
HAL Id: hal-02939867
https://univ-rennes.hal.science/hal-02939867

Preprint submitted on 15 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sex makes them sleepy: host reproductive status
induces diapause in a parasitoid population experiencing

harsh winters
Kévin Tougeron, Jacques Brodeur, Joan van Baaren, David Renault, Cécile

Le Lann

To cite this version:
Kévin Tougeron, Jacques Brodeur, Joan van Baaren, David Renault, Cécile Le Lann. Sex makes
them sleepy: host reproductive status induces diapause in a parasitoid population experiencing harsh
winters. 2020. �hal-02939867�

https://univ-rennes.hal.science/hal-02939867
https://hal.archives-ouvertes.fr


 

 

PEER COMMUNITY IN ECOLOGY | DOI: 10.1101/371385 1 

RESEARCH ARTICLE 
 

 
 
Cite as: Tougeron K., Brodeur J., van 
Baaren J., Renault D. & Le Lann C. Sex 
makes them sleepy: host 
reproductive status induces diapause 
in a parasitoid population 
experiencing harsh winters. bioRxiv 
371385, ver. 6 peer-reviewed and 
recommended by PCI Ecology (2019). 
DOI: 10.1101/371385 

 
 
Posted: 26th April 2019 
 
 
Recommenders: 
Adèle Mennerat 
Enric Frago 
 
 
Reviewers: 
Anne Duplouy and one anonymous 
reviewer 
 
Correspondence: 
tougeron.kevin@gmail.com 
 

 

Sex makes them sleepy: 
host reproductive status induces 
diapause in a parasitoid population 
experiencing harsh winters 
 
Tougeron K.1, 2, Brodeur J.2, van Baaren J.1, Renault D.1, 3 &  
Le Lann C.1  
 
1 Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, 
263 Avenue du Général Leclerc, F-35000 Rennes, France. 
2 Institut de Recherche en Biologie Végétale, Département de Sciences 
Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC, 
Canada, H1X 2B2. 
3 Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France 

 

 
 

 

This article has been peer-reviewed and recommended by: 
Peer Community in Ecology (DOI: 10.24072/pci.ecology.10022) 

ABSTRACT 
When organisms coevolve, any change in one species can induce phenotypic 
changes in traits and ecology of the other species. The role such interactions play 
in ecosystems is central, but their mechanistic bases remain underexplored. 
Upper trophic level species have to synchronize their life-cycle to both abiotic 
conditions and to lower trophic level species’ phenology and phenotypic 
variations. We tested the effect of host seasonal strategy on parasitoid diapause 
induction by using a holocyclic clone of the pea aphid Acyrthosiphon pisum 
producing asexual and sexual morphs that are viviparous females (i.e. laying 
embryos) and oviparous females (laying eggs), respectively, the latter being only 
present at the end of the growing season. Aphidius ervi parasitoids from 
populations of contrasted climatic origin (harsh vs. mild winter areas) were 
allowed to parasitize each morph in a split-brood design and developing 
parasitoids were next reared under either fall-like or summer-like temperature-
photoperiod conditions. We next examined aspects of the host physiological state 
by comparing the relative proportion of forty-seven metabolites and lipid reserves 
in both morphs produced under the same conditions. We found that oviparous 
morphs 
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Introduction 

Interacting individuals from two biological entities can adjust their phenotypes in 

response to cues from each other, even when these cues vary over time (Agrawal 

2001). Beneficial or antagonistic interactions, from mutualism to parasitism, 

predation and competition may lead to adaptive phenotypic responses. When 

interactions persist over generations, coevolution can occur and species adapt to the 

interacting species’ life history traits, phenology and ecology (Agrawal 2001, Ellers et 

al. 2012). Interaction norms (Thompson 1988) arise from ecological responses of 

interacting organisms in varying environments, as any phenotypic change occurring 

in one “partner” species can cascade to the other species’ phenotype (Fordyce 2006, 

Hughes 2012). Cues produced by one interacting species may indirectly inform the 

other species of environmental changes. For example, plant senescence in fall can 

inform herbivorous insects of upcoming detrimental winter conditions and induces 

phenotypic changes (e.g. diapause induction) or migration behaviour (Archetti et al. 

2009). 

Parasitoids are excellent models to study phenotypic expression in interacting 

species because they are strongly influenced during immature stages by changes in 

nutritional and physiological quality of their host (Godfray 1994). Diapause is an 

important ecological process in insects allowing them to survive recurrent 

unfavorable environmental conditions (Tauber et al. 1986). For parasitoids, diapause 

also contributes to maintaining synchronization with their host’s seasonal 

reproductive cycle; it is induced before suitable hosts vanish from the environment 

(Lalonde 2004). As in most insects, diapause in parasitoids is mainly induced by 

abiotic cues perceived either by the generation that will enter diapause, or by the 

maternal generation (Tauber et al. 1986). A few studies also reported that diapause 

in parasitoids can be triggered by the onset of host diapause (Polgár and Hardie 

morphs are cues per se for diapause induction; parasitoids entered diapause at 
higher levels when developing in oviparous hosts (19.4 ± 3.0%) than in viviparous 
ones (3.6 ± 1.3%), under summer-like conditions (i.e., when oviparous aphids 
appear in the fields). This pattern was only observed in parasitoids from the harsh 
winter area since low diapause levels were observed in the other population, 
suggesting local adaptations to overwintering cues. Metabolomics analyses show 
parasitoids’ response to be mainly influenced by the host’s physiology, with higher 
proportion of polyols and sugars, and more fat reserves being found in oviparous 
morphs. Host quality thus varies across the seasons and represents one of the 
multiple environmental parameters affecting parasitoid diapause. Our results 
underline strong coevolutionary processes between hosts and parasitoids in their 
area of origin, likely leading to phenological synchronization, and we point out the 
importance of such bottom-up effects for trait expression, and for the provision of 
ecosystem services such as biological control in the context of climate change.  
 
