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Abstract. Mapping plant communities, which is essential to assess the conservation status of natural habitats, is currently 
based mainly on time-consuming field surveys without the use of satellite data. However, free image time-series with high 
spatial and temporal resolution have been available since 2015. This study assessed the contribution of Sentinel-2 time-
series images to mapping the spatial distribution of 18 plant communities within a Natura 2000 site (1978 ha) located 
on the Mediterranean biogeographical region (Corsica, France). The method was based on random forest modeling of 
six Sentinel-2 images acquired from 26 February to 24 October 2017, which were calibrated and validated using a field 
vegetation map. The results showed that the 18 plant communities were modeled correctly, with 72% overall accuracy. The 
uncertainty map associated with the model indicated areas that required additional field observations.
Keywords: Coastal lagoon; Corsica; multispectral images; Sentinel-2. 

Cartografía de las comunidades vegetales mediante imágenes gratuitas de series cronológicas de 
satélites en el estanque de Biguglia (Natura 2000, Córcega, Francia)

Resumen. La cartografía de las comunidades vegetales es esencial para evaluar el estado de conservación de los hábitats 
naturales. Actualmente, el mapeo de la comunidad de plantas se basa principalmente en estudios de campo que requieren 
mucho tiempo, sin tener en cuenta los datos satelitales. Sin embargo, desde 2015 se dispone de series temporales gratuitas 
de imágenes Sentinel-2 con una alta resolución espacial y temporal. El objetivo de este estudio era evaluar la contribución 
de las imágenes de las series temporales del Sentinel-2 a la modelización de la distribución espacial de 18 comunidades 
vegetales en un espacio Natura 2000 de 1978 hectáreas situado en la costa mediterránea (Córcega, Francia). El método se 
basó en un modelado forestal aleatorio de 6 imágenes Sentinel-2 adquiridas entre el 26 de febrero y el 24 de octubre de 2017, 
que fueron calibradas y validadas utilizando un mapa de vegetación. Los resultados mostraron que las 18 comunidades 
vegetales se modelaron correctamente con una precisión global del 72%. El mapa de incertidumbre asociado con el modelo 
indicaba las áreas que requerían observaciones de campo adicionales.
Palabras clave: Laguna costera; Córcega; imágenes multiespectrales; Sentinel-2.
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Introduction

Mapping plant communities is a major challenge when 
monitoring biodiversity, especially in the framework of 
the European Union (EU) Habitats Directive (Attorre 
et al., 2018). Since plant communities indicate the 
conservation status of natural habitats (Rodwell et 
al., 2018), mapping and monitoring them is essential 
to assess impacts of management practices on plant 
biodiversity (Silva et al., 2019). Maps of plant 
communities are usually produced from time-consuming 
field observations supplemented by visual analysis of 
aerial photographs (Díez-Garretas et al., 2019). These 
maps are flawed, however, because they (i) do not cover 
all landscapes but rather tend to focus on heritage sites 
(Campagnaro et al., 2019), (ii) are outdated because 
they are not updated frequently (EEA, 2015), and (iii) 

include delimitation or characterization bias related to 
the map producer’s interpretations (Ullerud et al., 2018).

