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Abstract 
Purpose

Anatomical variations occur during head and neck (H&N) radiotherapy treatment. kV cone-beam 

computed tomography (CBCT) images can be used for daily dose monitoring to assess dose 

variations owing to anatomic changes. Deep learning methods (DLMs) have recently been 

proposed to generate pseudo-CT (pCT) from CBCT to perform dose calculation. This study aims 

to evaluate the accuracy of a DLM and to compare this method with three existing methods of 

dose calculation from CBCT in H&N cancer radiotherapy. 

Methods

Forty-four patients received VMAT for H&N cancer (70-63-56 Gy). For each patient, reference 

CT (Bigbore, Philips) and CBCT images (XVI, Elekta) were acquired. The DLM was based on a 

generative adversarial network. The three compared methods were: i) a method using a density to 

Hounsfield Unit (HU) relation from phantom CBCT image (HU-D curve method), ii) a water-air-

bone density assignment method (DAM), and iii) a method using deformable image registration 

(DIR). The imaging endpoints were the mean absolute error (MAE) and mean error (ME) of HU 

from pCT and reference CT (CTref). The dosimetric endpoints were dose discrepancies and 3D 

gamma analyses (local, 2%/2mm, 30% dose threshold). Dose discrepancies were defined as the 

mean absolute differences between DVHs calculated from the CTref and pCT of each method. 

Results

In the entire body, the MAEs and MEs of the DLM, HU–D curve method, DAM, and DIR method 

were 82.4 and 17.1 HU, 266.6 and 208.9 HU, 113.2 and 14.2 HU, and 95.5 and -36.6 HU, 

respectively. The MAE obtained using the DLM differed significantly from those of other 

methods (Wilcoxon, p < 0.05). The DLM dose discrepancies were 7 ± 8 cGy (maximum = 44 

cGy) for the ipsilateral parotid gland Dmean and 5 ± 6 cGy (max = 26 cGy) for the contralateral 

parotid gland mean dose (Dmean). For the parotid gland Dmean, no significant dose difference was 

observed between the DLM and other methods. 

The mean 3D gamma pass-rate ± standard deviation was 98.1 ± 1.2%, 91.0 ± 5.3%, 97.9 ± 1.6%, 

and 98.8 ± 0.7% for the DLM, HU–D method, DAM, and DIR method, respectively. The gamma 

pass-rates and mean gamma results of the HU–D curve method, DAM, and DIR method differed A
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significantly from those of the DLM. The mean calculation time to generate one pCT was 30 s for 

the deep learning and DIR methods.

Conclusions 

For H&N radiotherapy, DIR method and DLM appears as the most appealing CBCT-based dose 

calculation methods among the four methods in terms of dose accuracy as well as calculation time. 

Using the DIR method or DLM with CBCT images enables dose monitoring in the parotid glands 

during the treatment course and may be used to trigger replanning.

 Keywords: Deep learning; CBCT dose calculation; head and neck cancer 
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Introduction

Recent developments in modulated treatment plans and image-guided radiotherapy (IGRT) 

devices have allowed more precise and targeted head and neck (H&N) treatments, with improved 

sparing of organs at risk while covering target volumes. However, during H&N radiotherapy, 

patients are typically subject to anatomical variations such as tumor shrinkage or weight loss1,2. 

These variations can induce discrepancies between planned and delivered doses. Acquisitions of 

daily or weekly 3D kV cone-beam computed tomography (CBCT) images can be used to quantify 

dose discrepancies related to anatomical variations. CBCT images can be used to calculate the 

delivered “dose of the day”3 to viewable and critical structures such as the spinal cord and parotid 

glands (PGs). However, dose calculation from CBCT is challenging not only owing to the “poor” 

image quality, but also to the limited field of view (FOV) and the inconsistency of the Hounsfield 

units (HUs). Moreover, CBCT dose calculation often lacks ground truth (dose computed from the 

reference CT acquired at the same time as CBCT) for quantifying the uncertainties.