Keywords: Coevolution; Phenotypic plasticity; Phenology; Host-parasite synchronization; Environmental 
cue; Metabolomics 
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2000, Gerling et al. 2009), or through intraspecific competition for hosts (Tougeron et 

al. 2017a). However, whether the phenotype of a non-diapausing host can influence 

parasitoid diapause remains poorly studied.  

Aphids are hosts for Aphidiinae parasitoids and can have very complex cycles 

showing seasonal alternation between morphs with asexual and sexual reproduction 

(Dixon 1985). Asexual females reproduce parthenogenetically and lay live offspring 

(i.e. viviparity) whereas sexually reproducing females produce eggs (i.e. oviparity) 

after mating with males. Sexual aphid morphs are present at higher proportions in 

harsh than in mild winter climates (Dedryver et al. 2001), and they represent the last 

hosts available for aphid parasitoids before winter as they produce overwintering 

eggs in fall (Leather 1992). Consequently, sexual morphs have been suggested to 

promote diapause in parasitoids, indicating a host physiological effect (Polgár et al. 

1991, 1995, Christiansen-Weniger and Hardie 1997). No mechanistic understanding 

of this phenomenon has been proposed and the effects of the host morph have not 

been disentangled from confounding factors such as host genotype and geographic 

origin, host size, abiotic conditions, or the season at which hosts are sampled in the 

fields. Hosts and parasitoids have coevolved over long periods of time, they respond 

to similar seasonal cues and the physiological syndrome associated with 

overwintering is highly conserved among insects (Tauber et al. 1986, Denlinger 2002). 

As a result, the related physiological state of the host may represent a reliable signal 

of upcoming seasonal changes for parasitoids. 

Hormones, fats, carbohydrates and other types of metabolites are involved in the 

regulation of overwintering and diapause expression in insects (Chippendale 1977, 

Christiansen-Weniger and Hardie 1999, Denlinger 2002, Sinclair and Marshall 2018). 

In aphid parasitoids, metabolomic and proteomic profiles differ between diapausing 

and non-diapausing individuals, with higher amounts of sugars, polyols and heat 

shock proteins being found in diapausing parasitoids (Colinet et al. 2012). In aphids, 

morphs differ in morphology and physiology; oviparous females accumulate reserves 

to produce energetically costly diapausing eggs (Le Trionnaire et al. 2008) with 

cryoprotectant compounds such as mannitol and glycerol (Sömme 1969), whereas 

viviparous females metabolize energetic resources rapidly to produce embryos. 

Aphids’ triglyceride reserves change quantitatively and qualitatively across the 

seasons with alternating morphs (Greenway et al. 1974). Immature parasitoids are 

known to consume sugars and lipids from their hosts (Jervis et al. 2008) and are 

therefore influenced by host reserves for their growth and development.  

We questioned the extent to which oviparous and viviparous morphs of a single 

clone of the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae) 

influences winter diapause expression in the parasitoid Aphidius ervi Haliday 

(Hymenoptera: Braconidae) under summer and fall conditions. Under laboratory 

conditions and using a split-brood design, we compared the response to two aphid 

morphs of two populations of parasitoids from mild (France) and harsh (Canada) 
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winter areas that differed in their level of diapause expression (Tougeron et al. 2018). 

In Aphidius species, winter diapause is initiated at the prepupal stage within the 

aphid mummy (i.e. dead aphid containing a developing parasitoid) following stimuli 

perceived by the mother or early developmental stages (Brodeur and McNeil 1989, 

Tougeron et al. 2017b). We hypothesized that parasitoids of both populations 

developing in oviparous hosts enter diapause at higher proportions than those 

developing in viviparous hosts, independently of photoperiod and temperature. We 

predicted this pattern to originate from differences in aphids’ physiological contents. 

We thus performed physiological analyzes to measure lipid content and quantify 

aphid morphs metabolites. We also hypothesized parasitoids from the mild winter 

area to be less responsive to diapause-inducing cues from the host and the 

environment, because parasitoid populations should be adapted to climatic 

conditions and to the relative occurrence of sexual hosts in their respective areas of 

origin.  

Material and Methods 

Biological materials 

Two populations of the parasitoid A. ervi were collected in 2015 at the mummy 

stage in pea fields from two contrasted climatic origins: near Montréal, QC, Canada 

(45.584°N, 73.243°W; harsh winter area) and near Rennes, France (48.113°N, 

1.674°W; mild winter area). One population per geographic origin was used as high 

gene flow has been reported in A. ervi populations, which therefore present little 

genetic differentiation (Hufbauer et al. 2004). Even if gene flow was weak, we would 

expect higher differences between Canadian and French populations than among 

populations of a same location. Parasitoids were then reared under controlled 

conditions using a cyclically parthenogenetic clone (clone F2-X9-47) of the pea aphid 

A. pisum provided by INRA Le Rheu, France, and known to produce both oviparous 

and viviparous aphid morphs (Jaquiéry et al. 2014). The symbiotic load of the aphid 

clone we used was not assessed, but symbionts present in the grandparent 

generation from which our clone comes from had been identified. Half of the 

grandparent generation was associated with Serratia symbiotica, the other half had 

no secondary endosymbionts (J. Jaquiéry pers. comm.). It is thus likely that our clone 

was inhabited by S. symbiotica. All insects were maintained on fava beans Vicia faba 

(Fabaceae) at 20 °C, 70% relative humidity (RH) and 16:8 h Light:Dark (L:D) 

photoregime. 