Recent remote sensing data with very high spectral, 
spatial, or temporal resolution offer a promising alter-
native for mapping plant communities. Hyperspectral 
and superspectral (i.e. more than 10 bands) data have 
been commonly used to accurately map plant communi-
ties (Wang & Gamon, 2019). For example, 19 grassland 
plant communities in eastern Europe were spatially dis-
criminated with 81% accuracy using an airborne image 
acquired in the visible and near-infrared region, with 
128 spectral bands at 5 m spatial resolution (Burai et al., 
2015). Fifteen salt grassland plant communities on the 
Atlantic coast were modeled with 95% accuracy from a 
WorldView-3 satellite data, with 16 spectral bands and 
a spatial resolution of 0.3 m (Collin et al., 2018). Un-
manned aerial vehicles have also been used to acquire 
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multispectral or hyperspectral data that successfully 
discriminated plant communities (Aasen et al., 2018). 
For example, nine plant communities from grasslands 
and moors in Portugal were mapped with 89% accuracy 
from RGB drone data at a resolution of 0.1 m (Gonçalves 
et al., 2016). In addition, several studies have shown 
that annual satellite time-series can be used to model 
plant communities accurately. For example, seven wet 
grassland plant communities in Germany were modeled 
with 85% accuracy using an annual time-series of either 
13 TerraSAR-X SAR satellite data at a spatial resolu-
tion of three m or 6 RapidEye optical satellite data at a 
spatial resolution of 6 m (Schuster et al., 2015). How-
ever, the use of these remote sensing data by botanists 
raises two related issues: (i) the high cost of acquiring 
the data, especially using airborne platforms (Turner et 
al., 2015) and (ii) the high degree of expertise required 
to analyze the data –especially hyperspectral, SAR, and 
drone data– and to pre-process them before integrating 
them in a GIS (Borre et al., 2011).

Among the remote sensing data available, Sentinel-2 
satellite time-series are free of charge (e.g. from the Co-
pernicus platform of the European Space Agency) and in 

a ready-to-use GIS format (i.e. geometrically and atmos-
pherically corrected) (Hagolle et al., 2015). Sentinel-2 
sensors provide 13 spectral bands in the visible, near-, 
and mid-infrared spectra, with a spatial resolution of up 
to 10 m. Although these characteristics are useful for 
monitoring the phenology of natural vegetation (Vrieling 
et al., 2018) or characterizing vegetation functional traits 
(Schauman et al., 2018), the contribution of Sentinel-2 
data to mapping plant communities remains poorly ex-
plored. However, a recent study revealed that seven wet 
grassland plant communities derived from unsupervised 
classification of vegetation plots were modeled with 78% 
accuracy using an annual Sentinel-2 time-series (Rapinel 
et al., 2019). These initial results must be confirmed with 
further studies in other regions with other types of plant 
communities defined within the Prodromus framework 
(Reymann et al., 2017).

The objective of this study was to evaluate the con-
tribution of Sentinel-2 time-series images to mapping 
grassland, shrubland, tree communities and related di-
rective habitats, in a Natura 2000 site in the Mediterra-
nean biogeographical region.

Table 1. � The main plant communities identified at the study site and their corresponding habitat codes (Annex 1 of the European 
Union Habitats Directive). The asterisk denotes a priority habitat. Plant communities are sorted by ecological unit.

Ecological 
unit

Syntaxa Habitat code

Coastal lagoons 1.	� Ruppietum cirrhosae Hocquette 1927 corr. Iversen 1934 1150*

Salt marshes
2.	� Suaedo maritimae-Salicornietum patulae Brullo & Furnari 1976 Géhu & Géhu-Franck 1984 1310
3.	� Arthrocnemo glauci-Salicornietum emerici O. Bolos 1962 Géhu & Géhu-Franck 1978 1310
4.	� Juncetum acuti Molinier & Tallon 1969 1410

Semi-natural 
grasslands

5.	� Trifolio fragiferi-Cynodontion dactylonis Braun-Blanq. & O. Bolos 1958 6420
6.	� Lino biennis-Festucetum arundinaceae Dubuis & Simmoneau ex B. Foucault 2012 6420
7.	� Echio lycopsis-Galactitetum tomentosae Molinier 1937 -

Reeds

8.	� Scirpetum compacto-littoralis Braun-Blanq. (1931) 1952 Rivas Mart. et al. 1980 -
9.	� Inulo crithmoidis-Phragmitetum australis Gamisans 1992 -
10.	� Kosteletzkyo pentacarpos-Phragmitetum australis Gamisans 1992 -
11.	� Phragmitetum australis Schmale 1939 -
12.	� Phragmitetum australis Schmale 1939 calystegietosum sepii Gamisans 1992 -

