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Abstract: Antimony selenide (Sb2Se3) has been widely investigated as a promising absorber material
for photovoltaic devices. However, low open-circuit voltage (Voc) limits the power conversion
efficiency (PCE) of Sb2Se3-based cells, largely due to the low-charge carrier density. Herein, high-
quality n-type (Tellurium) Te-doped Sb2Se3 thin films were successfully prepared using a homemade
target via magnetron sputtering. The Te atoms were expected to be inserted in the spacing of (Sb4Se6)n

ribbons based on increased lattice parameters in this study. Moreover, the thin film was found to
possess a narrow and direct band gap of approximately 1.27 eV, appropriate for harvesting the solar
energy. It was found that the photoelectric performance is related to not only the quality of films but
also the preferred growth orientation. The Te-Sb2Se3 film annealed at 325 ◦C showed a maximum
photocurrent density of 1.91 mA/cm2 with a light intensity of 10.5 mW/cm2 at a bias of 1.4 V. The fast
response and recovery speed confirms the great potential of these films as excellent photodetectors.

Keywords: Te-Sb2Se3 thin film; magnetron sputtering; structure; photoelectric performances

1. Introduction

The current most commercialized thin-film solar cells are copper indium gallium selenide (CIGS)
and cadmium telluride (CdTe). Their market share is continuously reducing, mainly due to the scarcity
of indium and gallium and the toxicity of cadmium [1,2]. In addition, the complex composition of CIGS
is an issue for industrial production. To overcome these problems, many researchers have explored
other earth-abundant and nontoxic absorber materials that consist of ribbons, for instance, antimony
sulfide (Sb2S3) [3,4] and antimony selenide (Sb2Se3) [5–7]. The ribbons are held together by weak van
der Waals forces. Once they are parallel to the grain boundary plane, the device performance can
be significantly enhanced by eliminating dangling bonds at the grain boundary. Notably, the power
conversion efficiency (PCE) of the Sb2Se3 solar cells has had a very rapid evolution within only
7 years, reaching 9.2% in 2019 based on the core–shell nanorod configuration [8]. This is ascribed
to a series of excellent properties of this binary material, including a narrow band gap (1.1–1.3 eV),
high absorption coefficient (>105 cm−1) and fast carrier transport along the [001] orientation [5,8–11].
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Moreover, the simple composition and the only stable phase in this binary system minimize the risk of
impurity phase during thin film preparation.

At present, the PCE of Sb2Se3 based solar cells is still limited by many poor characteristics
such as its low-charge carrier density (~1013 cm−3) and high concentration of intrinsic point defects
(vacancies and antisite defects) [10,12]. Thus far, some efficient ways to reduce the intrinsic point defects
and prolong the minority carrier lifetimes in thin films are post-selenization [13], in-situ selenium
compensation [14], and the use of vapor transport deposition [15]. It is well known that doping is
an efficient approach to adjust the defects of semiconductors, which has been widely utilized in the
semiconductor industry [16]. However, few studies have been carried out on doped Sb2Se3 thin
films, and the development of appropriate doping for broadening the applications of this promising
material is crucial. Since the notable PCE of 2.26% realized in 2014 [17], many methods of thin film
preparation have been proposed [5,8,15,17–19]. Among these approaches, magnetron sputtering can
realize high-quality thin film under a full-vacuum deposition condition [13,20,21], and the record PCE
of 6.84% was reported by Liang et al in 2020 [22].

This work is on the preparation and characterization of Te-Sb2Se3 thin films prepared by using
the sputtering method. We selected the element Te as a doping atom for different reasons. Firstly,
our objective was to obtain a n-type semiconductor and Te has four valence electrons, one more than
Sb. Secondly, it is known that Te can minimize defect formation in Sb2Se3 films [23], which may be
correlated with its smaller atomic radius (1.43 Å) [24] in comparison with the gap of (Sb4Se6)n ribbons
(~3.5 Å) [25]. The structure, morphology, and photoelectric performances of these thin films were
systematically investigated.

2. Materials and Methods

High purity elements of antimony (Sb, 99.999%, Umicore), selenium (Se, 99.999%, Umicore),
and Tellurium (Te, 99.999%, Umicore) were utilized as raw materials.