Several methods to perform CBCT dose calculation have been proposed: i) calibration curve 

between the HU and densities (HU-D curve)4–6, ii) density assignment method (DAM)5,7–10, iii) 

deformable image registration (DIR) between CT and CBCT3,10–12 and iv) machine learning to 

generate a pseudo-CT (pCT)13–15. i) The HU-D curve established from a CBCT image can be used 

to convert CBCT HUs to densities for dose calculation. This curve can be defined with either an 

“adapted” phantom6 (according to anatomical localization) or patient CBCT images4,5. Although 

these methods are straightforward, they are sensitive to CBCT artefacts16 and patient scattering. ii) 

The density assignment method (also known as the bulk density method) involves segmenting an 

image into two to six tissue classes (e.g., soft tissues, air and bones) before assigning density to 

each class. Nevertheless, this method is dependent of structure segmentation and provide an image 

with homogeneous tissues. iii) By deforming CT to CBCT, a “deformed” CT is generated and can 

be used for dose calculation. CT-CBCT DIR can be difficult owing to intrinsic CBCT limitations, 

such as noise, low contrast, and reduced FOV. Moreover, the registration step is complex owing to 

large anatomical variations, such as tumor shrinkage or weight loss17. iv) Machine learning 

methods are based on patches or deep learning (DL), to generate a pCT (i.e., synthetic images) 

from CBCT. Machine learning methods require a large training cohort and most of these methods 
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require co-registered data for the training step. The main advantages and drawbacks of the HU-D 

curve method, DAM, DIR method, and DLM are summarized in the two first columns of Table 1.

Deep learning methods (DLMs) are models composed of multiple processing layers that learn 

multiscale representations of data through multiple levels of abstraction18. These methods have 

recently been introduced in radiotherapy for various applications, such as image segmentation, 

image reconstruction, image registration, treatment planning, and radiomics19–25. DLMs have been 

primarily proposed for pCT generation from magnetic resonance imaging (MRI)26–31. They are 

particularly appealing owing to their fast computation time. One of the first DLMs for pCT 

generation was based on the U-Net architecture. More recently, DLMs using generative 

adversarial networks (GANs) have been proposed, offering the theoretical advantage of providing 

more realistic pCTs by obtaining an adversarial feedback from a discriminator network32. 

Some studies have recently proposed DLMs for pCT generation from CBCT, mainly for scatter 

correction33,34. Other studies proposed the DLM for pCT generation from CBCT in prostate35–37, 

pancreas38, and H&N13–15, for dose calculation. H&N studies have been performed using either U-

Net or cycleGAN architectures to generate pCT from CBCT. 

To the best of our knowledge, no DLM to generate pCT from H&N CBCT has been compared 

with other methods for dose calculation from CBCT. In H&N radiotherapy, previous studies 

showed dose differences of less than 3% for the DAM5,7–10, less than 2% for the DIR method3,10,11, 

and less than 1% for the DLM. 

This study aims to evaluate the accuracy of the DL method for CBCT H&N dose calculation and 

to compare this method with the HU-D curve, density assignment, and DIR methods.

Materials and methods

Patient data

Forty four patients with locally advanced oropharyngeal carcinomas were retrospectively selected. 

Image acquisition

All patients had a planning CT scan, and 14 patients had weekly CT scans. All CT images were 

acquired on a BigBore (Philips) scanner, with a 2 mm slice thickness from the vertex to the carina. 

Patient positioning was assured using a personalized thermoplastic head and shoulder mask with A
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five fixation points. The treatment isocenter was set at a reproducible bony place, between the C3-

C4 vertebrae. 

Weekly CBCTs were acquired with an XVI (Elekta) on a VERSAHD linac (Elekta). The settings 

for the H&N CBCT acquisition were as follows: 120 kV, 0.4 mAs per frame, 660 frames, M20 

FOV, and 2 mm slice thickness. For the14 patients who had weekly CT scans, the weekly CBCTs 

were acquired for a time close to the CTs. 

Delineation and dose calculation

Structure delineation of the planning CTs was performed by the same radiation oncologist 

according to the European recommendations39. Positron emission tomography and MRI co-

registration were used for tumor delineation. The gross tumor volume (GTV) corresponded to the 

primary tumor and involved lymph nodes. Three target volumes were generated for each patient. 

A clinical target volume receiving 70 Gy (CTV70, 35 fractions) was equal to the GTV plus a 5 mm 

3D margin, adjusted to exclude any air cavities and bone mass that indicate no evidence of tumor 

invasion. CTV63 (receiving 63 Gy in 35 fractions) corresponded to the high-risk area of the 

microscopic spread, whereas CTV56 (receiving 56 Gy in 35 fractions) corresponded to the low-risk 

subclinical area. The GTV, CTV63, CTV56, and all the organs at risk, in particular the PGs and 

spinal cord, were manually delineated on each CT slice. The planning target volumes (PTV70Gy, 

PTV63Gy, and PTV56Gy) were generated by adding a 5 mm 3D margin around the CTVs.