Scrubs

13.	� Cisto salviifolii-Halimietum halimifolii Géhu & Biondi 1994 2260
14.	� Pulicario odoratae-Arbutetum unedonis Allier & Lacoste 1980 Reymann et al. 2016 quercetosum 

suberis Gamisans 1991 Aurière & Lejour 2016
-

15.	� Pruno spinosae-Rubion ulmifolii O. Bolos 1954 -

Forests
16.	� Inulo crithmoidis-Tamaricetum africanae Gamisans 1992 92D0
17.	� Althaeo officinalis-Tamaricetum africanae Gamisans 1992 92D0
18.	� Angelico sylvestris-Alnetum glutinosae Gamisans 2013 -

Materials and Methods

Study site

The Biguglia pond is a site of Community Importance 
(FR9410101 SCI) and covers 1978 ha along the eastern 
coast of Corsica, France (Figure 1). The topography is flat 
with elevation ranging between 0 and 3 meters above sea 
level. The site has a Mediterranean climate (mean annual 
precipitation 835 mm, mean annual temperature 16°C), 

with summer droughts from June to September (Delbosc, 
2015). The site consists of a coastal lagoon enclosed by 
salt marshes, sand dunes, grasslands, thickets, and wooded 
groves. It is designated a Natura 2000 site because it 
contains several habitats of EU community importance, 
such as 1150 “Coastal lagoons”, 1310 “Salicornia 
and other annuals colonizing mud and sand”, 1410 
“Mediterranean salt meadows (Juncetalia maritimi)”, 
2260 “Cisto-Lavanduletalia dune sclerophyllous scrubs”, 
6420 “Mediterranean tall humid grasslands of the Molinio-
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Holoschoenion”, and 92D0 “Southern riparian galleries 
and thickets (Nerio-Tamaricetea and Securinegion 
tinctoriae)”. A management plan has been developed to 
conciliate conservation, agricultural practices (grazing, 
mowing), and recreation (educational activities). A field 
vegetation map was produced at 1:2500 scale (Figure 1) 
for reporting purposes for the Habitats Directive (Delbosc 
et al., 2020). To this end, 118 vegetation plots were 
sampled from May to June 2014 according to the Braun-
Blanquet method (Delbosc, 2015). Species taxonomy and 
nomenclature followed the “Flora Corsica” (Jeanmonod 
& Gamisans, 2013). Each vegetation plot was assigned 
to a plant community, following the Corsican Vegetation 
Prodromus (Reymann et al., 2017). The extent of each 
plant community was mapped by interpreting aerial 
photographs acquired in 2013. Table 1 lists the plant 
communities identified and represented in the vegetation 
map with a spatial extent sufficiently large to be detected 
in satellite data with a spatial resolution of 10 m, along 
with their corresponding habitat code (Annex 1, Habitats 
Directive).

Spectral analyses

Sentinel-2 satellite data were selected from the Theia 
catalogue (theia.land.fr) among cloudless images from 
2017 (Figure 1). Images were already orthorectified and 
atmospherically corrected using the MACCS-ATCOR 
Joint Algorithm (MAJA) (Hagolle et al., 2015). Six 
images acquired from 26 February to 24 October 2017 
were retained (Figure 2). For each image we used the 
4 bands at 10 m spatial resolution acquired in the blue 
(b2: 497 nm), green (b3: 560 nm), red (b4: 664 nm), 
and near-infrared (b8: 835 nm) spectra, as well as the 6 
bands at 20 m spatial resolution acquired in the red-edge 
(b5: 704 nm, b6: 740 nm, b7: 782 nm), near-infrared 
(b8a: 865 nm), and short-wave infrared (b11: 1614 nm, 
b12: 2202 nm) spectra. The three atmospheric bands 
(b1, b9 and b10) were discarded. The six spectral bands 
at 20 m spatial resolution were resampled to 10 m. As a 
result, the satellite data used as input for modeling plant 
communities included 60 variables (10 spectral bands × 
six dates) at 10 m spatial resolution.

