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Abstract—We present some new results on the dynamic re-
gressor extension and mixing parameter estimators for linear
regression models recently proposed in the literature. This
technique has proven instrumental in the solution of several open
problems in system identification and adaptive control. The new
results include: (i) a unified treatment of the continuous and
the discrete-time cases; (ii) the proposal of two new extended
regressor matrices, one which guarantees a quantifiable transient
performance improvement, and the other exponential convergence
under conditions that are strictly weaker than regressor persis-
tence of excitation; and (iii) an alternative estimator ensuring
convergence in finite-time whose adaptation gain, in contrast with
the existing one, does not converge to zero. Simulations that
illustrate our results are also presented.

I. INTRODUCTION

Estimation of the parameters that describe an underlying
physical setting is one of the central problems in control
and systems theory that has attracted the attention of many
researchers for several years. A typical scenario, which appears
in system identification and adaptive control [8], [9], [16], [17],
[22], is when the unknown parameters and the measured data
are linearly related in a so-called linear regression equation
(LRE). Classical solutions for this problem are gradient and
least-squares (LS) estimators. The main drawback of these
schemes is that convergence of the parameter estimates relies
on the availability of signal excitation, a feature that is codified
in the restrictive assumption of persistency of excitation (PE)
of the regressor vector. Moreover, their transient performance
is highly unpredictable and only a weak monotonicity property
of the estimation errors can be guaranteed.

To overcome these two problems a new parameter estima-
tion procedure, called dynamic regressor extension and mixing
(DREM), has recently been proposed in [2] for continuous-
time (CT) and in [5] for discrete-time (DT) systems. The
construction of DREM estimators proceeds in two steps, first,
the inclusion of a free linear operator that creates an extended,
matrix LRE. Second, a nonlinear manipulation of the data that
allow generating, out of an m-dimensional LRE, m scalar, and
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independent, LRE. DREM estimators have been successfully
applied in a variety of identification and adaptive control
problems. Interestingly, it has been shown in [18] that DREM
can be reformulated as a functional Luenberger observer.

DREM estimators outperform classical gradient or LS esti-
mators in the following precise aspects: independently of the
excitation conditions, DREM guarantees monotonicity of each
element of the parameter error vector that is much stronger
than monotonicity of the vector norm, which is ensured
with classical estimators. Moreover, parameter convergence in
DREM is established without the PE condition. Instead of PE
a non-square integrability condition on the determinant of a
designer-dependent extended regressor matrix is imposed. A
final interesting property of DREM that has been established
in [19] is that it can be used to generate estimates with finite-
time convergence (FTC), under interval excitation assumption.

The following new results on DREM are presented here:
(i) The unified treatment of the CT and the DT cases.
(ii) The definition of new linear operators that:
• ensure parameter error convergence under excitation condi-
tions that are strictly weaker than regressor PE;
• guarantee a transient performance improvement;
• show that DREM contains, as a particular case, the extended
LRE proposed in [11], which is used also in the adaptive
controllers recently proposed in [6], [7], [21].
(iii) An alternative FTC estimator whose adaptation gain, in
contrast with the existing one, does not converge to zero.

The remainder of the paper is organized as follows. To set
up the notation a brief description of gradient and DREM
estimators is given in Section II. In Section III we present
the new version of DREM that ensures convergence under
excitation conditions that are strictly weaker than regressor
PE. In Section IV a general form of the free operator used in
DREM is proposed to, on one hand, re-derive the extended
regressor of [11] and, on the other hand, prove that transient
performance is—quantifiably—improved. Section V presents
a new DREM-based estimator with FTC. Simulation results
are presented in Section VI. The paper is wrapped-up with
future research in Section VII.
Notation. In is the n × n identity matrix. R>0, R≥0, Z>0

and Z≥0 denote the positive and non-negative real and integer
numbers, respectively. For x ∈ Rn, we denote |x|2 := x>x.
Continuous-time (CT) signals s : R≥0 → R are denoted s(t),
while for discrete-time (DT) sequences s : Z≥0 → R we use
s(k) := s(kTs), with Ts ∈ R>0 the sampling time. The action
of an operator H : L∞ → L∞ on a CT signal u(t) is denoted
H[u](t), while for an operator H : `∞ → `∞ and a sequence
u(k) we use H[u](k). When a formula is applicable to CT
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signals and DT sequences the time argument is omitted.