For all patients, the total prescribed dose was 70 Gy (35 fractions) delivered by a simultaneous 

integrated boost (70-63-56 Gy) using VMAT technique. The dose calculation was performed with 

Pinnacle v.9.10 (Philips) treatment planning system (TPS) using the collapsed cone convolution 

algorithm and a dose grid resolution of 3 mm. GORTEC recommendations were used for organs at 

risk limitation doses40. The dose constraints for the contralateral PG were a mean dose lower than 

30 Gy and a median dose lower than 26 Gy. For the ipsilateral PG, the mean dose was as low as 

possible. For the spinal cord, the maximum dose was lower than 45 Gy. The minimum PTV 

volume coverage by the 95% isodose was 95%. 

On the pCT images generated by the evaluated methods, structures (target volumes, PGs and 

spinal cord) were propagated from the planning CTs, and the dose distributions were calculated 

after copying the beam parameters. A
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Intra-patient CBCT to CT registration

To minimize the effects of anatomic variations between CT and CBCT, each CBCT was registered 

to its corresponding CTinitial using a rigid registration, followed by a non-rigid registration 

(NiftyReg). This CT initial was considered as the reference (CTref).

Deep learning method

The GAN DLM architecture was composed of two networks: a generator (G) and a discriminator 

(D), which were trained in competition with each other (Fig. 1). 

Generator network

The generator network aims to provide a pCT from each patient’s CBCT. In this study, the 

generator network used a 2D architecture similar to the U-Net DLM proposed by Han 41. A single-

scale perceptual loss function was used to train this network. This loss function mimics the human 

visual system to compare the CT and pCT images using similar features as opposed to only the 

intensities 42,43. The features inside the CT and pCT images were computed using the Visual 

Geometry Group (VGG) 16 network, which is used for perceptual loss computation and appears 

relevant for various tasks (e. g., image deblurring, super-resolution, and computer vision)43,44. The 

perceptual loss function of the generator (LG) is defined as follows: 

𝐿𝐺(𝐼, 𝐶) = ‖𝑉𝐺𝐺(𝐶) ― 𝑉𝐺𝐺(𝐺(𝐼))‖2
2 

where  is the output of the 7th VGG16 convolutional layer,  the CBCT, and  the 𝑉𝐺𝐺 𝐼 𝐶

corresponding CT.

Discriminator network

The discriminator network aims to classify the pCT image as a real or fake CT. Hence, the output 

of this network is a probability value ranging between 0 and 1 depending on whether the pCT 

appears to be fake or real. The architecture was composed of six convolutional layers and one 

fully connected layer. Each convolutional layer was followed by batch normalization and Leaky-

ReLu activation functions. The number of filters for these six layers were 8, 16, 32, 64, 64, and 64. A
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The filter size was 3 × 3 (stride = 2) for the first four layers and 1 × 1 (stride = 1) for the remaining 

layers. The fully connected layer had one filter followed by a sigmoid activation function.

The loss function of the discriminator (LD) was a binary cross entropy expressed as 𝐿𝐷(𝐺(𝐼), 𝐶)

where  is the pCT computed by the = ― ∑𝑛
𝑖 = 1𝐶𝑖𝑙𝑜𝑔(𝐺(𝐼)𝑖) +  (1 ―  𝐶𝑖)log (1 ― 𝐺(𝐼)𝑖) , 𝐺(𝐼)

generator from the target CBCT , and  is the number of voxels inside and  images. 𝐼 𝑛 𝐶 𝐼

The generator and discriminator losses were combined to form the following adversarial loss: 

, where  is the discriminator loss,  𝐿𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙(𝐼, 𝐶) =  𝜆1𝐿𝐷(𝐼, 𝐶) + 𝜆2𝐿𝐺(𝐼, 𝐶) 𝐿𝐷(𝐼, 𝐶) 𝐿𝐺(𝐼, 𝐶)

is the generator loss, and  and  are the weights of the discriminator and generator losses, 𝜆1 𝜆2

respectively. First, the discriminator was trained using the discriminator loss, followed by 

generator training using the fully adversarial loss. These training steps were performed iteratively 

until 300 epochs when the discriminator could not accurately determine if the pCTs provided by 

the generator were real or false CTs. 