Figure 1.  Study site location (left panel), visualization of field-based vegetation map (middle panel), 
and color composite of Sentinel-2 time-series (© ESA): blue = band 8, 26 February 2017, green = band 8, 

17 May 2017 and red = band 8, 24 October 2017 (right panel).
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The pairwise spectral distance between plant 
communities was calculated using the Jeffries-Matusita 
(JM) distance. The JM distance is commonly used in 
remote sensing science to measure the average distance 
between two classes (Richards, 2013), where the lowest 
value (0) indicates identical classes that are impossible to 
separate and the highest value (1.41) reflects two classes 
that are perfectly separable. A dimension reduction 
was performed using a principal component analysis to 
reduce the collinearity between the 60 spectral variables 
(10 bands × 6 dates). The first five components of the 
PCA (90.2% of the variance) were used to calculate the 
JM distance.

Plant communities were mapped using random 
forest (RF) modeling (Breiman, 2001). The RF model 
is widely used in remote sensing science because of its 
ability to manage a large number of variables, its low 
sensitivity to mislabeling errors, and its ability to map 
model uncertainty (Belgiu & Drăguţ, 2016). Reference 
plots were selected from the vector field vegetation map 
at 1:2500 scale to calibrate and validate the RF model. 
To this end, an expert botanist manually identified the 
Sentinel-2 pixels in GIS by overlapping a multi-temporal 
near-infrared Sentinel-2 color composite (26 February, 
17 May, and 24 October) and Google Earth images 
with the contours of the vegetation map. The botanist 
selected or excluded pixels from the sample based on 

uncertainties in (i) the spatial extent of polygons in the 
vegetation map, (ii) changes in the vegetation between 
the date of the field map and the year of Sentinel-2 
image acquisition, and (iii) the spatial intermingling of 
plant communities not specified within a polygon in the 
vegetation map.

To increase the independence of the observations, 
sub-sampling was performed at a minimum distance 
of 20 m between two reference plots of the same 
plant community. A total of 1224 reference plots were 
collected for the 18 plant communities. The model was 
calibrated and validated using a 10-repeated 5-fold 
approach (Kuhn & Johnson, 2013). To assess model 
accuracy, we calculated the overall accuracy index, the 
Kappa index, and the F1 score per plant community 
(Congalton & Green, 2008). The F1 score is an accuracy 
metric specific to each class (i.e. plant community) that 
reflects a weighted average between precision (user’s 
accuracy) and recall (producer’s accuracy) calculated as 
follows:

Analyses were performed using R software (R Core 
Team, 2015) with the raster (Hijmans, 2015), rgdal 
(Bivand et al., 2015), and caret (Kuhn, 2008) packages.

Figure 2.  Acquisition dates of the six satellite Sentinel-2 images used in the study.

Results 

The pairwise spectral separability between plant 
communities based on the JM distance is shown in Table 
2. Overall, plant communities are spectrally well separated 
(median JM distance value = 1.37). Consistently, the 
spectral separability decreases with the increase of 
the similarity in floristic composition. For example, 
the spectral response of salt marshes plant community 
2 (Suaedo maritimae-Salicornietum patulae) is very 

distinct (JM distance = 1.41) from that of grasslands plant 
community 5 (Trifolio fragiferi-Cynodontion dactylonis) 
but closer (JD distance = 0.90) to that of salt marshes 
plant community 3 (Arthrocnemo glauci-Salicornietum 
emerici). Nevertheless, this relationship between spectral 
separability and floristic composition is not systematically 
confirmed: for example, spectral separability between salt 
marshes and reed beds plant communities is moderate 
(JM distances 0.89−1.25), possibly due to the frequent 
occurrence of open water.
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Table 2. � Pairwise spectral separability of the 18 plant communities based on JM distance. ID refers to the plant community code 
number (Table 1). The triangles outlined in black identify the main ecological units. Higher JM distance values are indicated 
in gray (≥1.2) and dark gray (≥1.3).