II. BACKGROUND MATERIAL

We deal with the problem of on-line estimation of the
unknown, constant parameters θ ∈ Rm appearing in a LRE
of the form

y = φ>θ + εt (1)

where y ∈ R and φ ∈ Rm are measurable CT or DT signals
and εt is a (generic) exponentially decaying signal.1 It is
well-known that the availability of a LRE of the form (1) is
instrumental for the development of most system identifiers
and adaptive controllers [22]. Following standard practice,
throughout the paper, the term εt is omitted.

A. Gradient estimator and the PE condition

In this subsection we recall the well-known gradient esti-
mator, derive its parameter error equation (PEE) and recall its
stability properties. Although this material is very well-known,
it is included to make the document self-contained and set up
the notation. First, we introduce the following.

Definition 1. A bounded signal φ ∈ Rm is PE (denoted φ ∈
PE) if there exist α ∈ R>0 such that∫ t+T

t

φ(τ)φ>(τ)dτ ≥ αIm, ∀t ∈ R≥0,

for some T ∈ R>0 in CT or
k+K∑
j=k+1

φ(j)φ>(j) ≥ αIm, ∀k ∈ Z≥0,

for some K ∈ Z>0, with K ≥ m, in DT. ���

The following proposition is a milestone for systems theory
and may be found in all identification and adaptive control
textbooks, e.g., [22].

Proposition 1. Consider the LRE (1).

(CT) The CT gradient-descent estimator

˙̂
θ(t) = γφ(t)[y(t)− φ>(t)θ̂(t)], (2)

with γ > 0 ensures the following.
• The norm of the parameter error vector θ̃ := θ̂ − θ is
monotonically non-increasing, that is,

|θ̃(tb)| ≤ |θ̃(ta)|, ∀tb ≥ ta ∈ R≥0. (3)

• The CT PEE is given by

˙̃
θ(t) = −γφ(t)φ>(t)θ̃(t),

and its zero equilibrium is globally exponentially stable (GES)
if and only if φ(t) ∈ PE. Moreover, there exist an optimal
value of γ for which the rate of convergence is maximum.
(DT) The DT gradient-descent estimator

θ̂(k) = θ̂(k − 1) +
φ(k)

γ + |φ(k)|2
[y(k)− φ>(k)θ̂(k − 1)],

1This signal may be stemming from the effect of the initial conditions of
various filters used to generate the LRE.

ensures the following.
• The norm of the parameter error vector verifies

|θ̃(kb)| ≤ |θ̃(ka)|, ∀kb ≥ ka ∈ Z≥0. (4)

• The DT PEE is given by

θ̃(k) =

[
Im −

1

γ + |φ(k)|2
φ(k)φ>(k)

]
θ̃(k − 1),

and its zero equilibrium is GES if and only if φ(k) ∈ PE.
���

In most applications, PE is an extremely restrictive condi-
tion, hence the interest of relaxing it. See [20] for a recent
review of new estimators relaxing the PE condition, which
include the ones reported in [6], [7], [21].

B. Generation of m scalar LRE via DREM

To overcome the limitation imposed by the PE condition
and improve the transient performance of the estimator the
DREM procedure, introduced in [2], [5], generates m new,
one–dimensional, LRE to independently estimate each of
the parameters. The first step in DREM is to introduce a
linear, single-input m-output, bounded-input bounded-output
(BIBO)–stable operator H and define the vector Y ∈ Rm and
the matrix Φ ∈ Rm×m as

Y := H[y], Φ := H[φ>]. (5)

Clearly, because of linearity and BIBO stability, these signals
satisfy

Y = Φθ. (6)

At this point the key step of regressor “mixing” of the DREM
procedure is used to obtain a set of m scalar equations as
follows. First, recall that, for any (possibly singular) m ×m
matrix M we have [12] adj{M}M = det{M}Im, where
adj{·} is the adjunct (also called “adjugate”) matrix. Now,
multiplying from the left the vector equation (6) by the adjunct
matrix of Φ, we get

Yi = ∆θi, i ∈ {1, 2, . . . ,m} (7)

where we have defined the scalar function ∆ ∈ R

∆ := det{Φ}, (8)

and the vector Y ∈ Rm

Y := adj{Φ}Y. (9)

Remark 1. In [13] an extended regressor like (6) has been
constructed in CT using linear time-invariant (LTI) filters
in the operator H used in (5)—see also [11], where this
modification is also discussed. Unfortunately, besides some
simulation evidence, no quantitative advantage—with respect
to the gradient estimation—has been established for it.

