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Abstract
Opportunistic spectrum access (OSA) problem in cognitive radio (CR) networks allows a
secondary (unlicensed) user (SU) to access a vacant channel allocated to a primary
(licensed) user (PU). By finding the availability of the best channel, i.e., the channel that
has the highest availability probability, a SU can increase its transmission time and rate.
To maximize the transmission opportunities of a SU, various learning algorithms are
suggested: Thompson sampling (TS), upper confidence bound (UCB), ε-greedy, etc. In
our study, we propose a modified UCB version called AUCB (Arctan-UCB) that can
achieve a logarithmic regret similar to TS or UCB while further reducing the total regret,
defined as the reward loss resulting from the selection of non-optimal channels. To
evaluate AUCB’s performance for the multi-user case, we propose a novel
uncooperative policy for a priority access where the kth user should access the kth best
channel. This manuscript theoretically establishes the upper bound on the sum regret
of AUCB under the single or multi-user cases. The users thus may, after finite time slots,
converge to their dedicated channels. It also focuses on the Quality of Service AUCB
(QoS-AUCB) using the proposed policy for the priority access. Our simulations
corroborate AUCB’s performance compared to TS or UCB.

Keywords: Cooperative or competitive priority access, Cognitive radio, Opportunistic
spectrum access, Multi-armed bandit algorithms, Upper bound of regret

1 Introduction
1.1 Cognitive radio

The static spectrum allocation has nowadays become a major problem in wireless net-
works as it results in an inefficient use of the spectrum and can generate holes or white
spaces therein. The opportunistic spectrum access (OSA) concept aims at reducing the
inefficient use of the spectrum by sharing available spectrum of primary users (PUs), i.e.,
licensed users who have full access to a frequency band, with opportunistic users called
secondary users (SUs). According to OSA, a SU may at any time access an unoccupied
frequency band, but it must abandon the targeted channel whenever a PU restarts its
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transmission in its channel. Indeed, OSA optimizes the use of the spectrum with min-
imum impacts on PUs and minimizing interference among SUs. OSA is an important
strategy for the cognitive radio (CR) [1]; indeed, a CR unit must execute a cognitive cycle
in order to implement an OSA strategy. The main three steps of the cognitive cycle are as
follows:

• Spectrum sensing: A cognitive radio should be able to sense and detect possible holes
in the spectrum. Indeed, the main challenge of a CR is to obtain an accurate status of
the spectrum bandwidths (vacant/busy), so that a SU can access a vacant channel
without interfering with the transmission of PUs. In the literature, several spectrum
sensing algorithms have been proposed to detect primary users’ activities, such as
cumulative power spectral density (CPSD) [2], energy detection (ED) [3–6], or
waveform-based sensing (WBS) [7, 8].

• Learning and information extraction: This function generates a clear vision about a
RF (radio frequency) environment. As a result, a spectrum environment database is
constructed and maintained. This database is used to optimize and adapt
transmission parameters. The learning and information extraction capabilities of a
CR can be achieved using learning algorithms, such as Thompson sampling (TS) [9],
upper confidence bound (UCB) [10], and ε-greedy [11]. In [12], we proposed a
learning algorithm based on the UCB that monitors the quality of service UCB
(QoS-UCB) for the multi-user case. In this paper, we have also developed the QoS
aspect of the new proposed AUCB (Arctan-UCB) algorithm.

• Decision making: Following the learning process, the decision about the occupancy
of a spectrum should be made to access a particular spectrum bandwidth. Any good
decision should depend on the environment parameters as well as on the nature of
the SUs’ cooperative or competitive behaviors.

This paper investigates two major scenarios: SUs network with cooperative or compet-
itive behaviors, under two different policies: Side channel [13] and a novel policy called
PLA (priority learning access) for the multi-user case.

1.2 Related work

The past decade has witnessed an explosive demand of wireless spectrum that led
to the major stress and the scarcity in the frequency bands. Moreover, the radio land-
scape has become progressively heterogeneous and very complex (e.g., several radio
standards, diversity of services offered). Nowadays, the rise of new applications and tech-
nologies encourages wireless transmission and accelerates the spectrum scarcity problem.
The coming wireless technologies (e.g., 5G) will support high-speed data transfer rates
including voice, video, and multimedia.
In many countries, the priority bands for 5G include incumbent users, and it is essen-

tial that regulators make high effort to evacuate these frequencies for 5G use—especially
in the 3.5 GHz range (3.3–3.8 GHz) [14]. These efforts may consist of (1) putting in place
incentives to migrate licensees upstream of frequency allocation, (2) moving licensees to
other bands or to a single portion of the frequency range, and (3) allowing licensees to
exchange their licenses with mobile operators. When it is not possible to free up a band,
the reserving frequencies for 5G bands (i.e., 3.5/26/28 GHz) may lead to the success of
5G services while wasting frequencies. Indeed, according to several recent studies, the