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41
2 0.90 0.92 1.41 1.41 1.41 1.07 1.22 1.20 1.09 1.25 1.36 1.35 1.32 1.26 1.23 1.40
3 0.85 1.41 1.41 1.41 0.92 1.12 1.09 0.89 1.22 1.38 1.33 1.29 1.12 1.11 1.40
4 1.40 1.41 1.41 1.14 1.25 1.23 1.09 1.22 1.34 1.23 1.20 1.17 1.09 1.37
5 1.39 1.34 1.39 1.41 1.41 1.40 1.32 1.41 1.34 1.24 1.38 1.41 1.41
6 1.00 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41
7 1.41 1.41 1.41 1.41 1.41 1.38 1.40 1.41 1.41 1.41 1.41
8 1.20 1.09 0.65 1.02 1.38 1.33 1.31 1.15 1.19 1.40
9 1.11 1.22 1.37 1.38 1.40 1.38 1.39 1.36 1.41

10 1.08 1.29 1.40 1.39 1.36 1.37 1.36 1.40
11 1.05 1.38 1.34 1.33 1.12 1.18 1.40
12 1.41 1.18 1.07 1.17 1.23 1.33
13 1.40 1.40 1.40 1.40 1.41
14 1.00 1.17 1.23 1.19
15 1.20 1.25 1.21
16 0.84 1.38
17 1.34
18

According to the confusion matrix between the 18 
plant communities modeled from the Sentinel-2 time 
series and the reference plots (Table 3), modeling 
accuracy was satisfactory (overall accuracy 72%, 
Kappa index 0.70), but differed significantly among 
classes:

−	� Plant communities 1. Ruppietum cirrhosae, 5. 
Trifolio fragiferi-Cynodontion dactylonis, 6. 
Lino biennis-Festucetum arundinaceae, 13. 
Cisto salviifolii-Halimietum halimifolii, and 18. 
Angelico sylvestris-Alnetum glutinosae were 
modeled with high accuracy (F1 scores: 81–99).

−	� Plant communities 2. Suaedo maritimae-
Salicornietum patulae, 4. Juncetum acuti, 10. 
Kosteletzkyo pentacarpos-Phragmitetum australis, 
12. Phragmitetum australis calystegietosum sepii, 
14. Pulicario odoratae-Arbutetum unedonis 

quercetosum suberis, and 17. Althaeo officinalis-
Tamaricetum africanae were modeled with good 
accuracy (F1 scores: 70–77).

−	� Plant communities 3. Arthrocnemo glauci-
Salicornietum emerici, 7. Echio lycopsis-
Galactitetum tomentosae, 8. Scirpetum 
compacto-littoralis, 9. Inulo crithmoidis-
Phragmitetum australis, 11. Phragmitetum 
australis, and 15. Pruno spinosae-Rubion 
ulmifolii were modeled with moderate 
accuracy (F1 scores: 57–68).

−	� Plant community 16. Inulo crithmoidis-
Tamaricetum africanae was modeled with 
low accuracy (F1 score: 31) due to its strong 
confusion with plant community 17. Althaeo 
officinalis-Tamaricetum africanae, since 
these two communities included Tamarix 
africana.
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Table 3. Confusion matrix between the 18 plant communities modeled from the Sentinel-2 time-series (rows) and the reference plots 
(columns). Entries are percentages of counts. ID, plant community code number (Table 1); UA, User’s Accuracy; Count, 
total number of reference plots used per plant community; PA, Producer’s Accuracy. The squares outlined in grey identify 
the main ecological units.