2.1. Preparation of the Te-Sb2Se3 Target

The Te-Sb2Se3 target with the chemical composition of Sb2(Se0.97Te0.03)3 was prepared using a
highly reproducible melting method at a high temperature. This composition has previously been
optimized in a relationship in terms of its photoelectric properties. At first, a 70-g mixture was weighted
in a glovebox under argon according to the chemical composition. Then, the mixture was loaded
into a fully cleaned silica tube with an internal diameter of 50 mm. In order to eliminate all volatile
substances in the mixture, the tube was evacuated and sealed until a vacuum of about 10−5 mbar was
reached. Subsequently, the tube was placed in a rocking furnace and heated to 810 ◦C with a ramp rate
of 1.2 ◦C/min. The mixture was continuously rocked at 810 ◦C for 10 h, after which the furnace was
kept vertical for the crystallization of melt at a cooling rate of 1.2 ◦C/min. After cooling down to room
temperature, the as-prepared specimen was carefully taken out of the silica tube and finely polished
into a magnetron sputtering target with a thickness of around 6 mm and a diameter of 50 mm.

2.2. Deposition of the Te-Sb2Se3 Thin Films

The Te-Sb2Se3 thin films were deposited by using a homemade target and a magnetron sputtering
system (Plassys MP600S) equipped with an in-line optical monitoring system to measure the reflectance
at a certain wavelength and the film thickness in real time. In addition, it can detect the crystallization
process, which changes the reflection of the film. More detailed descriptions can be found in our
previous works [26,27]. Indium tin oxide (ITO)-coated glasses (2.5 × 2.5 cm2) with a sheet resistance of
30 Ω were used as substrates and consecutively cleaned using detergent, acetone, ethanol, and deionized
water for 15 min each. The sputtering chamber was evacuated to a pressure below 2 × 10−7 mbar before
deposition. High-purity (99.99%) Ar gas with a mass flow rate of 30 sccm was used for depositing the
thin films. The radio frequency (RF) sputtering power was kept at 12 W, and the working pressure was
set at 0.04 mbar. Before deposition, the homemade target was pre-sputtered for 10 min to remove the
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contaminants from the surface. Afterwards, the thin films were deposited on unheated substrates that
were continuously rotated during preparation. All thin films had a thickness of 350 nm, which was
measured using the in-situ optical monitoring system and confirmed by observation under electronic
microscope. Following that, the thin films were annealed in the range of 325–400 ◦C under a pressure of
0.1 mbar with 40 sccm flow of Ar for 90 min to induce crystallization. The temperature was monitored
utilizing a thermocouple enclosed in the chamber.

2.3. Characterization

X-ray diffraction (XRD) with Cu Kα radiation was performed to analyze the crystalline structure
on a PANalytical X-ray diffractometer in the range of 10–60◦ under 40 kV and 40 mA. The morphologies
were observed by using a thermal field-emission scanning electron microscope (SEM, JEOL JSM-7100
F) equipped with an energy dispersive spectrometer (EDS). The optical properties of the thin films
were characterized utilizing a PerkinElmer LAMBDA 1050 UV/Vis/NIR spectrophotometer with dual
beam and a monochromator. The transmission and reflection measurements were performed at
ambient temperature in a wavelength range of 500 to 1500 nm. The conductivity type of the thin
films was determined via a Semilab PN tester PN-100. To evaluate the photoelectric performances
of the thin films, photo-electro-chemical (PEC) measurements were carried out using a conventional
three-electrode system in 0.5 M LiClO4 solution, where the thin films, a Pt-wire, and an Ag/AgCl
electrode were used as the working, counter, and reference electrodes, respectively. A white light
tungsten halogen lamp was used as a light source with a light intensity of 10.5 mW/cm2, and a detailed
description can be found in our previous works [16,28].