Production of sexual and asexual hosts 
 

Three aphid morphs were used in the experiments; oviparous females (O), 

viviparous females (V) and a control treatment for viviparous females (C), as detailed 

below.  
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Three parthenogenetic A. pisum adult females from the aphid culture were put on 

bean plants (N=15) and allowed to lay larvae during four days at 20 °C, 70% RH, 16:8 

h L:D. Females were then removed and infested plants were put in a growing 

chamber at 17 °C, 70% RH, 12:12 h (L:D), and under 36W, IRC 85, 6500 K day-light 

type fluorescent tubes to induce the production of sexual aphids (Le Trionnaire et al. 

2009). At each generation, plants were renewed, and less than five aphids were 

maintained per plant to prevent formation of winged individuals due to 

overcrowding (Hardie 1980). As embryos directly detect photoperiodic cue through 

the cuticle of the grand-mother (Le Trionnaire et al. 2008), the first sexual aphids: 

males (~20%) and oviparous females (30 to 60%) were formed, along with asexual 

aphids (20 to 50%): sexuparous (a particular type of parthenogenetic females 

producing sexual morphs) and viviparous aphids (parthenogenetic females producing 

only parthenogenetic morphs), after three generations under these conditions. As 

sexuparous and viviparous aphids cannot be distinguished morphologically, they 

were indistinctly considered as the “viviparous female” treatment. However, a 

control group of viviparous parthenogenetic females (C) was produced by rearing 

aphids under non-sexual-inductive conditions (20 °C, 70% RH, 16:8 h L:D). This 

treatment controls for potential stress effects of the sexual-inductive conditions on 

the aphid, and allows to solely measure the response of viviparous aphids as 

sexuparous are not produced under this condition (Dixon 1985). Oviparous aphid 

morphs were differentiated from viviparous ones under a stereo microscope (x10) by 

observing the morphology of their legs: oviparous female aphids have rhinaria on the 

tibia, and have a femur of the same width as the tibia, and viviparous females have a 

wider tibia than the femur without rhinaria (Lamb and Pointing 1972, Hullé et al. 

2006). Aphid males were not included in our analyses since A. ervi does not parasitize 

them, probably because they are too small and have lower energetic reserves than 

female morphs (Tougeron et al., unpublished data). 

Diapause induction 

Aphid mummies from the colonies were isolated in a small gelatin capsule until 

parasitoid emergence. Newly emerged parasitoids were put in a 5 cm plastic tube for 

mating (5 females with 2 males) for 24 h, and were fed with a 70% diluted honey 

solution. Maternal genotype, egg-laying order in different aphid morphs, in addition 

to parasitoids’ age or host preference may affect diapause induction (Brodeur and 

McNeil 1989). To consider these potential effects, twelve A. ervi females were 

individually allowed to parasitize 16 adult aphids of the same age and size within the 

same cohort and of each of the three morph types (oviparous female, viviparous 

female, control viviparous females produced under non-sexual-inductive conditions, 

N=48 aphids offered for parasitism per female wasp) for 12 h over three consecutive 

days, by alternating the order of presentation of aphid morphs among females. 

Parasitoids rested at night, with an access to diluted honey. Aphids were introduced 

in a plastic tube (10 x 3 cm) and were given a few minutes to settle on a bean cut 

plant, after which a parasitoid was introduced into the tube. Four parasitoid females 
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were first individually put in presence of oviparous aphids, then moved to a second 

tube with control viviparous aphids and next moved to a third tube containing 

viviparous aphids (OCV). Four other females were first offered viviparous aphids 

(VOC), and the last four females were first offered control viviparous aphids (CVO) 

(Fig. 1).  

After each oviposition period, the 16 potentially parasitized aphids of each morph 

type were transferred by group of 8 on two bean plants. Plants were next enclosed 

into micro-perfored plastic bags and placed at either 20 °C, 16:8 h (L:D) (summer-like 

conditions not inducing diapause in A. ervi) or 17 °C, 10:14 h (L:D) (autumn-like 

conditions inducing diapause) (Tougeron et al. 2017b). When the plants began to 

wilt, aphids were transferred to another plant with a small paintbrush. 

Mummification was checked daily and newly-formed mummies were placed 

individually into gelatin capsules, and remained under their respective temperature 

and photoperiod treatments until adult emergence. Mummies from which no 

parasitoid had emerged 15 days after mummification were dissected, and the 

content was recorded as dead parasitoids or diapausing individuals (golden-yellow 

prepupae, Tougeron et al. 2017b). This experiment was repeated twice per parasitoid 

population; diapause levels were thus calculated among the offspring of 24 females 

for each treatment. Patterns were consistent in each of the repeated experiments. 