Remark 2. As pointed out in [10] applying Cramer’s law we
have that Yi = det{ΦYi

} where ΦYi
is the matrix obtained

replacing the i-column of Φ with Y .
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C. Properties of gradient parameter estimators in DREM

The availability of the scalar LREs (7) is the main feature of
DREM that distinguishes it with respect to all other estimators.
Indeed, as shown in the propostion below—the proof of which
may be found in [2], [5]—it allows obtaining significantly
stronger results using simple gradient estimators.

Proposition 2. Consider the scalar LREs (7).

(CT) The CT gradient-descent estimators2

˙̂
θi(t) = γi∆(t)[Yi(t)−∆(t)θ̂i(t)], (10)

with γi ∈ R>0 ensures the following.
• The CT PEEs are given by

˙̃
θi(t) = −γi∆2(t)θ̃i(t). (11)

• The individual parameter errors are monotonically non-
increasing, that is,

|θ̃i(tb)| ≤ |θ̃i(ta)|, ∀tb ≥ ta ∈ R≥0.

• The following equivalence holds

lim
t→∞

θ̃i(t) = 0 ⇔ ∆(t) /∈ L2,

and convergence can be made arbitrarily fast increasing γi.
• If ∆(t) ∈ PE, the convergence is exponential.

(DT) The DT gradient-descent estimator

θ̂i(k) = θ̂i(k−1)+
∆(k)

γi + ∆2(k)
[Yi(k)−∆(k)θ̂i(k−1)], (12)

ensures the following.
• The DT PEEs are given by

θ̃i(k) =
1

1 + ∆2(k)
γi

θ̃i(k − 1). (13)

• The elements of the parameter error vector verify

|θ̃i(kb)| ≤ |θ̃i(ka)|, ∀kb ≥ ka ∈ Z≥0. (14)

• The following equivalence holds

lim
t→∞

θ̃i(k) = 0 ⇔ ∆(k) /∈ `2,

and convergence can be made arbitrarily fast decreasing γi.
• If ∆(k) ∈ PE, the convergence is exponential. ���

There are three important advantages of DREM over the
standard gradient estimator.
P1 As shown in (14) the individual parameter errors are mono-
tonically non-increasing, a property that is strictly stronger
than monotonicity of their norm indicated in (3) and (4).
P2 Parameter convergence is established without the restrictive
PE assumption—being replaced, instead, by a non square-
integrability/summability assumption.
P3 Convergence rates of DREM can be made arbitrarily fast
simply increasing γi in CT (or decreasing it in DT).

2In the sequel, the quantifier i ∈ {1, 2, . . . ,m} is omitted for brevity.

Remark 3. Regarding the property P2, in [2] the relationship
in CT between the conditions φ(t) ∈ PE and ∆(t) /∈ L2 is
thoroughly discussed. In particular, in [2] it has been shown
that, for arbitrary regressor vectors φ(t), these conditions are
unrelated. On the other hand, for the case of identification of
LTI systems, it has been shown in [4] that φ(t) ∈ PE if and
only if ∆(t) ∈ PE for almost all LTI operators H.

III. A DREM ESTIMATOR WITH STRICTLY WEAKER
CONVERGENCE CONDITIONS

In this section we present a new version of DREM for
which it is possible to show that its convergence conditions
are strictly weaker than φ ∈ PE. Since the construction, and
the results, are very similar for CT and DT estimators, for
brevity, we consider the latter case only.

