⎛⎜⎜⎝
√

F2p
Γ2 + 1 + B (𝜔) −

Fp
Γ

⎞⎟⎟⎠ , (21)

where the parameter

B (𝜔) = 1
𝜋

4D (𝜔)
1 + 16D2 (𝜔)

, (22)

quantifies the contribution of the anelastic reflection coeffi-
cient. We can show that B ranges between±1∕2𝜋. Equation
(21) can be solved numerically but to develop an analytical
expression, we consider that B(𝜔) is dominated by the
contribution of the peak-frequency attribute Fpp related

to the anelastic propagation, i.e. B(𝜔) ≃ B(𝜔pp) where

𝜔pp = 2𝜋FPp is the solution of
𝜕(ΨMp)

𝜕𝜔
= 0. We show that

Fpp = Fp
⎛⎜⎜⎝
√

F2p
Γ2 + 1 −

Fp
Γ

⎞⎟⎟⎠ ≤ Fp. (23)

The present work focuses on the impact of the anelastic
contrast 𝜂 on the peak-frequency modification and thus

requires analysing
𝜕F′p
𝜕𝜂

by fixing Q1 in the upper layer, i.e.
we investigate the behaviour of F′p with changes of Q2 only.
The limit F′p∞ when Q2 tends to 0, which corresponds to 𝜂
tending to infinity, is outside the validity range of the present
work but a rough estimate is given in theAppendix.WhenQ2
tends to Q1, which corresponds to 𝜂 tending to 0, we show
that the limit is F′p0 = Fpp . This analysis is limited to a Q2
value between 0 and Q1 as results associated with negative
𝜂 values are identical to those obtained by changing the sign
of RE (i.e. the consequence of the dependency on the sign
of RE∕𝜂 as described in Section 3). We demonstrate that the
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Figure4. Representationof𝜂c (black star),𝜔c′ (solid curve) and𝜔c′′ (dot-
dashed curve) for different travel times 𝜏 ranging between 5 ms and 1 s in
steps of 50ms (numerical solution).When 𝜏 tends to 0, the curve𝜔c′ tends
to the critical frequency 𝜔c (equation (17)) associated with the anelastic
reflection contribution (dashed curve).

partial derivative of F′p in relation toQ2 is expressed as

𝜕F′p
𝜕Q2

= 2
𝜋

Q 2
1

(Q2 − Q1)
2

Fp(
F′p
Fp
+ Fp

Γ

)RE

1 − 16D2(𝜔pp)

1 + 16D2(𝜔pp)
.

(24)
When RE ≤ 0, the peak frequency is monotonous and

F′p ≤ Fpp , with an increasing trend with Q2 meaning that F′p
decreases with 𝜂. For the caseRE = 0, F′p is a constant similar
to F′p∞.

When RE > 0, F′p is not monotonous but characterised
by two extrema located at two particularQ2 values. Only one
corresponds toQ2 < Q1 and is expressed by

F′pe = Fp
⎛⎜⎜⎝
√

F2p
Γ2 + 1 + 1

2𝜋
−

Fp
Γ

⎞⎟⎟⎠ > Fp. (25)

It does not depend on RE and is located at

𝜂e = RE

(
1
4
− 1

2𝜋
ln

(
Fpp
Fh

))−1

. (26)

When 0 ≤ 𝜂 ≤ − 2𝜋RE

ln(Fpp∕Fh)
, F′p increases from Fpp when

𝜂 = 0 up to F′pe and then decreases to Fpp . Additionally, we
note that

F′p ≥ Fp when
{Q1 ≥ 𝜋2𝜏Fp
𝜂− ≥ 𝜂 ≥ 𝜂+

, (27)

where 𝜂± = RE(
Q1±
√

Q 2
1−(𝜋2𝜏Fp)

2

4𝜋2𝜏Fp
− 1

2𝜋
ln(

Fpp
Fh
))−1. The ex-

istence of the unexpected phenomenon F′p ≥ Fp associated

with a step-like interface is based on the condition 𝜏 < Q1

𝜋2Fp
,

which deals with the anelastic propagation in the upper layer
only.

For the peak-frequency attributes A′
p and 𝜁

′
p , we develop

analytical expressions in relation to Q2, i.e. with 𝜂 when Q1
is fixed based on approximations detailed in the Appendix
and used here. The analysis predicts thatA′

p is a monotonous
increasing function of 𝜂 if RE ≤ 0, but is characterised by an

extremum if RE > 0, located at RE(
−𝜋

8 ln(
Fpp
Fh

)
− 1

2𝜋
ln(

Fpp
Fh
))−1

which differs from 𝜂e. The analysis also predicts that 𝜁 ′p
decreases or increases monotonically with 𝜂 from 𝜁 ′p∞ to
𝜁pp (see Appendix) if RE < 0 or RE > 0, respectively, and is
similar to 𝜁 ′p∞ if RE = 0.