Our split-brood family design also allowed comparing reaction norms (RN) of 

diapause levels in the offspring of each parasitoid female from each population, both 

within morphs at different abiotic conditions, and within abiotic conditions among 

morphs. We have excluded “control” morphs from the RN analysis as their effect on 

diapause induction did not differ from viviparous morphs. 

The aphid morph (individual differences within a population due to 

developmental plasticity) and the aphid clone (differences in reproduction modes 

genetically determined between populations) may both influence parasitoid 

diapause. To consider this aspect, we compared the incidence of diapause when 

parasitoids developed in the cyclically parthenogenetic clone (holocyclic, i.e., 

alternating between sexual and sexual morphs) described above and in an obligate 

parthenogenetic clone, producing only viviparous females (anholocyclic clone F2-X9-

19; Jaquiéry et al. 2014). To achieve this goal, five A. ervi females were individually 

allowed to sequentially parasitize 35 viviparous aphids of each clone during 12 h. 

Parasitized hosts were next placed at 17 °C 10:14 h (L:D), and diapause induction was 

measured as described above. We excluded any clone effect because diapause 

incidence was similar for parasitoids developing in viviparous aphids of either the 

holocyclic (59.9 ± 10.1%, n=132 mummies) or the anholocyclic (66.0 ± 7.7%, n=112 

mummies) clone (GLM, p=0.97). The cyclically parthenogenetic clone was thus used 

for the experiments. 
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Figure 1: Experimental design for diapause induction in the parasitoid Aphidius ervi. Twelve parasitoid 

females were individually allowed to parasitize 16 Acyrthosiphon pisum from each of the three host 

morphs for 12 h: oviparous (O), viviparous (V) and viviparous control (C). First contact (parasitism 

sequence) with an aphid was alternated between the three morphs (OCV, VOC, CVO). Following 

parasitism, the aphid cohort was split in two and individuals were reared under a diapause-inductive 

condition (17 °C 10:14 h L:D) or a non-diapause-inductive condition (20 °C 16:8 h L:D). This protocol 

was repeated twice for parasitoid populations originating from mild or harsh winter. 

Metabolomic analyses and lipid reserves 

As sexual morphs could only be produced at 17°C, we compared non-parasitized 

apterous adult aphids of viviparous and oviparous females of the same age (between 

24 and 48 h after imago molt), produced under the same conditions used for the 

diapause experiment (at 17 °C, 12:12 h (L:D)). Samples were kept at -20 °C for 

metabolomic and lipid analyses. They were dried out for 2 days in a freeze-dryer and 

their dry mass measured using a Mettler-Toledo precision scale (accurate to 0.001 

mg). Viviparous aphids’ dry mass ranged from 0.280 mg to 0.742 mg, and oviparous 

aphids’ dry mass ranged from 0.358 mg to 0.739 mg. 

For metabolic analyses, 18 aphids of each morph (viviparous and oviparous 

females) were used. Nine replicates were analyzed for each morph condition, each 

consisting of a pool of two aphid females. The samples were put in 600 µL of 

chloroform-methanol (1:2) solution and homogenized using a tungsten-bead beating 

apparatus at 30 Hz for 1.5 min. Then, 400 µL of ultrapure water was added to each 

tube and samples were centrifuged at 4 °C, 4,000 g for 5 min. Finally, 90 µL of the 
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upper aqueous phase containing metabolites were transferred to chromatographic 

vials. Injection order of the samples was randomized prior mass spectrometry 

detection. Metabolomic fingerprinting process was performed following the protocol 

of Khodayari et al. (2013). Chromatograms were analyzed using XCalibur software 

(Thermo Fischer Scientific, Waltham, MA, USA). We accurately quantified 47 

metabolites: 14 amino acids, 11 sugars / sugar phosphates, 8 organic acids, 7 polyols, 

4 other metabolites and 3 amines (Table 1).  

Lipid contents were measured using 52 oviparous females and 23 viviparous 

females. Each dry aphid was left for two weeks in a microtube containing 1 mL of 

chloroform-methanol solution (2:1) to extract lipids (Terblanche et al. 2004). Aphids 

were then rinsed with the same solution, and placed back in the freeze-dryer for 24 h 

to eliminate the residues of the extracting solution and next weighted again to 

measure fat content (= fat mass (mg) / lean dry mass (mg), Colinet et al. 2007). 

Table 1: Metabolites detected in each of the two morphs (viviparous and 

oviparous females) of the pea aphid, Acyrthosiphon pisum. Each metabolite has 

been found in each morph. Abbreviations used on Figure 3 are in brackets. 

Amino acids Organic acids  

Alanine (Ala) Citric acid (Cit_Ac) 

Aspartic acid (Asp_Ac) Galacturonic acid (Gal_Ac) 

Citrulline (Citr) Glyceric acid (Glyc_Ac) 

Glutamic acid (Glu) Lactic acid (Lact_Ac) 

Glycine (Gly) Malic acid (Mal_Ac) 

Isoleucine (Ile) Phosphoric acid (Phos_Ac) 

Leucine (Leu) Pipecolic acid (Pipe_Ac) 

Lysine (Lys) Quinic acid (Quin_Ac) 

Ornithine (Orn) Sugars and sugar phosphates 

Proline (Pro) Arabinose 

Serine (Ser) Fructose 

Valine (Val) Fructose-6-phosphate (F6P) 

Threonine (Thr) Galactose 

Phenylalanine (Phe) Glucose 

Polyols Glucose-6-phosphate (G6P) 