Training data 

The DLM was trained using 30 anatomically paired (CT-CBCT) data: axial 2D slices of the 

training CT and CBCT images (7600 slices). Data augmentation was performed to artificially 

increase the size of the training cohort. It was conducted by randomly applying affine registrations 

(by NiftyReg) on the slices (translated from -5% to 5% per axis, rotated from -10° to +10°, 

sheared from -10° to 10°). A mini-batch size of four slices and 300 epochs was considered. The 

network parameters were optimized using the Adam algorithm45. The parameters of this algorithm 

were as follows: , , and  For the GAN, the weights of the 𝛼 = 1 ×  10 ―4 𝛽1 = 0.9 𝛽2 = 0.9.

discriminator and generator loss functions were:  and , respectively. The convergence 𝜆1 = 5 𝜆2 = 1

curves of the GAN generator and discriminator are presented in Fig. S-1. 

The DLM was implemented in Python using Keras46. The training computation time for the 

networks was approximately 72 h using an Nvidia GTX 1070 TI 8 GB GPU. 

Other CBCT-based dose calculation methodsA
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The three other assessed methods are described following. 

i. HU to density curve (HU-D curve) from phantom CBCT image

This method involves establishing an HU-D curve of the CIRS 062 phantom with clinical H&N 

CBCT protocol acquisition. Only the central part of the phantom was used to mimic the 

dimensions of the patient head. This phantom contained eight heterogeneous inserts and is 

considered appropriate for CBCT dose calculation owing to its size and chemical composition47. 

An HU-D H&N curve was then implemented into the TPS. 

ii. Density assignment method (DAM)

An automatic thresholding was performed inside the patient body contour for all the CBCT and 

planning CT images based on HU values to create bone and air cavity classes. Manual corrections 

of the segmentation were necessary in case of dental artefacts and shoulder areas in the CBCT 

images. A soft tissue class was then created by the subtraction of air and bone classes within the 

patient body contour. The HU values of each class from the mean values of the planning CT were 

assigned to the corresponding classes of the CBCTs for each patient. Hence, three classes were 

obtained with the following values: -730 HU for the air cavity, 0 HU for the soft tissue, and 550 

HU for the bone. 

iii. CT-CBCT deformable image registration (DIR)

A deformed image was created with automatic DIR between the CBCT (fixed image) and 

planning CT (moving image) images using Admire software (research v.3.3.1, Elekta). A study 

was performed to assess the DIR accuracy of Admire (Appendix 1). 

Endpoints 

Imaging and dosimetric endpoints were considered for the 14 patients (total of 64 CT-CBCTs). 

Imaging endpoints

A voxel-wise comparison of the HU between CTref and pCT was performed. The mean absolute 

error (MAE) and the mean error (ME) were calculated between the CTref and pCT obtained from 

all the methods. These endpoints were defined as follows: 𝑀𝐴𝐸 =  
1
𝑛A
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 and , with n the total number ∑𝑛
𝑖 = 1|𝐻𝑈𝐶𝑇𝑟𝑒𝑓(𝑖) ―  𝐻𝑈𝑝𝐶𝑇(𝑖)| 𝑀𝐸 =  

1
𝑛∑𝑛

𝑖 = 1𝐻𝑈𝐶𝑇𝑟𝑒𝑓(𝑖) ―  𝐻𝑈𝑝𝐶𝑇(𝑖)

of voxels. 

Dosimetric endpoints

Owing to the limited size of the CBCT FOV, the water equivalent density was assigned inside the 

CT body contour when no CBCT or pCT information was available to perform an evaluation of 

the method. The accuracy of the methods was first evaluated by computing the dose and 

systematic dose discrepancies. The DVH calculated from the CTref was subtracted from the DVH 

calculated from the pCT. The dose discrepancy was defined by the mean absolute dose and the 

systematic dose discrepancy by the mean DVH differences. The results were reported for the 

GORTEC reference DVH points (V95% for the PTVs and D2% for the spinal cord and mandible), 

and Dmean to the PGs was considered. A spatial dose evaluation was finally conducted by 

performing 3D gamma analyses (local, 2%/2 mm, low dose threshold: 30%) using the dose 

distributions from the CTref and pCTs. 

Statistical analysis

Wilcoxon signed-rank tests were performed to compare the endpoints. For the DVH comparisons 

based on the pCT generation methods, a nonparametric permutation test was performed48 to 

control the presence of false positives in multiple statistical tests (10 cGy DVH bin-wise). In this 

case, 1000 permutations were performed, where for each permutation i, randomly selected DVHs 

were swapped (CTref <->pCT) and the average difference was computed for each dose-bin. For 

each permuted sample and the original sample, the average difference was normalized to the 

standard deviation computed over all the 1000 permutations, and the maximum observed 

difference was selected as the test statistic (TS). A distribution of TS across all the permuted 

samples (TSi,max) was obtained and compared with that one from the observed sample (TSmax). The 