Proposition 3. Consider the DT version of the LRE (1). Fix
an integer K̄ ≥ m and define (5) using the LTV operator

H :=
[
φ(k − 1) φ(k − 2) · · ·φ(k − K̄)

]

q−1

q−2

...
q−K̄

 .
Assume φ(k) ∈ PE and K̄ ≥ K, with K the size of the
window given in Definition 1. The scalar, gradient-descent DT
estimators (12), with ∆(k) and Y(k) defined in (8) and (9),
ensure the following additional properties.
• The condition for parameter convergence of DREM, i.e.,
∆(k) 6∈ `2, is strictly weaker than φ(k) ∈ PE. More precisely,
the following implications hold:

φ(k) ∈ PE ⇒ ∆(k) 6∈ `2, (15)
∆(k) 6∈ `2 6⇒ φ(k) ∈ PE. (16)

• The condition for exponential parameter convergence of
DREM, i.e., ∆(k) ∈ PE, is also weaker than φ(k) ∈ PE
in the following precise sense

φ(k) ∈ PE ⇒ ∆(k) ∈ PE, (17)
∆(k) ∈ PE [K ≥ 2] 6⇒ φ(k) ∈ PE [K ≤ K̄] (18)

Proof. To prove the claims we make the key observation that

Φ(k) =

k+K̄∑
j=k+1

φ(j − (1 + K̄))φ>(j − (1 + K̄)). (19)

The implications (15) and (17) follow using the identity (19),
Definition 1 and noting the obvious fact that if φ(k) ∈ PE
in a window of size K, then it is also PE for any window of
size K̄ ≥ K.

The proof of (16) is established with the following scalar
counterexample: φ(k) = (k + 1)−

1
4 with K̄ = 1. Since φ(k)

tends to zero it is not PE, however, ∆(k) = (k + 1)−
1
2 /∈ `2.
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Finally, the proof of (18) is established with the following
chain of implications:

∆(k) ∈ PE [with K ≥ 2]⇔
k+K∑
j=k+1

∆2(j) > 0, ∀k ∈ Z≥0

⇔
k+K∑
j=k+1

m∏
i=1

λ2
i {Φ(j)} > 0, ∀k ∈ Z≥0

⇔
m∏
i=1

λ2
i {Φ(k+1)}+. . .+

m∏
i=1

λ2
i {Φ(k+K)} > 0,∀k ∈ Z≥0

6⇒ λi{Φ(k)} > 0,∀i ∈ {1, . . . ,m}, ∀k ∈ Z≥0

⇔ Φ(k) > 0, ∀k ∈ Z≥0

⇔ φ(k) ∈ PE [with K ≤ K̄],

where λi{·} denotes eigenvalues and in the third implication
we have used the fact that K > 1. ���

Remark 4. The qualifiers K ≥ 2 and K ≤ K̄ in (18) are
necessary to complete the proof. Actually, it can be shown
that, without these qualifiers, [∆(k) ∈ PE ⇒ φ(k) ∈ PE].

IV. SOME SPECIFIC CHOICES OF THE OPERATOR H
In the reported literature of DREM we have considered the

use of simple first-order, LTI filters or pure delays in the vector
operator H, see [18] for a discussion on LTV operators. One
of the main contributions of the paper is to propose a general
form for these operators and give an explicit choice, that
ensures a quantifiable transient performance improvement of
the estimator. Another advantage of these general operators is
that, as a particular case, we obtain the extended LRE proposed
in [11] for adaptive state observation—referred in the sequel
as Kreisselmeier’s regressor extension (KRE).

A. A general LTV operator H
In this subsection we propose to generate Y and Φ in (5)

using, as elements of the operator H, the single-input single-
output (SISO) LTV operators

Hi := c>i (dIni
−Ai)−1bi + di + νiDi, (20)

where Ai ∈ Rni×ni , bi, ci ∈ Rni , di, νi ∈ R are time-varying,
ni ∈ Z≥0 and the action of the operators d and Di is defined
as

d[u] =


du(t)
dt =: p[u](t) in CT

u(k + 1) =: q[u](k) in DT

and

Di[u] =

 u(t− Ti), Ti ∈ R≥0 in CT

q−Kiu(k), Ki ∈ Z≥0 in DT,

respectively. The triplets (Ai, bi, ci) should define BIBO stable
systems and all matrices are bounded.

The state-space realizations of the SISO, BIBO stable
subsystems z = Hi[u] are, clearly, given as

ẋi(t) = Ai(t)xi(t) + bi(t)u(t)

z(t) = c>i (t)xi(t) + di(t)u(t) + νi(t)u(t− Ti),

in CT, and

xi(k + 1) = Ai(k)xi(k) + bi(k)u(k)

z(k) = c>i (k)xi(k) + di(k)u(k) + νi(k)u(k −Ki),

in DT, with xi ∈ Rni the corresponding state. In view of the
equivalence between GES and BIBO-stability for LTV systems
with bounded realization matrices, these state-space systems
are GES.