Almasri et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:145 Page 3 of 31

frequency sharing approaches represent an efficient solution that can be used to sup-
port both potential 5G users and the incumbent users. For instance, the Finnish regulator
has chosen to adopt this approach instead of reserving frequencies for the 5G users [14].
Sharing approach will contribute to access new frequencies for 5G in areas where they
are needed but underutilized by incumbent users. In this work, we are interested in the
opportunistic spectrum access (OSA) that represents a sharing approach in which the SUs
can access the frequency bands in opportunistic manner without any cooperation with
the PUs.
Before making any decision, a SU should make spectrum sensing process in order to

reduce the interference with the primary users. In [15], the authors focus on different
spectrum sensing techniques and their efficiency trying to obtain accurate information
about the status of the selected channel by a SU at a given time. Moreover, the proposed
techniques are analytically evaluated under Gaussian and Rayleigh fading channels. In this
work, we focus on the decision making process to help the SU reach the best channel with
the highest availability probability. This channel, on the one hand, mitigates any harmful
interference with the PU as a result that this channel not often used by this latter. On the
other hand, accessing the best channel in the long term can increase the SU’s transmission
time and throughput capacity.
Many recent works, in the CR, have attempted to maximize the transmission rate of

the secondary user (SU) without generating any harmful interference to the primary user
(PU) [16, 17]. To reach this goal, the latter works investigate the effects of using differ-
ent types of modulation such as OFDM (orthogonal frequency-division multiple access)
and SC-FDMA (single-carrier frequency-division multiple access). The main drawback
of using OFDM modulation is related to its large peak-to-average power ratio (PAPR)
that may increase the interference with the PU. While SC-FDMA has seen as a favor-
able modulation to maximize the SU’s transmission due to its lower PAPR as well its
complexity [18]. Moreover, SC-FDMA is used in several mobile generation such as the
third-generation partnership project long-term evolution (3GPP-LTE) and the fourth
generation (4G). It is also considered as a promising radio access technology and having
an optimal energy-efficient power allocation framework for future generation of wireless
networks [19, 20].
In this work, we choose to focus on themulti-armed bandit (MAB) approach in order to

help a SUmake a good decision, reduce the interference among PU and SU, andmaximize
the opportunities of this latter. In MAB, the agent may play an arm at each time slot and
collect a reward. The main goal of the agent is to maximize its long-term reward or to
minimize its total regret, defined as the reward loss resulting from the selection of bad
arms. In [21–24], the authors considered the MAB approach in an OSA to improve the
spectrum learning1.
InMAB, the arm reward can bemodeled with differentmodels, such as the independent

identically distributed (i.i.d.) orMarkovianmodels. In this paper, we focus on the i.i.d. that
represents the widely used model for a single user [24, 25] or multi-user case [23, 26, 27].
Based on the MAB problem introduced by Lai and Robbins in [10], the authors of

[28] proposed several versions of UCB: UCB1, UCB2, and UCB-normal. All these ver-
sions achieve a logarithmic regret with respect to the number of played slots in the

1A SU in OSA is equivalent to a MAB agent trying to access a channel at each time slot in order to increase its gain.
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single-user case. For multiple users, we proposed respectively in [13] and [29] cooperative
and competitive policies to collectively learn the vacancy probabilities of channels and
decrease the number of collisions among users. The latter policies are simulated under
TS, UCB, and ε-greedy algorithms. The previous simulations were conducted without any
proof about the analytical convergences of these algorithms or the number of collisions
among SUs. In this work, we show that the same policies achieve a better performance
with AUCB compared to several existing algorithms. We also investigate the analytical
convergence of these two policies under AUCB, and we show that the number of colli-
sions in the competitive access has a logarithmic behavior with respect to time. Therefore,
after a finite number of collisions the users converge to their dedicated channels.
The authors of [30] proposed a distributed learning for multiple SUs called time-

division fair share (TDFS) and proved that the proposed method achieves a logarithmic
regret with respect to the number of slots. Moreover, TDFS considers that the users can
access the channels with different offsets in their time-sharing schedule and each of them
achieves almost the same throughput. The work of [31] proposed a musical chair that
represents a random access policy to manage the secondary network where the users
achieve a different throughput. According to [31], each user selects a random channel up
to time T0 in order to estimate the vacancy probabilities of channels and the number of
users U in the network. After T0, each user randomly selects one of the U best channels.
Nevertheless, the musical chair suffers several limitations as follows:

1. The user should have a prior knowledge about the number of channels in order to
estimate the number of users in the network.

2. It cannot be used under the dynamic availability probability since the exploration
and exploitation phases are independent.

3. It does not take the priority access into account.

To find theU best channels, the authors of [32] proposed amulti-user ε-greedy collision
avoiding (MEGA) algorithm based on the ε-greedy previously proposed in [28]. However,
the MEGA has the same drawbacks of the musical chair. In the literature, various learning
algorithms have been proposed to take into account the priority access, such as selective
learning of the kth largest expected rewards (SLK) [33] and kth MAB [34]. SLK is based
on the UCB algorithm, while the kth MAB is based on both UCB and ε-greedy.