adjusted p-value was then computed as the probability of having a TSmax greater than the TSi,max at 

the significance level of 5% (p ≤ 0.05). The corresponding percentile over the distribution of all 

the TSi,max provides a threshold value that determines the dose DVH bins where a statistically 

significant dose difference arises. Unlike bin-wise tests, a permutation test provides a single A
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number that summarizes the discrepancy in the DVH between the two groups, rather than the 

discrepancy of a particular bin, which therefore accounts for multiple comparisons. The 

mathematical formulation of the permutation test has been provided by Chen et al.49. The test 

allowed us to report a robust bin-wise comparison based on the DVH value of each method as well 

as to compare the lowest MAE among all the methods with the MAE of each method and the ME 

of each method with a null distribution.

Results

Imaging endpoints and calculation time

Examples of CBCT, CTref, and pCT generated by each method are illustrated in Fig. 2. Table 2 

lists the imaging endpoints for the entire body contour, soft tissue, and bone. In the entire body, 

the MAE and ME were 266.6 and 208.9 HU, 113.2 and 14.2 HU, 95.5 and -36.6 HU, and 82.4 and 

17.1 HU for the HU–D curve method, DAM, DIR method, and DLM, respectively. The MAE 

results of the DLM differed significantly from those of other methods (p < 0.05). The ME results 

of the four methods differed significantly from the null distribution.

The mean calculation time to generate one pCT was 30 s for the GAN DLM. 

Dosimetric endpoints

Fig. 3 shows the mean DVHs for the CTref and each method, by volume of interest. The DVHs of 

all methods differed significantly from that of CTref. Table 3 shows the Dmean differences of DVH 

points for the PTVs, spinal cord, and mandible and the Dmean to the PGs. The density assignment 

as well as DIR and DL methods provided dose discrepancies lower than 0.6% for the PTVs, PGs, 

and spinal cord. The lowest absolute mean Dmax difference of the spinal cord was obtained using 

the DIR method (17 ± 20 cGy). The lowest absolute mean Dmean differences of the PGs were 

obtained using the DLM. The mean differences differed significantly from the null distribution for 

the PTV, spinal cord, and mandible DVH points in the four methods. The mean Dmean differences 

of the PGs did not significantly differ from the null distribution in the four methods. Fig. 4 shows 

the dose discrepancies of each method along the DVHs, by volume of interest. The method with the A
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highest discrepancies was the HU-D curve method. The density assignment and DIR methods were 

less significantly different from the DLM compared with the HU-D curve method. Fig. S-2 shows 

the systematic dose discrepancies (ME) of each method along the DVHs, by volume of interest. All 

methods showed significant differences with a null distribution. 

Table 4 shows the mean gamma and gamma pass-rate values calculated from the CTref and pCT 

dose distributions for each method. The density assignment, DIR, and DL methods provided mean 

gamma pass-rates that exceeded 97.9%. The gamma pass-rates and mean gamma results of the 

HU-D curve method, DAM, and DIR method differed significantly from those of the DLM. Fig. 

S-3 shows examples of gamma maps in the coronal plane for one patient. 

The last two columns of Table 1 are a qualitative analysis of the image and dose endpoints among 

the four compared methods. 

Discussion

The aim of this study was to compare a DLM (GAN) with three other methods (HU-D curve 

method, DAM, and DIR method) to perform dose calculation from H&N CBCT. Compared with 

the CTref, the DAM, DIR method, and DLM provided low dose discrepancies, thereby rendering 

them clinically acceptable for CBCT-based dose calculation (Fig. 3). Regarding dose accuracy as 

well as calculation time (< 30 s), the DIR method and DLM appeared to be the most attractive 

methods (Table 1). 

The main disadvantages of CBCT for dose calculation is HU inconsistency. Three studies have 

proposed comparing several CBCT dose calculation methods (scatter correction, DAM, DIR) but 

not with the DLM7,10,11. We conducted a comparison study using the DLM and three other 

methods (well-known methods in the literature) for CBCT dose calculation. This comparison 

study was performed using imaging and dose endpoints. Table 1 summarizes the benefits, 

drawbacks and qualitative comparison of the four investigated methods for H&N CBCT dose A
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calculation. The DLM provided the lowest MAE (Table 2) in the entire body (82.4 HU), soft 

tissue (69.2 HU), and bones (207.6 HU). However, the DLM did not show the lowest dose 

discrepancies. The relationship between image and dose uncertainties is particularly complex. In 

fact, the dose uncertainty in a voxel is not only related to the image uncertainty (HU) in the 

considered voxel, but also to several parameters, such as the image uncertainty of the surrounding 

voxels or dose gradients. For the bone tissues, the systematic error of the methods (HU–D curve 

method, DAM, and DLM) showed an underestimation of HU values (Table 2), whereas dose 

underestimation was recorded for the spinal cord (surrounded by bone) and mandible (Table 3).