Remark 5. The LTV operators (20) are a generalization of the
first order LTI ones or simple delays considered in the reported
literature of DREM. LTV operators are also considered in [18]
to give a Luenberger observer interpretation of DREM.

B. Kreisselmeier’s regressor extension

The construction of the KRE of [20] proceeds as follows.
Premultiplying (1) by φ we obtain φy = φφ>θ, to which we
can apply a SISO, linear, BIBO-stable operator K to obtain
the new, matrix LRE

Z = Ωθ, (21)

where we have defined

Z := K[φy] ∈ Rm, Ω := K[φφ>] ∈ Rm×m. (22)

Comparing (5), (6) with (21), (22) we see that the difference
between DRE and KRE is that, in the first case, Y and Φ
are obtained filtering—with m different filters—y and φ, and
piling-up the filtered signals, while in the latter we filter φy
and φφ> with one filter.

The proposition below, the proof of which is obtained via
a direct calculation, shows that the KRE can be derived from
the DRE construction using the generalized operators (20).3

Proposition 4. Define (5) using (20) with

ni = 1, ci = 1, Ai = −a, bi = φi, di = 0, νi = 0.

Then, Z = Y and Ω = Φ as defined in (22). Proving that
KRE is a particular case of DRE. ���

Remark 6. The KRE construction was first proposed by
Kreisselmeier in [11] for CT systems and the particular case

K(p) =
1

p+ a
, a > 0, (23)

the state-space realization of which is

Ω̇(t) = −aΩ(t) + φ(t)φ>(t),

Ż(t) = −aZ(t) + φ(t)y(t). (24)

The LRE (21) is used in the recently proposed MRACs [6],
[21], see also [20] for a survey of the literature.

3The first author thanks Bowen Yi for bringing this fact to his attention.
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C. An operator H with guaranteed transient performance
improvement

One important feature of DREM is that it is possible to get
the explicit solution of the PEEs, fully characterizing the time
evolution of the parameter errors. Indeed, for the CT PEE (11)
we have

θ̃i(t) = e−γi
∫ t
0

∆2(s)dsθ̃i(0), (25)

Similarly, for the DT PEE (13) we have

θ̃i(k) =
k∏
j=0

[
1

1 + ∆2(j)
γi

]
θ̃i(0). (26)

As seen from the two previous equations the transient perfor-
mance of the DREM estimators is univocally determined by
the “size” of ∆2—with a faster convergence obtained with a
“larger” ∆2. To improve the transient behavior of the DREM
estimator we propose in this subsection a particular selection
of the feedforward gains di in the LTV operators Hi given in
(20). Since the result is the same for CT and DT estimators,
for brevity, we consider below the former case only.

To streamline the presentation of the result we define the
matrix

Φ0(t) :=

 c
>
1 (t)[pIn1

−A1(t)]−1b1(t) + ν1(t)D1

...
c>n (t)[pInn

−An(t)]−1bn(t) + νn(t)Dn

 [φ>](t).

(27)
That is, the CT extended regressor matrix (6) generated with
the operators (20) with di(t) = 0.

Proposition 5. Consider the CT DREM estimator (10) with
the LRE (6) generated with the operators (20). Denote by θ̃0

i (t)
the parameter errors corresponding to the choice of di(t) = 0
and θ̃Ni (t) those corresponding to

d(t) = adj{Φ0(t)}φ(t), (28)

with Φ0(t) defined in (27), all the remaining parameters of Hi
and the estimators initial conditions the same for both cases.
Then

|θ̃0
i (t)| > |θ̃Ni (t)|, ∀t ∈ R≥0.

Proof. From the definitions of Φ(t) in (6), the operators (20)
and Φ0(t) in (27) we have that

Φ(t) = Φ0(t) + d(t)φ>(t). (29)

In view of (25) the proof is completed showing that

det{Φ0(t)} < det{Φ(t)}.