ID Reference 
Mod. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 UA

1 100 1 98
2 63 4 2 3 83
3 18 73 10 3 9 1 3 1 2 7 3 1 64
4 15 11 79 13 1 6 6 5 7 4 3 63
5 90 1 4 1 2 6 85
6 5 91 47 1 73
7 3 8 49 6 2 70
8 1 1 52 2 4 4 1 5 70
9 3 8 59 4 3 65

10 1 4 9 73 7 3 76
11 4 3 17 9 13 65 7 1 11 1 58
12 2 8 4 8 72 2 11 4 3 72
13 1 88 2 84
14 2 72 10 3 1 1 83
15 3 2 6 5 52 1 1 2 64
16 1 1 1 1 1 21 1 61
17 3 2 3 4 5 3 3 6 41 89 5 68
18 6 6 88 87

Count 57 67 99 100 50 78 48 62 41 71 92 100 17 75 56 43 100 68
PA 100 63 73 79 90 91 49 52 59 73 65 72 88 72 52 21 89 88
F1 

score
99 71 68 70 87 81 57 60 62 74 61 72 86 77 57 31 76 87

Comparing maps of the plant community and RF 
model certainty to the very high spatial resolution Google 
Earth image (Figure 3, top) showed that the model 
reflected the fine-grained pattern of plant communities 
correctly, especially for grassland areas. In addition, 
scrub or forest plant communities were well identified, 

including those structured as hedges. Analysis of the 
certainty map indicated large disparities between areas 
of high certainty (≥ 0.8) in the middle of large patches 
of forest or grassland plant communities, and areas of 
low certainty (≤ 0.3) that corresponded in particular to 
transitions or a continuum between plant communities.
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Figure 3.  Maps of plant communities at the Biguglia site derived from modeling Sentinel-2 satellite data

Discussion

Plant communities in Natura 2000 sites located within 
the Mediterranean biogeographical region, which 
includes a wide diversity of ecological units, can be 
accurately modeled (overall accuracy 72%) using a 
random forest classification model and Sentinel-2 time-
series. This overall accuracy was slightly lower than 
that obtained by Rapinel et al. (2019) for semi-natural 
Atlantic grasslands (78%), but the modeling process 
was more challenging due to the larger number of plant 
communities (18 vs. 7, respectively) and consequently 
more intermingled vegetation types and complex 
patterns. Although the high accuracy of modeling the 
amphibious Ruppietum cirrhosae plant community (F1 
score 99) was not remarkable (since vegetation in coastal 
lagoons has a more distinct spectral signature than that 
in terrestrial plant communities) (MacKay et al., 2009), 
some plant communities in the same ecological unit were 
discriminated well. For example, the Trifolio fragiferi-
Cynodontion dactylonis and Lino biennis-Festucetum 
arundinaceae communities were modeled correctly 
(F1 score 87 and 81, respectively), even though both 
contained common species such as Cynodon dactylon and 
Ranunculus sardous and were associated with the same 
habitat (6420 “Mediterranean tall humid grasslands of 

the Molinio-Holoschoenion”). The strong discrimination 
between these 2 plant communities can be explained by 
phenological differences observed among the 6 satellite 
data acquired in all 4 seasons of the same year (Figure 
2). Recent studies indicate the potential of Sentinel-2 
time series to discriminate fine-scale vegetation patterns 
based on phenological profiles (Vrieling et al., 2018). 
Conversely, the model confused plant communities 
patterned by a common and covering species that 
strongly influenced the spectral signature, such as for 
the 2 forest plant communities (Inulo crithmoidis-
Tamaricetum africanae and Althaeo officinalis-
Tamaricetum africanae), which were physiognomically 
and structurally patterned by Tamarix africana, and 
the 4 reed bed plant communities (Inulo crithmoidis-
Phragmitetum australis, Kosteletzkyo pentacarpos-
Phragmitetum australis, Phragmitetum australis, 
and Phragmitetum australis calystegietosum sepii) 
with high coverage of Phragmites australis. Remote 
sensing data with higher spatial and spectral resolution 
are required to discriminate these plant communities 
more accurately (Corbane et al., 2015).