The density assignment and DIR methods provided better or similar dose results to the DLM 

(Table 3, Fig. 4, Fig. S-2, and Table 4). The method with the worst dose discrepancy (Table 3, 

Table 4, Fig. 4), except for the mandible, was the method using the HU–D conversion curve. This 

simple method appeared to be insufficient owing to artefacts and patient scattering50,51. Using this 

method, the main dose discrepancies were obtained at the shoulder level (Fig. S-3), where scatter 

artefacts are more present. The PTV 56 Gy was the most affected structure because of this issue 

(Fig. 2). 

We proposed a DLM to generate pCT from CBCT to perform dose calculation. Such methods 

have already been used for pCT generation from MRI in the context of an MRI-only workflow52. 

The two recent MRI H&N studies using conditional GAN53 or U-Net54 provided an MAE of 

approximately 70–75 HU in the entire body contour. However, the aim of pCT generation from 

CBCT images is different. In fact, pCT generated from CBCT are used to monitor delivered doses 

or to estimate the cumulative delivered dose during the treatment course in the context of dose-

guided adaptive radiotherapy. Studies using DL for pCT generation from CBCT are scarce for 

brain55, H&N13–15, pancreas38 or prostate cancer35–37,55,56. The studies involved an imaging analysis 

(pCT versus reference CT), but only half of them evaluated the dose accuracy. Among the three 

H&N studies using DL for pCT generation from CBCT13–15, one involved training a U-Net neural 

network on 50 co-registered CBCT/CT images and performing a test based on data from 10 

patients13. MAEs from 6 to 27 HU were obtained for the pCTs generated from Varian CBCTs. The 

dose differences were lower than 1%, and the mean gamma pass-rate (global, dose difference: 1%, 

DTA: 1 mm) was 95.5%. The second study involved training a cycle-consistent generative 

adversarial network (cycleGAN) on 81 CBCTs15. The evaluation performed on data from 20 

patients provided a mean MAE of 29.9 HU. The mean gamma pass-rate (3D, dose difference: 1%, A
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DTA: 1 mm) was 96.3%. The cycleGAN DLM involved two GANs: one to generate pCT from 

CBCT and a second GAN to generate pCBCT from pCT (the output of the first GAN). These two 

dual GANs learn simultaneously to improve theoretically the efficiency. The cycleGAN DLM 

does not require paired data (no challenging intra-patient registration). Therefore, the amount of 

training data can largely be increased. However, the cycleGAN requires more complex training 

compared with the GAN because a larger number of parameters require optimization. The third 

study involved U-Net training on 37 patients to generate pCT from CBCT14, where only image 

analysis was performed. Furthermore, the MAE of 19 HUs for seven patients was obtained. We 

obtained a higher MAE with a larger number of patients and Elekta CBCT acquisitions. It is 

noteworthy that the comparison can only be indirect because the patient data differed in each study 

(CBCT imaging device, FOV size, tumor location, etc.).  

Our study has some limitations. First, we trained the DL network with data from only 30 patients. 

Second, before the learning process, non-rigid registration was used to obtain the same H&N 

anatomy between CBCT and CTref, with the uncertainties depending of the deformable image 

registration algorithm. Third, the limited size of the CBCT FOV is still an issue. In this study, we 

added water equivalent density to override it and evaluate only the methods. Moreover, no scatter 

correction57 was applied on CBCT images. Such image correction in a pre-processing step could 

decrease image and dose discrepancies. For image analysis, we did not consider metrics other than 

HU differences (MAE and ME) because the focus was on dose calculation. Image quality metrics 

such as Peak Signal-to-Noise Ratio (PSNR), Normalized Mutual Information (NMI), Structural 

SIMilarity (SSIM) or Visual Information Fidelity (VIF) should be implemented for further image 

analysis. For the DLM, our GAN parameters (e.g., loss function, VGG layer, discriminator weight, 

and mini-batch size) should be optimized to improve the image and dose accuracies. Moreover, 

the DL network was trained with 2D axial slices and not with fully 3D images because of memory 

GPU limitations. Finally, DL architectures such as the cycleGAN, which may have enabled some 

intra-individual co-registration issues to be overcome, could be further investigated.