Adonitol Maltose 

Arabitol Mannose  

Galacticol Ribose  

Glycerol Saccharose 

Inositol Trehalose 

Mannitol Other metabolites 

Xylitol Gluconolactone (GNL) 

Amines Gamma aminobutyric acid (GABA) 

Cadaverine (Cad) Glycerol-3-phosphate (Gly3P) 

Triethanolamine (TEA) Dopamine (Dop) 

Putrescine (Put)  

 

Statistical analyses 

Generalized linear mixed-effects models (GLMM) with binomial distributions were 

fit to the data using the lme4 package. The response variable was the proportion of 

diapausing parasitoids; the origin of the parasitoid population (Canada vs. France), 

the host morph (three modalities, O, V, C), the temperature/photoperiod conditions 

(17°C 10:14h vs 20°C 16:8h), and their interaction, were considered as fixed factors; 
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the identity of each parasitoid female and the egg-laying (parasitism) order were 

considered as random effect factors in the models. As diapause incidence differed 

between parasitoid populations (GLMM, χ²=216, df=1, p<0.001), data from both 

populations were analyzed separately using similar GLMMs. Significance of each term 

in the model was analyzed using the package car.  

For metabolite data, concentrations of the compounds were first log-transformed. 

Then, a Principal Component Analysis (PCA) was performed to detect which 

metabolites (expressed in nmol.mg-1) differed the most between host morphs. Log-

transformed metabolite concentrations were then summed up within each category 

(Table 1) and another PCA was performed using metabolite groups as discriminatory 

factors. An ANOVA with FDR-adjusted p-values was next performed to compare 

concentrations of each metabolite between morphs. Finally, an ANOVA tested 

differences in fat content between oviparous and viviparous morphs. All statistical 

analyses were carried out using the R software (R Core Team 2017). 

Results 

Diapause incidence in the parasitoid A. ervi 

In the Canadian (harsh winter area) population, diapause levels were affected by 

host morph (GLMM, χ²=12.6, df=2, p<0.001; Fig. 2) and abiotic conditions (GLMM, 

χ²=250.0, df=1, p<0.001), with an interaction effect as host morphs influenced 

parasitoid diapause incidence only at 20 °C 16:8 h (L:D) (GLMM, χ²=16.9, df=2, 

p<0.001). Diapause incidence was higher at 17 °C 10:14 h L:D than at 20 °C, 16:8 h 

L:D, for the Canadian population (76.9 ± 2.5% vs. 9.0 ± 1.5%, respectively). At 20 °C, 

16:8 h L:D, diapause incidence was higher when Canadian parasitoids developed in 

oviparous aphids (19.4 ± 3.0% s.e.) than in viviparous aphids (3.6 ± 1.3%, z=-4.3, 

p<0.001) or viviparous control aphids (3.8 ± 1.4%, z=-3.9, p<0.001). 

In the French (mild winter area) population, the host morph did not influence 

parasitoid diapause (GLMM, χ²=1.84, df=2, p=0.39), abiotic conditions did influence 

parasitoid diapause (GLMM, χ²=237.9, df=1, p<0.001), but no interaction effect can 

be interpreted since no diapause was expressed for the French population at 20 °C, 

16:8 h L:D. Diapause incidence was higher at 17 °C 10:14 h L:D than at 20 °C, 16:8 h 

L:D, for the French population (27.9 ± 2.1% vs. 0%, respectively). Random factors 

female identity and host exposition order had negligible effects on total variance 

explained in both our models for both populations (variance ≤0.02). 

Some female parasitoids produced offspring that had stronger responses to 

changes in host morph or abiotic conditions than offspring of other females (Fig. 3). 

Data for each female are made available as a supplementary material sheet. In some 

broods, there was no variation in diapause plasticity in response to different biotic 

(morphs) or abiotic (photoperiod and temperature) conditions (RN slope = 0). In the 

Canadian population at 17°C 10:14 h L:D, reaction norm slopes (i.e., diapause level 
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variations between conditions within a single brood) ranged from -71% to 48%, for 

the diapause response to either oviparous or viviparous morphs Fig. 3A). At 20°C 16:8 

h L:D, these RN slopes ranged from -50% to 12% (Fig. 3B). In the French population at 

17°C 10:14 h L:D, RN slopes ranged from -29% to 38% for the diapause response to 

either oviparous or viviparous morphs (Fig. 3C). 

In the Canadian population, for parasitoids developing in viviparous morphs, RN 

slopes ranged from -100% to -3% (Fig. 3D), and for parasitoids developing in 

oviparous morphs, RN slopes ranged from -100% to -12% (Fig. 3E), for the diapause 

response to abiotic conditions (17°C 10:14 h L:D vs. 20°C 16:8 h L:D). In the French 

population, for parasitoids developing in viviparous morphs, RN slopes ranged from -

80% to 0% (Fig. 3F), and for parasitoids developing in oviparous morphs, RN slopes 

ranged from -50% to 0% (Fig. 3G) for the diapause response to either abiotic 

conditions. 