4.2. Numerical applications to quantify the anelastic
Ricker wavelet distortions

The analytical expressions developed previously allow gen-
eral considerations of the Ricker wavelet distortion induced
by the anelastic processes. To illustrate the results, we con-
sider the following parameters: the peak frequency of the
Ricker source wavelet is FP = 50 Hz, RE = −0.025, 0 and
0.025,Q1 = 100 and 𝜏 = 100ms.We determine the reflected
seismic signal as a function of 𝜂 in the range [0; 0.2], which
corresponds to a Q2 range of [5; 100], both in the time and
frequency domains (figures 5 and 6). Note that because
the Ricker frequency content is theoretically unlimited, the
reference upper frequency Fh has to be defined in order to
be able to perform the analyses. In practice, this may be
controlled by a threshold on the signal-to-noise ratio: an
arbitrary threshold of 0.3 % corresponds to Fh = 150 Hz.

When 𝜂 tends to 0, the waveform associated with RE < 0
(figure 5a1) is in the opposite phase with the one associated
with RE > 0 (figure 5a3), which is similar to the shape of
the Ricker source wavelet, and for RE = 0 (figure 5a2), the
amplitude of the waveform tends to 0. When 𝜂 increases
to 0.2, reflected waveforms for the three cases look similar
but strongly differ for intermediate 𝜂 values. This behaviour
is quantified by the associated modulus and phase spectra
displayed with respect to 𝜂 (figure 6), in accordance with the
analytical results developed in the previous section. In partic-
ular, the peak-frequency attribute F′p (figure 6, blue curves)
decreases monotonously with 𝜂 when RE < 0, is constant
when RE= 0 and is characterised by an extremum when
RE > 0 where F′p can be larger than Fp (figure 6, dashed-
black lines). It is interesting to note that (i) measuring
F′p > Fp means that both RE > 0 and 𝜂 are between 𝜂c′ and
𝜂c′′ (figure 7a1, dashed-green lines), with the condition
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Figure 5. Synthetic seismic signals associated with a 50Hz Ricker source wavelet after a propagation in an anelastic layer and a reflection by an anelastic
reflector according to the equivalent cumulative filter (figures 2 and 3) for a negative (a1), null (a2) and positive (a3) elastic impedance contrast RE.

Figure 6. (a1–3) Modulus spectra of the signals displayed in figure 5 associated with a Ricker source wavelet of peak frequency Fp = 50 Hz (dashed
line)modified into the attribute F′p (equation (21)) by the anelastic cumulative filter for a negative (left), null (middle) and positive (right)RE . The solid
and dot-dashed-black curves follow the minimum and maximum amplitudes of the cumulative filter, respectively (numerical solution). (b1–3) Phase
spectra of the signals displayed in figure 5: a mask defined on the modulus spectrum by a threshold of −24 dB has been applied to focus on the main
representative frequency content.

𝜏 <
Q1

𝜋2Fp
being satisfied, and (ii) whatever the value of RE,

the peak frequency measured on the reflected signal is lim-
ited to the range [44; 52 Hz] (figure 7a1–3). This highlights
relative changes of the peak-frequency attribute limited to
[−8; 4%]. Importantly, 𝜂 can be assessed from F′p when
RE < 0 but uncertainties increase when F′p tends to 44 Hz.

The two peak-frequency attributes associated with F′p are
also used to quantify the Ricker wavelet distortions. First,
the amplitude A′

p (figure 7b1–3, blue curves) increases with
𝜂 when RE ≤ 0, and is characterised by an extremum when
RE > 0. Amplitude variations are about 10 dB when RE ≠ 0
and about to 20 dB when RE = 0. Second, the phase 𝜁 ′p

(figure 7c1–3, blue curves) strongly depends on both 𝜂 and
the sign of RE: it highlights a phase rotation that decreases
with𝜂 in a limited range [2.5; 3 rad]whenRE < 0, is constant
to about 2 rad if RE= 0, and varies from in-phase to opposite
phase when RE > 0 in the range [−0.1; 1.7 rad]. As a result,
the phase of the cumulative filter significantly contributes to
the variations in the reflected wavelet observed in the time
domain (figure 5).