3. Results and Discussion

3.1. Target Characterization

Figure 1a shows the XRD pattern of the Te-Sb2Se3 target prepared by a melting method at a high
temperature in vacuum. As observed, all diffraction peaks matched well with the orthorhombic phase
of Sb2Se3 (JCPDS standard card 15-0861) without any noticeable impurities. The target exhibited a
preferential crystallographic orientation of [230], largely due to the surface energy of some crystal
planes during crystallization from liquid [29]. It was also observed that the polished target possessed a
flat surface without cracks and porosity (Figure 1b), suggesting that the preparation method could
completely meet the target demand of magnetron sputtering. In comparison with the commonly
used spark plasma sintering method [30], the melting method could facilitate mass transport and
thus improve the uniformity of the composition [31–33]. In addition, crystallization from a melt is
generally exempt from porosity. Moreover, the distribution of elements was uniform, as evidenced
by EDS elemental mapping, indicating that the Te element was well doped into the Sb2Se3 lattice.
We prepared and characterized three targets and obtained the same results, confirming the repeatability
of experiments. Meanwhile, the average composition of these targets is shown in Table 1. The atomic
percentages of Sb, Se, and Te were 39.78 ± 0.28, 58.2 ± 0.17, and 2.02 ± 0.03at.%, respectively.

Table 1. The energy dispersive spectroscopy (EDS) results of the Te-Sb2Se3 targets prepared by the
melting method in a vacuum (average composition).

Element Sb Se Te

Atomic percent (at.%) 39.78 ± 0.28 58.2 ± 0.17 2.02 ± 0.03
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Figure 1. (a) The X-ray diffraction (XRD) pattern of the Te-Sb2Se3 target prepared by the melting
method. The inset is the surface morphology. (b) Scanning electron microscope (SEM) image and
energy dispersive spectroscopy (EDS) elemental mapping of Sb, Se, and Te.

3.2. Characterization on the Structure of Te-Sb2Se3 Thin Films

The XRD patterns of the as-deposited and annealed Te-Sb2Se3 thin films with different temperatures
are presented in Figure 2a. For the as-deposited thin film, no crystalline diffraction peaks were detected,
except for some peaks that originated from the ITO substrate, indicating the amorphous characteristic
of the thin films deposited on an unheated substrate. Subsequently, the thin film was annealed
in the range of 325–400 ◦C under Ar atmosphere with an interval of 25 ◦C. It is obvious that the
emerging peaks are in good agreement with the orthorhombic Sb2Se3 (JCPDS standard card 15-0861).
At the same time, the sharp diffraction peaks also indicate the highly crystalline nature of these
annealed thin films. Most importantly, no impurity phases in any of the XRD patterns revealed that Te
element was successfully doped into the lattice of Sb2Se3. To further confirm the successful doping
behavior, we prepared pure Sb2Se3 thin film using the same deposition condition as a reference sample.
As observed, the diffraction peak (230) slightly shifted toward a lower angle with Te doping (Figure 2b),
which was due to an increase in the interplanar spacing according to Bragg’s equation. On the basis of a
previous report [23] and by considering its electronic structure, Te cannot substitute for Se atoms in the
Sb2Se3 lattice. Consequently, this observation implies that Te atoms are largely doped into the spacing
of (Sb4Se6)n ribbons (~3.5 Å) [25]. In addition, it is noteworthy that the intensity of (211) and (221)
diffraction peaks first increased and then decreased, accompanied by the reverse trend for the (120)
and (020) peaks. The thin film annealed at 350 ◦C had the highest intensity of (211) and (221) peaks as
compared to other crystalline films. Generally, the crystallinity improved with an increasing annealing
temperature. However, if the temperature was too high, e.g., 400 ◦C, the intensity of diffraction peaks
showed a slight decrease, which is attributed to the deterioration of the films due to quite high vapor
pressure of Sb2Se3 at this temperature [5].
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It is well known that film orientation is crucial for Sb2Se3 thin film solar cells. To quantify the
difference of preferential orientations between different Te-Sb2Se3 thin films at different annealing
temperatures, the texture coefficient (TC) of diffraction peaks was calculated using the following equation:

TChkl =
I(hkl)

I0(hkl)
/(

1
N

∑
N

I(hkl)

I0(hkl)
), (1)

where I(hkl) is the measured diffraction peak intensity of (hkl) plane and I0(hkl) is the intensity value in
the standard XRD pattern. N is the total number of planes considered for the calculation. In general,
a larger TC value implies a preferred orientation of grain in films [18]. As observed in Figure 2c,
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the film annealed at 350 ◦C exhibited the strongest overall TC values for the (hk1) planes, further
indicating the desired orientation for photovoltaic applications.