 

 

 

Figure 2: Percent diapause incidence (± CI95%) in two Aphidius ervi populations. Left: Canadian 

population naturally experiencing harsh winter. Right: French population naturally experiencing mild 

winter. For both populations, three different morphs of the pea aphid Acyrthosiphon pisum (oviparous 

sexual females, viviparous parthenogenetic females produced under sexual-inductive conditions, and 

control viviparous females produced under non- sexual-inductive conditions) were used for parasitoid 

development, under two abiotic conditions (17 °C, 10:14 h L:D or 20°C, 16:8 h L:D). For each treatment, 

N represents the total number of parasitoid mummies used to calculate diapause incidence. 
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Figure 3: Reaction norms (RN) of diapause levels in the offspring of each parasitoid female from each parasitoid population (Canadian:  and French: ), 

both within morphs at different abiotic conditions (top panel, A & C: 17°C 10:14 h L:D, B: 20°C 16:8 h L:D)), and within abiotic conditions between morphs 

(bottom panel, D & F: oviparous morphs, E & G: viviparous morphs). RN for the French population at 20°C 16:8 h L:D are not displayed as no diapause was 

observed under these conditions. N=24 parasitoid female per condition. Note that some lines may be overlapping.  
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Metabolomic analyses and lipid reserves of aphid host morphs 

All measured compounds were found in both aphid morphs. The first and second 

principal component (PC1 and PC2, respectively) of the PCA, accounted for 37.1% 

and 26% of the total inertia, respectively (Fig. 3). Oviparous and viviparous female 

hosts were separated on PC1, with oviparous females exhibiting significantly higher 

concentrations of trehalose, ribose, arabitol, gamma aminobutyric acid and mannose 

than viviparous ones (ANOVA, df=1, p<0.05) (Fig. S1). Conversely, viviparous hosts 

had significantly higher concentrations of alanine, gluconolactone, dopamine, 

putrescine, phenylalanine, glycerol, proline and quinic acid than oviparous aphids 

(ANOVA, df=1, p<0.05) (details of metabolite amounts measured from each morph 

are provided in Fig. S1). The second component of the PCA depicted the inter-

individual variation of metabolites within each of the two morphs (Fig. 4).  

The analysis by metabolic family revealed that sugars / sugar phosphates (at the 

exception of glucose) and polyols were measured in higher amounts in oviparous 

morphs, while amino acids, amines and other metabolites were generally found in 

higher concentrations in viviparous hosts (Fig. S2). Altogether, metabolic differences 

among oviparous and viviparous females revealed that activities of the pathways 

involved in aminoacyl-tRNA biosynthesis and glutathione metabolism were higher in 

viviparous females. 

Oviparous hosts had a higher fat content ratio (mg fat/mg dry mass) than 

viviparous ones (0.63 ±0.02 and 0.51 ±0.03, n= 52 and n= 23, respectively) (ANOVA, 

LR=8.0, df=1, p<0.005). The fat mass represented 37.8 ±0.8% and 33.3 ±1.3% of the 

dry mass of oviparous and viviparous morphs, respectively. 
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Figure 4: Multivariate analysis (PCA) on the first two principal components (PC) representing links between 

metabolic compounds (47 log-transformed variables, nmol.mg
-1

) and two aphid morphs (oviparous vs. 

viviparous females) of Acyrthosiphon pisum. Enclosed figure in the upper panel shows a PCA of the six 

metabolite categories. Confidence ellipses (95%) are constructed around each aphid group centroid (n=9 

replicates by morph). Contributions of metabolite variables to PC1 and PC2 are provided in supplementary 

figure S3. Abbreviations are Alanine (Ala), Aspartic acid (Asp_Ac), Cadaverine (Cad), Citric acid (Cit_Ac), 

Citrulline (Citr), Dopamine (Dop), Fructose-6-phosphate (F6P), Galacturonic acid (Gal_Ac), Gamma 

aminobutyric acid (GABA), Gluconolactone (GNL), Glucose-6-phosphate (G6P), Glutamic acid (Glu), Glyceric 

acid (Glyc_Ac), Glycerol-3-phosphate (Gly3P), Glycine (Gly), Isoleucine (Ile), Lactic acid (Lact_Ac), Leucine 

(Leu), Lysine (Lys), Malic acid (Mal_Ac), Ornithine (Orn), Phenylalanine (Phe), Phosphoric acid (Phos_Ac), 

Pipecolic acid (Pipe_Ac), Proline (Pro), Putrescine (Put), Quinic acid (Quin_Ac), Serine (Ser), Threonine (Thr), 

Triethanolamine (TEA), Valine (Val). 
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Discussion 

Species interactions greatly contribute in shaping arthropods’ seasonal ecological 

strategies, because species needs to synchronize or unsynchronize their life cycle 

with interacting partners or antagonists. However, biotic-induced diapause signals 

are poorly studied. A few cases of predator-induced diapause have been documented 

in arthropods (Ślusarczyk 1995, Kroon et al. 2008), such as in Daphnia magna 

(Diplostraca: Daphniidae) in which the production of diapausing eggs is stimulated by 

predator exudates and chemicals originating from injured conspecifics (Ślusarczyk 

1999). Reversely, low prey density was reported to influence summer diapause of the 

lady beetle Hippodamia undecimnotata (Coleoptera: Coccinellidae) (Iperti and Hodek 

1974). Also, in herbivorous insects that require strong synchrony with their host plant 

phenology, resuming activities after winter diapause is also influenced by the 

physiological status of the plant (Leather et al. 1993). Similarly, the host plays a major 

role in parasitoid seasonal ecology. In addition to abiotic factors, such as photoperiod 

and temperature, the host genotype, species, size, life-stage and abundance can 

modulate parasitoid diapause (Tauber et al. 1986, Danks 1987).  