It is important to remember that the phase spectrum
of the reflected signal associated with a zero-phase Ricker
source wavelet is given by the phase of the cumulative filter.
In order to focus on the phase rotation around the main
frequency content of the reflected signal, we apply a mask
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Figure 7. Seismic peak-frequency attributes (blue curves) associated with a Ricker source wavelet of peak frequency Fp= 50 Hz (dashed-black line)
modified by the cumulative filter for a negative (left), null (middle) and positive (right)RE . (a1–3) The peak-frequency attribute F′p (equation (21), blue
curve) ranges between Fpp ≃ 48Hz (equation (23), black line) and F′p∞ (equation (32a), black line). Dashedmagenta and green lines define the interval
where F′p ≥ F′pp and F

′
p ≥ Fp (equation (27)), respectively. (b1–3) The amplitude attributeA′

p (equation (31b), blue curve) associated withF
′
p: the black

line represents the amplitude of the modulus spectrum at the frequency Fpp . (c1–3) The phase attribute 𝜁
′
p (equation (31c), blue curve) associated with

F′p: the black line represents the phase at the frequencyFpp and the dashedblue curve represents the phase range (see figures 6b1–3)with strong variations
located in the range F′p ≥ Fp (dashed-green lines).

defined by an amplitude threshold, fixed here to −24 dB
on the modulus (figure 6b1–3): the difference between the
minimum and maximum values of the phase monotonously
increase with 𝜂 when RE < 0 but is characterised by an
extremum when RE > 0 where most of the phase variations
occurs between 𝜂c′ and 𝜂c′′ (figure 7c1 and 3, dashed lines).

4.3. Discussions on the peak-frequency attribute: pitfalls
and insights

As quantified by the numerical example described above,
the second order contribution of the anelastic propagation

can be neglected in most realistic cases, i.e.
F2p
Γ2 << 1. This

allows us to neglect the case where a seismic wave vanishes
in the upper layer and considering Fpp ≃ Fp(1 −

Fp
Γ
) and

F′p ≃ Fp(
√
1 + B − Fp

Γ
) for sake of simplicity. Recall that

Γ = 4Q1∕𝜋𝜏 .

The peak-frequency attribute F′p is commonly used to
assess the quality factorQ1 of the upper layer. The approach
is based on the assumption that 𝜂 = 0, i.e. the anelastic
contribution of the reflection is negligible. In this case, a first
approximation consists in F′p ≃ Fpp which allows relatingQ1

andF′p according toQ1 ≃
𝜋𝜏Fp

4(1−F′p∕Fp)
. But this relation induces

errors when anelastic reflection is not negligible. Based on
the present study, we are able to quantify the modification of
F′p when 𝜂 is taken into account, and as a result, the impact on
the Q1 assessment. The modification of F′p with 𝜂 relatively
to Fpp is quantified by ΔF = (F′p − Fpp)∕Fpp , which high-
lights a dependencywith both 𝜂,RE and 𝜏 (figure 8a1 and 2),
and induces a relative modification ofQ1 quantified byΔQ1
(figure 8b1 and 2). When RE < 0,ΔF is negative and its am-
plitude increaseswithboth𝜂 and 𝜏 byup to10%(figure 8a1):
assessingQ1 from F′p, whose relationship is nonlinear, results
in an underestimation of 20% that increases to 75% at large
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Figure 8. (a1–2)ModificationsΔF of the peak-frequency attributeF′p, relative to Fpp associated with a negligible anelastic contrast 𝜂 = 0, as a function
of 𝜂 for a negative (left) and positive (right) elastic contrastRE . Results for different travel times 𝜏 are displayed (0.1, 0.5 and 1 s as solid, dashed and bold
curves, respectively). (b1–2) Error inQ1 estimate based on the peak-frequency attribute F′p as a function of 𝜂.

travel times (figure 8b1).WhenRE > 0,ΔF is more complex
(figure 8a2) and mainly induces an overestimation of Q1
(figure 8b2): regardless of the value of 𝜏 , the minimum error
occurs when 𝜂 reaches the value− 2𝜋RE

ln(Fpp∕Fh)
(see section 4.1).