For, we apply Sylvester’s determinant formula [12] to (29) to
get

det{Φ(t)} = det{Φ0(t)}+ d>(t)adj{Φ0(t)}φ(t)

= det{Φ0(t)}+φ>(t)
[
adj{Φ0(t)}

]>adj{Φ0(t)}φ(t)

= det{Φ0(t)}+ |adj{Φ0(t)}φ(t)|2,

where we have used (28) to obtain the second equation. The
proof is completed noting that det{Φ0(t)} 6= 0 implies that
adj{Φ0(t)} is full rank. Hence, if φ(t) 6= 0, the second right
hand term of the last identity above is positive. ���

V. CT DREM ESTIMATORS WITH ALERT FINITE-TIME
CONVERGENCE

In [19] we have showed that CT DREM can be used
to generate estimates that converge in finite time under the
weakest interval excitation assumption.

A. An FTC DREM

For ease of reference, we recall the FTC result used in [19]
to solve a mutivariable adaptive control problem.

Proposition 6. Consider the scalar CT LREs (7) and the
gradient-descent estimator (10). Fix a constant νi ∈ (0, 1) and
assume there exists a time tc ∈ R>0 such that

γi

∫ tc

0

∆2(s)ds ≥ − ln(µi). (30)

Define the FTC estimate

θ̂FTCi (t) :=
1

1− wc
i (t)

[θ̂i(t)− wc
i (t)θ̂i(0)], (31)

where wc
i (t) is defined via the clipping function

wc
i (t) =

 µi if wi(t) ≥ µi

wi(t) if wi(t) < µi,
(32)

with wi(t) given by

ẇi(t) = −γ∆2(t)wi(t), wi(0) = 1. (33)

The parameter estimation error converges to zero in finite-time.
More precisely, θ̂FTCi (t) = θi, ∀t ≥ tc.

Proof. First, notice that the solution of (33) is

wi(t) = e−γi
∫ t
0

∆2(s)ds.

The key observation is that, using the equation above in (25),
and rearranging terms we get that

[1− wi(t)]θi = θ̂i(t)− wi(t)θ̂i(0). (34)

Now, observe that wi(t) is a non-increasing function and,
under the interval excitation assumption (30), we have that

wc
i (t) = wi(t) < µi, ∀t ≥ tc,

completing the proof. ���

Remark 7. The FTC property established in this section is
“trajectory-dependent”, in the sense that it relates only to the
trajectory generated for the initial condition wi(0) = 1. This
means that the flow of the closed-loop system contains other
trajectories, and the appearance of a perturbation may drive
our “good” trajectory towards a “bad” one. This is, of course,
a robustness problem that needs to be further investigated.
Notice, however, that if ∆(t) ∈ PE the system (33) is
contracting, that is, all trajectories converge to one unique
trajectory, and the problem is avoided.
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B. New FTC DREM

The problem with the approach described above is that,
independently from the behavior of ∆(t), the function w(t)
is monotonically non-increasing and, actually, it converges to
zero if and only if ∆(t) /∈ L2. In this case, θ̂FTCi (t) → θ̂i(t),
hence, the new estimator reduces to the standard gradient one,
losing its FTC feature. Therefore, to ensure that the adaptation
gain does not converge to zero and is able to react upon the
arrival of new excitation, it is necessary to reset the estimators
(10) or (12)—a modification that is always problematic to
implement. This property is known in the literature as alertness
of the estimator, and has been thoroughly discussed for least-
squares algorithm, see [22, Section 2.4.2].

In the proposition below we propose an alternative for the
CT estimator of Proposition 6 that does not suffer from this
practical drawback. For the sake of brevity, we present only
the derivation of a relation similar to (34), from which we
can easily construct the FTC estimator and prove that the new
FTC estimator does not converge to the gradient one.

Proposition 7. Fix TD ∈ R>0 and define

ẇD
i (t) = −γi

[
∆2(t)−∆2(t− TD)

]
wD
i (t), w

D
i (0) = 1. (35)

Then, [
1− wD

i (t)
]
θi = θ̂(t)− wD

i (t)θ̂i(t− TD).

Moreover, wD
i (t) is bounded away from zero.

Proof. Without loss of generality we assume that ∆(t−TD) =
0 for t < TD. Then, the solution of (35) is

wD
i (t) = e

−γi
∫ t
t−TD

∆2(s)ds
. (36)

From (36), and the fact that∫ t

t−TD

∆2(s)ds ≤ ∆2
maxTD,

where ∆max ≥ ‖∆(t)||∞, we conclude that

wD
i (t) ≥ e−γi∆

2
maxTD > 0.