This study aimed to evaluate the contribution of an 
annual Sentinel-2 satellite time series to model 18 plant 
communities. However, some plant communities could 
not be properly discriminated based only on the use 
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of spectral variables. The accuracy of the model could 
be increased by combining several types of variables 
(Fois et al., 2018) providing information on vegetation 
structure, micro-topography, micro-climate or soil 
characteristics. In this case, the potential envelope of 
each plant community could first be modelled based 
on environmental variables and then the realized plant 
community area could be predicted based on spectral 
variables derived from remote sensing data. As an 
example, this methodology was successfully applied by 
Álvarez-Martínez et al. (2018) to model 24 Natura 2000 
habitats on a 120,000-ha site by combining variables 
derived from remote sensing data (1 Landsat 8 OLI 
image + 1 canopy height model derived from LiDAR 
data) with topographic and climatic variables.

Although botanists do not yet use remote sensing 
data widely (Borre et  al., 2017), this study illustrates that 
the data and method used to model plant communities 
and related habitats do not present any major technical 
challenges. First, the pre-processed Sentinel-2 satellite 
data (Level 2A) can be downloaded free of charge from 
the Theia (theia.land.fr) or Copernicus hub (https://
scihub.copernicus.eu) websites in a format that is ready-
to-use in GIS. Second, satellite data can be analyzed 
using R software, which is commonly used in vegetation 
science (Dixon & Palmer, 2003; Zelený & Tichý, 
2009). This method models plant communities with 
< 75% accuracy, which is insufficient to be considered 
a baseline vegetation map. However, combining it with 
the RF model uncertainty map provides a valuable 
tool for applying preferential sampling (De Cáceres et 
al., 2015) to new areas to prospect during future field 
missions (Zlinszky et al., 2014) and thus improves 
vegetation typology and mapping accuracy (Fanelli et 
al., 2005). 

This mapping approach for plant communities has 
several advantages compared to approaches based 
on expert decision rules of vegetation physiognomy 
and environmental criteria (Adamo et al., 2016): (i) it 
highlights floristic variations within a habitat (Feilhauer 
et al., 2014); (ii) allows the conservation status of 
a habitat to be assessed (Angelini et al., 2018); and 
(iii) avoids one-to-many correspondences between a 
vegetation physiognomy and habitats (Tomaselli et al., 
2016). The disadvantage of this approach, however, is 
the need for reference data at the syntaxonomic level, 
which unfortunately remains rare (Campagnaro et al., 
2019).

The quality of the reference data is an important 
issue when modeling with satellite data (Maxwell et 
al., 2018). Ideally, the reference plots are selected from 
phytosociological records collected in the same year as 
the satellite data acquisitions (Rapinel et al., 2019). This 
was not the case in the current study because the archive 
vegetation plots (2 × 2 m) were smaller than the resolution 
of the Sentinel-2 satellite data (10 m). As a default, 
reference points were collected within the polygons 
of the field vegetation map, and although we adopted 
precautions, it inevitably resulted in biases related to (i) 
the 3-year difference between producing the field map 
(2014) and acquiring the Sentinel-2 data (2017) and (ii) 

subjective delineation of plant community patches by the 
field map producer (Ullerud et al., 2018). In this study, 
the reference plots were manually selected, which was 
time consuming. While “pure” pixels can be identified 
and selected automatically, the detection of outliers due 
to geometric errors made in the field vegetation map 
remains challenging. Nevertheless, recent studies have 
shown that outliers could be detected based on their 
spectral characteristics (Raab et al., 2018; Halladin-
Dąbrowska et al., 2020), which would significantly 
reduce the efforts required to select reference pixels. 
This suggests that the limitation for modeling plant 
communities is no longer access to satellite data but 
rather access to field reference data (Borre et al., 2017). 
This highlights the crucial importance for botanists to 
georeference vegetation plots accurately and, above all, 
to structure and disseminate them in databases such as 
the European Vegetation Archive (Chytrý et al., 2016) 
or VegFrance (Bonis and Bouzillé, 2012) so that they 
can be used to calibrate and validate models based on 
satellite data. 