To go beyond these particular numerical examples, it
is interesting to observe the approximated linear depen-
dency of ΔF with 𝜂 when 𝜂 is low. We can demonstrate
that at large RE∕𝜂 values, i.e. roughly larger than unity,
F′p ≃ Fp(1 +

𝜂

8𝜋RE
− Fp

Γ
) and the modification of the peak-

frequency attribute can be approximated as

ΔF ≃ 𝜂

[
8𝜋RE

(
1 −

Fp
Γ

)]−1
. (28)

This result analytically predicts a significant modification of
F′p even at low 𝜂 values. In addition, it also demonstrates a
weak dependency withQ1 and 𝜏 , quantified by Fp∕Γ, imply-
ing a low contribution of the effects of the anelastic propa-
gation in the relative modificationΔF of the peak-frequency
attribute. Finally, we show that the error in assessing Q1
when 𝜂 is low can be expressed by the approximation

ΔQ1 ≃
[
8𝜋RE

𝜂

Fp
Γ

− 1
]−1

=
⎡⎢⎢⎣2𝜋2Fp𝜏

RE
Q1

Q2
− 1

− 1
⎤⎥⎥⎦
−1

,

(29)
which is nonlinear in 𝜂 and depends on Q1∕Q2. Note that
an underestimation of Q1 is expected if RE < 0 and that

according to equation (29), the error in Q1 increases when
FP decreases. For example, the error is almost doubled when
FP decreases from 50 to 30 Hz.

5. Conclusions

In thepresentwork,wehavequantified the effects inducedby
both anelastic propagation and reflection by performing an-
alytical developments of the equivalent cumulative filter de-
fined in the framework of Kjartansson’s model for a step-like
reflector. In particular, the cumulative filter is characterised
by an asymmetrical frequency behaviour that depends on
the ratio RE∕𝜂 between the elastic reflection coefficient of
the reflector and the anelastic contrast between the upper
and lower layers. In most cases, the cumulative filter acts as a
low-pass filter in agreement with the classical understanding
that higher seismic frequencies are more attenuated than low
frequencies. The band- or high-pass behaviour occurs only
for a limited range of source peak frequency, 𝜂 parameter and
travel time 𝜏 , and when the signs of 𝜂 and RE are the same:
this unexpected behaviour constitutes a key result.

In order to quantify the impact of the cumulative filter on
an incoming seismic wave at normal incidence, we have de-
veloped analytical expressions for aRicker sourcewavelet de-
fined by a peak frequency. Because of the anelasic reflection,
the reflected seismic signal is modified: its peak frequency
and related amplitude and phase are used as attributes to
quantify the distortions of the incoming source signal. We
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show that the peak frequency depends on the sign of RE∕𝜂.
The effect of a negative ratio is to amplify both the shift of the
peak frequency and the phase rotation induced by the anelas-
tic propagation contribution. With a positive ratio, the effect
is to decrease the shift of the peak frequency. We also high-
light that the peak frequency can be larger than the source
peak frequency, an unexpected phenomenon for a step-like
interface controlled by the two critical frequencies of the cu-
mulativefilterwhen𝜏 < Q1

𝜋2Fp
. The consequenceof the cumu-

lative filter is to introduce fluctuations in the peak frequency
that cannot be explained by considering anelastic propaga-
tion alone as is commonly assumed when estimating the Q
factor from the peak frequency. For a 50 Hz Ricker source
wavelet, themodification of the peak-frequency attribute rel-
ative to the propagation contribution can be as high as 10%,
with a strong impact when assessing the quality factor of the
layer above the anelastic reflector. Errors arise as soon as 𝜂 is
not negligible and follow a nonlinear relationship with 𝜂.

The accuracy of the Q value estimation based on the
peak frequency of a seismic wave reflected by an anelastic
reflector depends on many physical parameters, as analyt-
ically demonstrated in this work that considered a Ricker
wavelet. Consequently, estimating the quality factor of
the upper layer from this seismic attribute alone is not a
well-constraint inversion problem. A suggestion would be
to consider further quantification in taking advantage of
the full set of peak-frequency attributes introduced in this
study in a simultaneous inversion scheme to assess both the
elastic reflection coefficient and the constant-Q parameters
defining the anelastic reflector.

Acknowledgements

We thank two anonymous reviewers for their comments that help
us to improve this paper. We sincerely thank ShaneMurphy for the
revision of the English language.

Conflict of interest statement. None declared.