Now, from the solution of the PEE (25) in the interval [t−TD, t]
we get

θ̃i(t) = e
−γi

∫ t
t−tD

∆2(s)ds
θ̃i(t− TD).

Hence, θ̃i(t) = wD
i (t)θ̃i(t − TD). The proof of the claim is

established rearranging the terms of the equation above. ���

The new signal wD
i (t), besides being bounded away from

zero, grows if ∆(t) increases its value in an interval of length
TD, that is, if new excitation arrives to the system. In this
way, the new FTC estimator preserves its FTC property if the
parameters change. This fact is illustrated in the simulations
of Subsection VI-B.

Remark 8. For the new FTC DREM estimator the interval
excitation inequality becomes the existence of a time tc ≥ TD
such that

γi

∫ tc

tc−TD

∆2(s)ds ≥ − ln(µi). (37)

Recalling (36), it has the same interpretation as (30).

Remark 9. The choice of the coefficients µi is, clearly,
a compromise between high-gain injection—if it is close
to 1—and the time where FTC is achieved. See [19] for
additional details on this aspect. Notice also that, in the highly
improbable situation, that ∆ is periodic of period Td, the signal
wD(t) = 1, ∀t ≥ 0. In this case, the assumption of sufficient
excitation of Proposition 6 is violated, invalidating the FTC
claim.

VI. SIMULATIONS

In this section we present simulations illustrating the results
of Propositions 5, 6 and 7.

A. Transient performance improvement of Proposition 5

To illustrate the performance improvement using the time-
varying term d(t) introduced in Proposition 5, we consider
the problem of parameter estimation of the CT, first-order,
LTI plant described by

ẏ(t) = ay(t) + bu(t), (38)

where u(t), y(t) ∈ R are measurable signals and a, b ∈ R are
uncertain parameters that should be estimated.

Following the standard LTI systems identification procedure
[22], we first re-parametrize the model (38) to obtain the LRE
(1). For, we apply the filters 1

p+λ , with some λ > 0, to (38)
to get the LRE (1) with

φ(t) :=

[ 1
p+λ [y](t)

1
p+λ [u](t)

]
, θ :=

[
a+ λ
b

]
.

Two simulation scenarios have been considered: with a plant
input that is sufficiently rich or not—that is, when the re-
gressor φ(t) is PE or not. More precisely, we considered
u(t) = 15 sin(2.5t + 1) and u(t) = 15, respectively. For
these two scenarios, we compare three different estimation
schemes, namely, the standard gradient-descent (2), and the
DREM scheme (10) with the operators Hi defined in (20) for
d = 0 and d(t) given by (28).

The following simulation parameters are used: a =
−0.4, b = 0.4, λ = 5, γ = 1, with the coefficients

H1 : n1 = 1, A1 = −1, b1 = 1, c1 = 1, µ1 = 0

H2 : n2 = 1, A2 = −2, b2 = 2, c2 = 1, µ2 = 0,

for the LTI part of the operators Hi.
The transient behavior of the parameter estimation errors

θ̃1(t) and θ̃2(t), for the three aforementioned estimators, is
shown in Figs. 1 and 2. As predicted by the theory the
gradient scheme yields a consistent estimate only for the case
of sufficiently rich input, showing a significant steady state
error for the constant plant input. On the other hand, both
DREM schemes yield consistent estimates in both scenarios.
Moreover, as expected from the analysis of Proposition 5, the
addition of the feedforward term d(t) given in (28) signifi-
cantly improves the transient performance—achieving parame-
ter convergence in less than a second, while the DREM scheme
with d = 0 takes almost two seconds to converge. It should
also be mentioned that both DREM schemes significantly
outperform the standard gradient, even in the presence of a
sufficiently rich input. This property stems from the fact that,
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Fig. 1: Transients of the parameter estimation errors for dif-
ferent estimators and the control input u(t) = 15 sin(2.5t+1).
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Fig. 2: Transients of the parameter estimation errors for
different estimators and the control input u(t) = 15.

as indicated in Proposition 2, DREM ensures monotonicity
of each element of the parameter error vector, a fact that is
clearly illustrated in the simulations.
B. Alertness preserving DREM with FTC of Proposition 7

In this subsection we compare the two FTC DREMs pre-
sented in Section V. Namely, the FTC DREM of Proposition 6,
defined by (31), (33), and the new FTC DREM of Proposition
7 given by (35) and

θ̂FTC−Di (t) :=
1

1− wD
i (t)

[θ̂i(t)− wD
i (t)θ̂i(0)],

which is computed as soon as wD
i (t) < µi. The objective of

the simulation is to prove that the new FTC DREM is able to
react when new excitation arrives. This is in contrast with the
old FTC DREM estimator that, since w(t)→ 0, converges to
the gradient estimator and loses its FTC alertness property.