Conclusions
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Four methods of H&N CBCT-based dose calculation were compared in this study. The use of an 

HU-D curve from CBCT was the simplest but the least accurate method. The DAM, use of DIR, 

and GAN DLM provided similar dose discrepancies. The DIR method and DLM appeared to be 

the most attractive methods in terms of dose accuracy as well as calculation time. Using one of 

such a method with CBCT images would enable dose monitoring in the PGs during the H&N 

treatment course to trigger replanning. 
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Figure captions 

Fig. 1. Deep learning method for pseudo-CT generation from CBCT

The training of the generative adversarial network (GAN) comprises two competing multilayer 

networks: the generator and the discriminator. The discriminator aims to distinguish the real 

image (ground truth) from the realistic fake image (pCT) produced by the generator. The input 

data of the generator are CBCT and CT images that provide pCTs. The discriminator classifies 

these pCTs as real or fake CTs until the discriminator cannot determine whether the pCT is a real 

CT. In the testing step, for a new test patient, the CBCT goes through the trained network to 

obtain the corresponding pCT.

Fig. 2. CBCT, reference CT, and pseudo-CT images from the deep learning method

Fig. 3. Mean DVHs PTV, parotid glands, and spinal cord

Permutation tests were performed to compare the DVHs from the reference CT to those of the four 

methods. Significant differences (p <0.05) between the DVHs are displayed at the top of each 

figure using the symbol *. 

Fig. 4. Dose discrepancies for CBCT-based dose calculation methods along the entire DVH 

for the PTV, PGs, and spinal cord

The dose discrepancy is defined as the mean absolute DVH differences between the reference CT 

and the pCT corresponding to each method. Permutation tests were performed to compare the 

absolute DVH differences of the DLM to those of the other methods. Significant differences (p ≤ 

0.05) are displayed at the top of each figure with *. 

Fig. S-1. Convergence of generator and discriminator loss functions on the training cohort

Fig. S-2. Systematic dose discrepancy of each CBCT-based dose calculation method A
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The systematic dose discrepancy was defined as the mean DVH differences between the reference 

CT and the pCTs generated by each method. Permutation tests were performed to compare the 

DVH differences of each method to a null distribution. Significant differences (p ≤ 0.05) are 

displayed at the top of each figure using the symbol *. 

Fig. S-3. Illustration of pseudo-CTs, dose distributions, and gamma maps for one patient in 

coronal plane

The dose distributions are displayed for each of the four investigated methods. The dose 

differences are illustrated in terms of gamma analysis. 3D gamma pass-rate values corresponding 

to each method are indicated for this patient. 
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Table 1. Advantages, drawbacks, and main results of each investigated method for 

head-and-neck CBCT dose calculation 

 

Methods Advantages* Drawbacks* 
Image 

comparison
#

Dose 

comparison
#

HU-density curve 

method 
- Simplicity - Subject to artefacts + ++ 

Density 

assignment 

method (DAM) 

- Simplicity 

- Dependent of structure 

segmentation 

- Homogeneity of the 

tissues / limited number 

of tissue classes (1 to 6) 

++ +++ 

Deformable image 

registration (DIR) 

method 

- Fully automatic 

- Heterogeneity of 

the tissues 

- Fast computation 

time 

- Not robust to large 

anatomical variations 

(tumor shrinkage, 

weight loss, etc.) 

+++ +++ 

Deep learning 

method (DLM) 

- Fully automatic 

- Heterogeneity of 

the tissues 

- Fast computation 

time 

- Require cohort training 

(same imaging device, 

and size-dependent) 

- Paired data (except 

cycleGAN) 

++++ +++ 

 

*: From literature; #: From our study results 

In the two last columns, “+” represents the qualitative comparison of the four methods in 

terms of image and dose endpoints. The more the number of “+”, the more accurate is the 

method. The dose endpoints are the DVH and gamma results.  
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Table 2. Imaging endpoints comparing the reference CT to the pseudo-CTs obtained by 

each method 

MAE: mean absolute error of HU values defined as the mean difference (in absolute value) of 

HU values per voxel between the reference CT and pseudo-CT; ME: mean error, defined as 

the mean difference of HU values per voxel between the reference CT and the pseudo-CT.  

The imaging endpoint values are expressed as mean ± standard deviation.  

The Wilcoxon test was used to first compare the MAE of the DLM to those of the other 

methods and then to compare the ME of the methods to a null distribution. Significant 

differences (p ≤ 0.05) are displayed using the symbol *. 