Although the results of modeling plant communities 
revealed heterogeneous patterns (Figure 3), the spatial 
resolution of Sentinel-2 satellite data (10 m) obviously 
remains too coarse to detect small vegetation patches 
(Rapinel et al., 2019). Consequently, we modeled only 
18 plant communities. Thus, many plant communities 
that occur only occasionally but may nonetheless 
characterize habitats of community importance were 
excluded. Using satellite data with a higher spatial 
resolution could resolve this limitation. SPOT-6 images, 
which are available at low cost and with a spatial 
resolution of 1.5 m, offer an interesting alternative to 
Sentinel-2 images for sites where mapping fine-grained 
vegetation patterns is critical.

The map of plant communities derived from 
Sentinel-2 images can be used as a decision support 
tool for the conservation status assessment of natural 
habitats. For example, the presence of the plant 
community Arthrocnemo glauci-Salicornietum emerici 
―typical of Mediterranean salt meadows― in the 
Natura 2000 site of Biguglia is remarkable given its 
large extent (61 ha) and indicates a good conservation 
status of the habitat HD 1310 (Salicornia and other 
annuals colonising mud and sand) (Bensettiti et al., 
2004). In addition, the uncertainty map provides 
information that can be used for implementing different 
management plans, since it highlights transition areas 
―or continua― between plant communities, which are 
rarely provided by field vegetation maps (Schmidtlein 
et al., 2007). These continua can be considered as 
biodiversity hot spots that have a high probability of 
change (Álvarez-Martínez et al., 2011). In the case 
of the Biguglia site that has a very low and flat micro 
topography, the continua are mainly structured by 
variations in soil moisture and salinity in relation to 
climatic hazards (i.e. fluvial inflow during precipitation 
and seawater inflow during storms) (Delbosc et 
al., 2020). Thus, these continua ―highlighted by 
Sentinel-2 images― reflect the effective functioning 
and self-regulating of the lagoon ecosystem.
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Remote sensing data are a tool with standardized and 
spatialized measurements over long time scales suitable for 
monitoring changes in biodiversity (Schrodt et al., 2019), 
such as the Habitats Directive reporting. In our study, 
we mapped plant communities using one-year satellite 
time-series. In the perspective of longer-term, interannual 
monitoring, the major factors in the dynamics of natural 
vegetation that could be easily considered in the site of 
Biguglia due to the very high accuracy of annual maps 
derived from remote sensing data such Sentinel-2 images 
are fire hazard (García-Llamas et al., 2019 and land use 
and cover changes (e.g. Álvarez-Martínez et al., 2010; 
Mallinis et al., 2011; Kallimanis et al., 2015; Amici et 
al., 2017). Conversely, changes in plant communities, for 
example in response to a decrease in grazing pressure, 
remain challenging to quantify not only because of the 
lower accuracy of annual maps (e.g. 72% in this study) ―
the changes observed being related both to real vegetation 
dynamics and to cumulative modelling errors (Álvarez-
Martínez et al., 2011)― but also because of the limited 
access to georeferenced historical field vegetation data that 
are needed to calibrate and validate the remote sensing-
based models (Anderson, 2018). To overcome these 
methodological issues, several solutions can be considered, 
such as: i) the “time-first, space-latter” modelling approach 
(i.e. modelling of inter-annual time profiles rather than 
independent modelling by year) (Picoli et al., 2018); ii) 
the consideration of uncertainty in the change detection 
(Álvarez-Martínez et al., 2010); iii) the exploitation of 
vegetation archives (e.g. Chytrý et al., 2016).

Conclusions

This study demonstrates that plant communities in 
Natura 2000 sites located within the Mediterranean 
biogeographical region, which includes a wide diversity 
of ecological units, were modeled accurately using 
a random forest classification model and Sentinel-2 
satellite data time series. The approach, based on the use 
of free, ready-to-use images processed using R software, 
can be used by botanists. Although the plant community 
map derived from satellite data is not sufficiently 
accurate to be considered a reference document, 
combining it with a model certainty map is a useful tool 
for targeting areas that require additional field sampling. 
In perspective, SPOT-6 satellite time series analysis with 
very high spatial resolution is a promising approach for 
mapping fine-scale vegetation patterns.
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