Appendix

Seismic attributes associated with the propagation in an
anelastic layer with Γ = 4Q1∕𝜋𝜏

Fpp = Fp
⎛⎜⎜⎝
√

F2p
Γ2 + 1 −

Fp
Γ

⎞⎟⎟⎠ = 𝜔pp∕2𝜋 < Fp, (30a)

App = ||RE
||Ψ(𝜔pp) exp

(
−
4Fpp
Γ

)
, (30b)

𝜁pp =
⎧⎪⎨⎪⎩

8
𝜋

Fpp
Γ
ln
( Fpp

Fh

)
+ 𝜋 : whenRE ≤ 0

8
𝜋

Fpp
Γ
ln
( Fpp

Fh

)
: whenRE > 0

. (30c)

Seismic attributes associated with both an anelastic
propagation and an anelastic reflection

F′p = Fp
⎛⎜⎜⎝
√

F2p
Γ2 + 1 + B(𝜔pp) −

Fp
Γ

⎞⎟⎟⎠ = 𝜔′
p∕2𝜋, (31a)

A′
p =

1
4
Ψ(𝜔′

p) exp

(
−
4F′p
Γ

)√
𝜂2
(
1 + 16D2(𝜔pp)

)
,

(31b)

𝜁 ′p ≃
8
𝜋

F′p
Γ

ln

(
F′p
Fh

)
+ atan2

(
1, 4D(𝜔pp)

)
. (31c)

Asymptotic limits when 𝜂 tends to infinity

The limit when 𝜂 is large is equivalent to Q2 tends toward
0 for Q1 fixed in the upper layer. This is outside the validity
range of the approximations used in the present study but as
a first estimate, the asymptotic limits of the peak frequency
and phase attributes can be expressed by:

F′p∞ = Fp

⎛⎜⎜⎜⎜⎝

√√√√√√√F2p
Γ2 + 1 +

2 ln
(
Fpp∕Fh

)
(
2 ln
(
Fpp∕Fh

))2
+ 𝜋2

−
Fp
Γ

⎞⎟⎟⎟⎟⎠
(32a)

𝜁 ′p∞ ≃ 8
𝜋

F′p∞
Γ

ln

(
F′p∞
Fh

)
+ atan2

(
1, 2
𝜋
ln

(
F′p∞
Fh

))
.

(32b)

Behaviour of F′p withQ2

𝜕F′p
𝜕Q2

= 2
𝜋

Q 2
1

(Q2 − Q1)
2RE𝜅 , (33a)

𝜅 =
Fp(

F′p
Fp
+ Fp

Γ

) 1 − 16D2(𝜔pp)

1 + 16D2(𝜔pp)
. (33b)
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Behaviour of A′
pwithQ2:

𝜕A′
p

𝜕Q2
=

A′
pQ

2
1

(Q1 − Q2)
2RE

[(
1 + 𝜅

𝜋2F′p

)

×
⎛⎜⎜⎜⎝

16D
(
𝜔′
p

)
1 + 16D2

(
𝜔′
p

) −
16D
(
𝜔pp

)
1 + 16D2

(
𝜔pp

)⎞⎟⎟⎟⎠
+

16D
(
𝜔pp

)
1 + 16D2

(
𝜔pp

) − 𝜂

RE

⎤⎥⎥⎥⎦ . (34)

The behaviour of the parameter D with the frequency is
inversely proportional to the frequency and with F′p >> 1
similar in magnitude to Fpp , a first approximation consists in
replacingD(𝜔′

p) byD(𝜔pp), which gives

𝜕A′
p

𝜕Q2
≃

A′
pQ

2
1

(Q1 − Q2)
2RE

[
+

16D(𝜔pp)

1 + 16D2(𝜔pp)
− 𝜂

RE

]
.

(35)
A minimum amplitude is located at the quality factor

1
Q1

− RE(
𝜋

8 ln(
Fpp
Fh

)
+ 1

2𝜋
ln(

Fpp
Fh
))−1 if RE > 0.

Behaviour of 𝜁 ′p withQ2

𝜕𝜁 ′p

𝜕Q2
=

−4Q 2
1

(Q2 − Q1)
2
(
1 + 16D2(𝜔′

p)
)

×RE

[
1 + 𝜅

𝜋2F′p
− 4
𝜋2Γ

𝜅

(
1 + 16D2(𝜔′

p)
)

×

(
1 + ln

(
F′p
Fh

))]
. (36)

By considering both Q1 >> 1 and 𝜏 << 1s, which cor-
responds to a frequency Γ much larger than the seismic fre-
quency, the behaviour of 𝜁 ′p withQ2 can be approximated to:

𝜕𝜁 ′p

𝜕Q2
≃

−4Q 2
1

(Q2 − Q1)
2
(
1 + 16D2(𝜔′

p)
)RE

[
1 + 𝜅

𝜋2F′p

]
.

(37)
Since 𝜅 ranges between −1 and 1, the peak phase at-

tribute increases or decreases monotonically with Q2 from
𝜁 ′p∞ (equation (32b)) to 𝜁pp (equation (30c)) when RE is
negative or positive, respectively.
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