 Endpoints 
HU-D curve 

method 

Density 

assignment 

method 

DIR method 
Deep learning 

method 

Entire body 

MAE 

(HU) 
266.6* ± 25.8 113.2* ± 6.7 95.5* ± 21.2 82.4 ± 10.6 

ME 

(HU) 
208.9* ± 36.1 14.6* ± 11.2 -36.6* ± 14.7 17.1* ± 19.9 

Soft tissue 

only 

MAE 

(HU) 
260.9* ± 25.9 91.2* ± 6.4 85.0* ± 20.2 69.2 ± 15.3 

ME 

(HU) 
206.4* ± 35.7 9.6* ± 11.0 -33.3* ± 14.7 12.9* ± 19.4 

Bone only 

MAE 

(HU) 
344.6* ± 64.7 388.1* ± 38.3 226.2* ± 44.4 207.6 ± 41.8 

ME 

(HU) 
253.1* ± 127.2 84.7* ± 77.6 -77.4* ± 28.6 64.9* ± 56.1 
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Table 3. Reference dose values, dose discrepancies, and systematic dose discrepancies for each volume of interest 

Volumes of interest 
PTV Parotid gland 

Spinal cord Mandible 
70 Gy 63 Gy 56 Gy Ipsilateral Contralateral 

Dosimetric endpoints V95% (%) Dmean (cGy) Dmax (cGy) 

CTref values 99.2 ± 0.7 95.2 ± 1.2 98.7 ± 1.3 2633 ± 995 1958 ± 507 4087 ± 112 6584 ± 485 

Absolute mean 

differences  

(dose 

discrepancy) 

HU-density curve 

method 
0.2 ± 0.2 0.7 ± 0.5* 0.3 ± 0.4 14 ± 13 9 ± 8 38 ± 24 102 ± 56 

Density 

assignment 

method 

0.2 ± 0.2 0.4 ± 0.3 0.4 ± 0.7 7 ± 9 6 ± 6 23 ± 19* 117 ± 79* 

Deformable image 

registration 
0.3 ± 0.4* 0.6 ± 0.5 0.5 ± 0.7 10 ± 10 8 ± 7 17 ± 20* 28 ± 45* 

Deep learning 

method 
0.2 ± 0.2 0.4 ± 0.4 0.7 ± 1.3 7 ± 8 5 ± 6 42 ± 17 99 ± 54 

Mean differences 

(systematic dose 

discrepancy) 

HU-density curve 

method 
-0.1 ± 0.3* -0.6 ± 0.6* -0.3 ± 0.5* -12 ± 15 -7 ± 10 -29 ± 75* -90 ± 35* 

Density 

assignment 

method 

 -0.1 ± 

0.2* 
-0.1 ± 0.5* 0.4 ± 0.8* -3 ± 11 1 ± 8 -20 ± 23* -117 ± 79* 

Deformable image 

registration 
0.1 ± 0.5* 0.3 ± 0.7* 0.5 ± 0.8* 4 ± 13 6 ± 9 8 ± 25* 3 ± 54 A
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Deep learning 

method 
-0.1 ± 0.3* -0.2 ± 0.5* 0.6 ± 1.4* -4 ± 10 0 ± 8 -42 ± 17* -96 ± 59* 

The mean values of the DVH points are reported for the reference CT. The dose discrepancy is defined as the mean absolute DVH differences 

between the DVH calculated from the reference CT and those obtained from the different methods. The systematic dose discrepancy is defined as 

the mean DVH differences between the DVH calculated from the reference CT and those obtained from the different methods. The Wilcoxon test 

was used to: compare the dose discrepancy of the DLM with those of the other methods and to compare the systematic dose discrepancy of the 

methods to a null distribution. Significant differences (p ≤0.05) are displayed using the symbol *.
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Table 4. Mean gamma and gamma pass-rate calculated from reference CT and pseudo-

CT dose distributions according to each method 

 

HU-density curve 

method 

Density 

assignment 

method 

Deformable 

image 

registration 

Deep learning 

method 

Gamma pass-rate 

(%) 
91.0 ± 5.3* 97.9 ± 1.6* 98.8 ± 0.7* 98.1 ± 1.2 

Mean gamma 0.66 ± 0.18* 0.47 ± 0.17* 0.36 ± 0.10* 0.54 ± 0.13 

 

Values are mean ± standard deviation. 

The Wilcoxon test was performed to compare the gamma values of the DLM to those of the 

other methods. Significant differences (p ≤0.05) are displayed using the symbol *. 
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