We report that parasitoids can use host oviparous morph as a cue for diapause 

induction, with higher diapause incidence (up to 20%) expressed in A. ervi developing 

in oviparous A. pisum females compared to viviparous conspecifics. This pattern is 

likely due to differences in host physiology and metabolic contents. However, we 

have observed relatively high intrapopulation variability within each female’s 

offspring in response to the host morph, and to a lower extent in response to abiotic 

conditions, through the study of reaction norms. Polymorphism in the response to 

diapause-inducing cues (i.e., in plasticity) is known to be responsible for variability in 

diapause levels within populations experiencing different environmental conditions, 

but is still to be more deeply explored. As expected, parasitoids from the harsh 

winter environment expressed higher diapause levels than parasitoids from the mild 

winter environment. Of significance, only parasitoids from the harsh winter area and 

exposed to summer-like conditions relied on host morph as a cue for diapause 

induction.  

Parasitoid populations of A. ervi from contrasted climatic environments (Canada 

and France) do not respond the same way to abiotic (photoperiod and temperature) 

and host cues. The French population of Aphidius spp. evolved under warming 

temperature conditions over the past decades, and this has allowed individuals of 

this species to remain active under mild winter conditions prevailing in this area, with 

none or small proportions of individuals entering diapause (Tougeron et al. 2017b). In 

mild winter areas, non-diapausing parasitoids maintain their populations by 

exploiting asexual anholocyclic aphid hosts during winter periods (Langer and Hance 

2000, Andrade et al. 2015, 2016) as sexual morphs are rare in these areas (Dedryver 

et al. 2001). Diapause expression can be genetically lost or reduced in insects when 

they do not experience the necessary environmental factors for its induction (e.g., 
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Bradshaw and Holzapfel 2001, Gariepy et al. 2015). Consequently, parasitoid 

populations from mild winter areas may not have evolved a response to sexual hosts, 

or they may have lost this capacity under changing environments. 

The opposite pattern is observed in Canadian populations, where all aphid 

parasitoids enter diapause during winter (Brodeur and McNeil 1994). In these cold 

temperate regions, sexual morphs of aphids are produced at the end of the growing 

season, and represent the last hosts available for parasitoids before the onset of 

unfavorable winter conditions. In addition, parasitism of aphid sexual morphs on 

primary host plants allows parasitoids to overwinter nearby their hosts, thereby 

favoring host availability in spring for newly emerged parasitoids, and improving 

reproductive-cycles synchronization (Höller 1990, Christiansen-Weniger and Hardie 

1997). In regions with harsh winter climates, parasitoids have coevolved with the 

seasonal occurrence of host morphs and may use oviparous morphs as a convergent 

signal with temperature and photoperiod decrease in fall to enter diapause. 

Canadian Aphidiinae parasitoids begin to overwinter as early as mid-July, with all 

individuals being in diapause by early September (Brodeur and McNeil 1994, 

Tougeron et al. 2018). This seasonal pattern might be an adaptation to avoid early 

lethal frosts. Moreover, we showed that oviparous hosts only influenced diapause 

under summer-like conditions, suggesting that encountering this morph informs the 

parasitoids for upcoming deleterious conditions and modulates diapause expression. 

In natural settings, alternative host species can be present, and both anholocyclic and 

holocyclic aphid populations can coexist (Dedryver et al. 2001), which may send 

confounding signals to parasitoids, and may explain why only a fraction of the 

population responded to oviparous morphs. In Canada, oviparous morphs of the pea 

aphid are present in the environment as soon as August (Lamb and Pointing 1972). In 

fall-like conditions, the morph effect was overridden by the 

temperature/photoperiod effect, which remains the main signal for diapause 

induction. Alternative diapause-inducing cues such as those associated with the host 

are usually viewed as factors modulating diapause expression, which is mainly 

triggered by temperature and photoperiod (Tauber et al. 1986). For example, in the 

polyphagous herbivore Choristoneura rosaceana (Lepidoptera: Tortricidae), diapause 

is dependent upon  photoperiod and temperature, but under similar abiotic 

conditions, the proportion of larvae entering diapause differs depending on the host-

plant species (Hunter and McNeil 1997). Moreover, the effect of the host-plant was 

observed even under photoperiod and temperature conditions known to induce low 

levels of diapause (Hunter and McNeil 1997). The relative importance of each 

environmental cue for diapause induction in insects remains to be evaluated for a 

significant number of species. 

The response of parasitoids to host morph could be partly shaped by maternal 

effects, as females have the capacity to assess host quality through a combination of 

physiological, morphological, behavioural and chemical cues (van Baaren and Nénon 

1996, Boivin et al. 2012). Developing immature parasitoids may also directly respond 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/371385doi: bioRxiv preprint first posted online Jul. 18, 2018; 

http://dx.doi.org/10.1101/371385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

PEER COMMUNITY IN ECOLOGY | DOI: 10.1101/371385 16 

to the quality and quantity of metabolites available from hosts, which could trigger 

the onset of diapause. The overwintering metabolic and physiological syndrome is 

highly conserved among insects (Tauber et al. 1986), and both hosts and parasitoids 

may respond to the same molecules involved in diapause initiation. As an example 

concurring to this hypothesis, diapausing prepupae of the aphid parasitoid Praon 

volucre (Hymenoptera: Braconidae) showed similar proportions of some sugars (e.g. 

trehalose, fructose) and polyols (e.g. arabitol) (Colinet et al. 2012) than non-

parasitized oviparous morphs of the pea aphid tested in our study. Our results 

suggest that high concentrations of some polyols and sugar metabolites in the 

oviparous morphs, as well as accumulation of fat reserves associated with the 

overwintering process, may either directly contribute to induce diapause in 

parasitoids developing in such hosts or may trigger the internal physiological cascade 

responsible for parasitoid diapause.  