We consider the simplest case of a scalar system y(t) =
∆(t)θ and simulate the gradient estimator (10), that is,

˙̂
θ(t) = γ∆(t)[y(t)−∆(t)θ̂(t)],

together with (33) and (35), which are computed for t ≥ tc,
with tc defined via the interval excitation criteria (30) and (37),
respectively.

We consider two scenarios: with and without excitation in
∆(t). For the first case we consider the PE signal ∆(t) =
sin(2πt), and for the second one ∆(t) = 1

t+1 . Note that in the
second case ∆(t) → 0, hence it is not PE. However, ∆(t) 6∈
L2, hence it satisfies the conditions for convergence of the
DREM estimator.

For simulations we set γ = 2, µ = 0.98, and TD = 0.2.
These parameters have been chosen such that the transients
of both FTC estimators coincide in the ideal case when θ
is constant and the system is excited. To illustrate the FTC
tracking capabilities of the estimators the unknown parameter
θ is time-varying and given by

θ(t) =


10 for 0 ≤ t < 10,

15 for 10 ≤ t < 20,

15− 0.5(t− 20) for 20 ≤ t < 30,

10 for t > 30,

i.e., it starts at 10, jumps to 15 at t = 10, and then linearly
returns to 10.

The transient of the estimators for t ∈ [0, 3] and ∆(t) =
sin(2πt) are given in Fig. 3, where we plot the gradient
estimate θ̂(t), as well as the old and the new FTC estimates
θ̂FTC(t) and θ̂FTC−D(t). We observe that, as expected, both FTC
estimators are overlapped and converge in finite time, while
the gradient converges only asymptotically.

The behavior of the estimators for t ∈ [9, 40] is shown in
Figure 4, where we also plot the time-varying parameter θ(t).
As predicted by the theory, the old FTC behaves as the gradient
estimator and their trajectories coincide. On the other hand, the
new estimator preserves FTC alertness after the first parameter
jump and achieves fast tracking of the linearly time-varying
θ(t).

For the non-PE case of ∆(t) = 1
t+1 , the transients of

the estimators are given in Fig. 5. We observe that both
FTC estimators, again, essentially coincide in the first few
seconds and converge in finite time, while the gradient does
it only asymptotically. After the first parameter change at
t = 10 the old FTC and the gradient coincide, while the
new FTC manages to track in finite time the parameter jump.
However, during the ramp parameter change—because of the
lack of excitation—neither one of the estimators can track the
parameter variation but the new FTC estimator performs much
better. VII. FUTURE WORK

Current research is under way to derive some of the new
results presented only for the CT time case, to the practically
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Fig. 3: Transients of the parameter estimates for t ∈ [0, 3]
with ∆(t) ∈ PE.
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Fig. 4: Transients of the parameter estimates for t ∈ [9, 40]
with ∆(t) ∈ PE.

important, DT case. Moreover, in the spirit of [4], we are
further exploring the role of the operator H on the determinant
of the extended regressor matrix Φ and we plan to study the
effect of an additive signal in the LRE (1), to study its input-
to-state stability properties.

A widely open, long-term research topic is how to deal
with nonlinear parameterizations, that is, the case in which
(1) is replaced by y = F (φ, θ), where F (·, ·) is a non-
linear function. Some preliminary results exploiting convex-
ity, concavity or monotonicity may be found in [1], [14],
[15]. As pointed out in [2], DREM is directly applicable—
without overparameterization—in the simplest case of separa-
ble nonlinearities, that is, when the regression is of the form
y = Fφ(φ)Fθ(θ). The more general case is a challenging
open problem. Similarly, although the scheme of Proposition
7 preserves the estimator alertness, which is a necessary
condition to track time-varying parameters, a formal treatment
of this case is yet to be done.
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Fig. 5: Transients of the parameter estimates for ∆(t) = 1
t+1 .
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