To better understand the mechanism of Te doping, the lattice parameters of Te-Sb2Se3 thin films
were calculated using JADE 6.0 software, as shown in Figure 3. Referring to the different annealing
temperatures, the thin films were denoted as 325-film, 350-film, 375-film, and 400-film, respectively.
Obviously, the lattice parameter a (or b) of Te-Sb2Se3 thin films slightly increased, while the lattice
parameter c slightly decreased when compared with pure Sb2Se3 [34]. It suggests that the lattice
parameter along the directions that the (Sb4Se6)n ribbons were held together through weak van der
Waals forces [6], i.e., the [100] and [010] axes increased remarkably. For an orthorhombic crystal, it is
well known that the relationship between interplanar spacing (dhkl) and lattice constants (a, b, c) can be
expressed as follows [34]:

dhkl =
1[(

h
a

)2
+

(
k
b

)2
+

(
1
c

)2
]0.5 , (2)
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Figure 3. The lattice parameters of Te-Sb2Se3 thin films at different annealing temperatures and
pure Sb2Se3.

As a result, increased lattice parameters resulted in broadened interplanar spacing and the (230)
diffraction peak shifted toward a lower angle (Figure 2b). Moreover, compared with the intrinsic p-type
nature of pure Sb2Se3 thin film, the conductivity type of Te-Sb2Se3 thin films was n-type, as verified
by the PN tester. Considering the larger lattice parameters and the n-type doping behavior, we thus
further believe that Te element was mainly located in the gap between the (Sb4Se6)n ribbons and was a
donor in the Sb2Se3 film. Such a phenomenon has been frequently found for Cd and Na doping in
Sb2Se3 as well [6,25].

Figure 4 displays scanning electron microscopy (SEM) images of the Te-Sb2Se3 thin films with
different annealing temperatures. For 325 ◦C-annealed thin film, small crystal grains were apparent
(Figure 4a). In contrast, the grain size increased in the 350 ◦C-annealed thin film, accompanied by
many round grains (red circles, Figure 4b), and thus the intensities of diffraction peaks (211) and (221)
were higher (Figure 2a). Notably, the film annealed at 350 ◦C was compact and free of cracks. When the
annealing temperature increased to 375 ◦C, the morphology of film was considerably different from the
350 ◦C-annealed thin film; a large number of rod grains (red ellipses, Figure 4c) appeared along with
large melted/softened areas. The intensity of diffraction peak (120) was enhanced; however, the (211)
and (221) orientations were reduced (Figure 2a). Meanwhile, the 375 ◦C crystalline film showed loose
grain boundaries due to thermal etching, as already observed in similar materials [26]. By further
increasing the temperature to 400 ◦C, the film significantly deteriorated, leading to the formation
of apparent holes (yellow circles, Figure 4d) and sparse surfaces due to excessive thermal etching.
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Therefore, the annealing temperature plays a crucial role in achieving high-quality Te-Sb2Se3 film.
As seen in Figure 4e-h, a good interface quality without cracks was generally observed.
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3.3. Optical Properties of Te-Sb2Se3 Thin Films

In order to further investigate the optical properties of the Te-Sb2Se3 thin films, an UV/Vis/NIR
spectrophotometer was used to measure the reflection and transmission at room temperature in a
wavelength range of 500–1500 nm with glass as the substrate. As observed in Figure 5a, the reflectance
of the as-deposited thin film was much lower than that of the crystalline thin films in the short
wavelength region, mainly due to its density-dependent lower refractive index as well as its disorder.
Moreover, the red-shift of the short wavelength cut-off edge from 640 nm for the as-deposited thin film
to around 876 nm for the crystalline thin film was evident, resulting in the evolution of the band gap.
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To further evaluate the effect of Te doping on the band structure, the band gap width (Eg) of the thin
films was calculated using the following formulas:

α =
1
d

ln
(

1−R(λ)
T(λ)

)
, (3)