In the present work, oviparous A. pisum females have higher fat reserves than 

their viviparous counterparts. This finding is consistent with the metabolic 

phenotypes of the hosts, which revealed higher levels of sugar and sugar phosphate 

metabolites from the glycolytic pathway in oviparous females, this pathway providing 

elementary bricks for fatty acid and triacylglyceride (TAG) synthesis. Fatty acids serve 

as a main source of energy for physiological or ecological processes, including flight, 

gametes production, egg maturation and hormones synthesis (Arrese and Soulages 

2010), and have been shown to represent up to 30% of aphids’ fresh mass (Dillwith et 

al. 1993, Sayah 2008). Interestingly, lipids can provide energy for overwintering 

insects and sugars can be metabolized to produce sugar-based cryoprotectant 

molecules (Storey and Storey 1991, Hahn and Denlinger 2011, Sinclair and Marshall 

2018). In oviparous females, the need for TAG may be higher than in viviparous ones, 

as eggs with yolk (vitellus) are mostly composed of fat and proteins (Brough and 

Dixon 1990). Also, reserves from the fat-body, including TAG and glycogen, play 

major roles in overwintering insects, including diapause (reviewed in Sinclair and 

Marshall 2018) and could explain why oviparous aphids have high fat content to 

prepare their eggs for successful overwintering. Diapause entails important energetic 

costs for insects (Ellers and Van Alphen 2002, Hahn and Denlinger 2011) and they 

may enter diapause only when a critical body-mass or amount of energetic reserves 

has been reached (Colinet et al. 2010); for parasitoids, developing in an oviparous 

host could contribute to reach this level. 

Metabolites acting as compatible solutes greatly contribute to insect cold 

hardiness and overwintering survival (Storey and Storey 1991, Bale 2002, Hodkova 

and Hodek 2004). Metabolic analyses identified sugars and polyols in higher amounts 

in oviparous females containing eggs intended to overwinter. Overwintering eggs of 

the aphid Hyalopterus pruni (Homoptera: Aphididae) are characterized by high values 

of mannitol and trehalose (Sömme 1969), as also observed in our A. pisum oviparous 

morphs. Glucose-6-phosphate and fructose were found at high concentrations in 

oviparous morphs of A. pisum and are precursors of sorbitol (Storey and Storey 
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1991), a cryoprotective compound also observed in diapausing individuals of P. 

volucre parasitoids (Colinet et al. 2012). Fructose-6-phosphate is a precursor of 

mannitol, and both are cryoprotectant molecules (Storey and Storey 1991) highly 

concentrated in oviparous female hosts, and found in most of overwintering insects 

(Leather et al. 1993). These metabolites may be responsible for diapause induction in 

parasitoids developing in oviparous morphs. Gamma aminobutyric acid was more 

concentrated in oviparous females and could also serve as an indirect seasonal cue 

for parasitoids because this neurotransmitter is known to be involved in insect 

perception of photoperiodic changes (Vieira et al. 2005).  

Surprisingly, in viviparous females, we found high concentrations of glycerol, a 

cryoprotective compound usually associated with the diapause syndrome (Hayward 

et al. 2005). As suggested by the high concentrations of glucose observed in these 

females, glycogen production through gluconeogenesis pathway could be used as 

main source of energy by these viviparous morphs (Dixon 1985). In addition, 

observed physiological differences between host morphs are not necessarily linked 

to overwintering strategies. For example, viviparous aphids have high concentrations 

of proline, which is used as fuel for insect flight (Teulier et al. 2016). Viviparous 

aphids can rapidly produce winged individuals for dispersal in case of overcrowding 

or degradation of host plant quality (Hardie 1980). 

To conclude, intra- and interspecific interactions are of primary importance for 

ecosystem functions, such as biological control, but still require deeper investigations 

in the context of diapause and seasonal strategies. Overwintering strategies are 

rapidly shifting in the context of climate change (Bradshaw and Holzapfel 2001, Bale 

and Hayward 2010) and may cause temporal mismatches between trophically 

interacting species (Tylianakis et al. 2008, Walther 2010). Thus, potential bottom-up 

effects on diapause, such as reported in our study, should be given more attention 

and should be considered as a potential factor explaining the low levels of diapause 

expression in insects from mild winter areas, together with global warming (Jeffs and 

Lewis 2013, Andrade et al. 2016, Tougeron et al. 2017b). In addition, there was 

variation for plasticity in diapause induction among female genotypes, mostly in 

response to the parasitized morph but also to abiotic conditions, as determined by 

slopes of the reaction norms. This means that there is genetic polymorphism in 

diapause plasticity within populations, which may allow natural selection to act in the 

context of rapid environmental and climate changes (Sgrò et al. 2016). Moreover, our 

results are of significance for the manipulation of insect diapause; e.g., in the context 

of mass rearing for the food industry, or for the biological control industry. More 

generally, a better appreciation of the processes governing phenology is needed to 

predict the consequences of such phenology changes on species interactions and 

synchrony across multiple trophic levels, community functioning and ecosystem 

services. 
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