αhv = B
(
hv− Eg

)r
, (4)

where α is the absorption coefficient; d is thickness of thin film (350 nm); and R and T represent the
reflectance and transmittance, respectively [35]. Equation (4) is a classical Tauc relationship, where
B is a constant; υ is the photo frequency; h is the Planck’s constant; and r = 2 for an indirect band
gap semiconductor and r = 0.5 for a direct band gap semiconductor [4]. As shown in Figure 5c,
the as-deposited thin film possessed a direct band gap of 1.65 eV; the value remarkably decreased to
around 1.27 eV after annealing due to the change in atomic arrangement from disorder to order. A slight
increase in the band gap width compared with pure Sb2Se3 thin film (1.15 eV) [36] was observed after
Te doping, which is ascribed to the combination of the Burstein–Moss shift and the renormalization
effect, existing in the narrow band gap semiconductor with a certain doping level [37,38]. On the
whole, the band gap of the Te-Sb2Se3 thin films is still suitable for efficiently harvesting visible light.
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3.4. Photoelectric Performances of Te-Sb2Se3 Thin Films

To evaluate the PEC performance of the Te-Sb2Se3 films annealed at different temperatures,
photo-electro-chemical measurements were performed under chopped light with an intensity of
10.5 mW/cm2. As can be observed in Figure 6, all Te-Sb2Se3 films showed anodic photocurrents,
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and their photocurrent density increased with the positive bias, indicating that Te-Sb2Se3 films are
n-type semiconductors, which is in agreement with the result obtained from the PN tester. There
was no apparent variation in the photocurrent response at the potential between 0.5 and 0.75 V. It is
well known that Sb2Se3 apparently shows direction-dependent bonding characteristics. The carrier
transport in the [001] direction occurred much easily than in the [221] direction, in which the (Sb4Se6)n

ribbons were tilted at a smaller angle with the substrate [8]. Compared with the 350 ◦C-annealed
Te-Sb2Se3 film, the reduced intensity of the diffraction peaks (221) and (211) for other crystalline films
(Figure 2a) implies that they grew with improved preference along the [001] direction (c-axis), resulting
in higher photocurrent density. In addition, the photocurrent density obviously depends on the quality
of the films. As a result, a maximum photocurrent density of 1.91 mA/cm2 at around 1.4 V was obtained
for the film annealed at 325 ◦C. On the contrary, the lowest response of 0.23 mA/cm2 was observable
for 350 ◦C-annealed film. Moreover, Te was shown to significantly reduce deep level defects, due to the
improved conductivity and reduced recombination, leading to a longer carrier lifetime [23]. As a result,
the Te-Sb2Se3 film was shown to possess much better photoelectric properties than pure Sb2Se3 film.
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The cyclic photoresponse of the Te-Sb2Se3 films was also characterized, as shown in Figure 7a.
Clearly, the photocurrent density of the Te-Sb2Se3 film annealed at 325 ◦C showed a slight decline
during several cycles, while the 350 ◦C-annealed Te-Sb2Se3 film was stabilized almost at its original
level. This is attributed to the low-density morphology that makes the 325 ◦C film more susceptible to
oxydo-reduction. The response (τon) and recovery (τoff) times are two important parameters that can
be used to assess the speed of the on/off switching, which is defined as the time between 10% and 90%
values of the maximum current. As observed in Figure 7b and c, the 350 ◦C film shows a shorter response
time of 0.01 s and recovery time of 0.015 s, which is ascribed to higher crystal quality, preferential
orientation, and the grain size [16]. Furthermore, the discrepancy in response/recovery times may result
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from the traps and other defects [39], leading to increased recombination of photogenerated carriers in
the 350 ◦C film. Notably, the response time of the Te-Sb2Se3 film was shorter than that mentioned in
many previous literatures [39,40], suggesting its high application potential as excellent photodetectors.
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4. Conclusions

N-type Sb2Se3 was obtained through Te doping, and high-quality thin films were prepared by
using magnetron sputtering. It was found that post-deposition annealing has a crucial influence on the
properties of the films. Different investigations showed that Te atoms are inserted into the spacing
of (Sb4Se6)n ribbons as donors based on increased lattice parameters. All of the films maintained a
narrow band gap of approximately 1.27 eV, ideal for harvesting the solar energy. The photoelectric
performance of the films was also found to be highly dependent on the annealing temperatures, and the
film annealed at 325 ◦C realized a maximum photocurrent density of 1.91 mA/cm2 with a light intensity
of 10.5 mW/cm2 at a bias of 1.4 V. The fast response and strong photocurrent density give these films
the potential to be used as photodetectors as well as for photovoltaic application.
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