1.3 Contributions and paper organization

The main contributions of this manuscript are as follows:

• An improved version of UCB algorithm called AUCB: In the literature, several UCB
versions have been proposed to achieve a better performance compared to the
classical one [28, 35–37]. However, we show that AUCB achieves a better
performance compared to previous versions of UCB. By considering the widely used
i.i.d. model, the regret for a single or multiple SUs can achieve a logarithmic
asymptotic behavior with respect to the number of slots, so that the user may quickly
find and access the best channel in order to maximize its transmission time.

• Competitive policy for the priority learning access (PLA): To manage a decentralized
secondary network, we propose a learning policy, called PLA, that takes the priority
access into account. To the best of our knowledge, PLA represents the first
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competitive learning policy that successfully handles the priority dynamic access
where the number of SUs changes over time [38], while only the priority access or the
dynamic access are considered in several learning policies, such as musical chair and
dynamic musical chair [31], MEGA [32], SLK [33], and kth MAB [34]. In [38], PLA
shows its superiority under UCB and TS compared to SLK, MEGA, musical chair,
and dynamic musical chair. In this work, we evaluate the performance of AUCB in
the multi-user case based on PLA.

• The upper bound of regret: We analytically prove the asymptotical convergence of
AUCB for single or multiple SUs based on our PLA and side channel policies.

• Investigation AUCB’s performance of TS is known to exceed the state of the art in
MAB algorithms [35, 39, 40]. Several studies found a concrete bound for its optimal
regret [41–43]. Based on these facts, we adopt TS as a reference to evaluate AUCB’s
performance.

• We also investigate the QoS of AUCB algorithm under our PLA policy.

Concerning this manuscript’s organization, Section 2 introduces the system model for
single and multi-user cases. Section 3 presents the AUCB approach for a single user as
well as a novel learning policy to manage a secondary network. AUCB’s performance for
both single and multi-user cases are investigated in Section 4. This section also compares
the performance of the PLA policy for the multi-user case to recent works. Section 5
concludes the paper.

2 Problem formulation
In this section, we investigate theMAB problem for both single andmulti-users cases.We
also define the regret that can be used to evaluate a given policy’s performance (Table 1).
All parameters used in this section can be found in Table 1.

2.1 Single-user case

Let C be the number of i.i.d. channels where each channel must be in one of two binary
states S: S equals 0 if the channel is occupied, and 1 otherwise. For each time slot t, SU
should sense a channel in order to see whether it is occupied or vacant and receives a
reward ri(t) from the ith channel. Without any loss of generality, we will then assume that
a good decision’s reward, e.g., the channel is vacant, equals to its binary state, i.e., ri(t) =
Si(t). SU can transmit its data on a vacant channel; otherwise, it must wait for the next slot
to sense and use another channel. We suppose that all channels are ordered by their mean
availability probabilities, i.e., μC ≤ μC−1 ≤ · · · ≤ μ1. The availability vector � = (μi) is
initially unknown to the secondary user, but our goal is to estimate it over many sensing
slots. If a SU has a perfect knowledge about the channels and their μi, then it can select
the best available channel, i.e., the first one, to increase its transmission rate. As μi is
unknown for that user, we will define the regret as the sum of the reward loss due to the
selection of a sub-optimal channel at each slot. The regret minimization determines the
efficiency of the selected strategy to find the best channel. In a single user case, the regret
R(n,β) up to the total number of slots n under a policy β can be defined as follows:

R(n,β) = nμ1 −
n∑

t=1
μ

β(t)
i (t) (1)
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Table 1 List of notations used through the paper

n Total number of time slots

U and C Number of users and channels respectively

Si(t) Observed state of the ith channel at slot t

ri(t) Reward obtained from the ith channel at slot t

μ1 and μi Availability of the best and ith channels respectively

�(1,i) = μ1 − μi Difference between the best and worst channels

β(t) Channel selected at slot t using a policy β for single or multiple-users cases

Ti(t) Number of times the ith channel was sensed up to slot t

Xi(Ti(t)) Exploitation contribution of the ith channel that depends on Ti(t)

Ai(t, Ti(t)) Exploration contribution of the ith channel that depends on t and Ti(t)

Bi(t, Ti(t)) Index assigned of the ith channel that takes into consideration the availability

α Exploration-exploitation factor

Sβ(t)(t) Global reward obtained by all users at slot t from the selected channels β(t)

Ii,j(t) Non-collision in the ith channel under the jth user at slot t

Pi,j(n) Total number of non-collision in the ith channel under the jth user up to n

qi(t) Quality of ith channel at slot t

Gi(Ti(t)) Quality collected from the ith channel up to slot t

Gmax(t) Maximum expected quality over channels up to slot t

Qi(t, Ti(t)) Quality factor that depends on t and Ti(t)

BQi (t, Ti(t)) Index assigned of the ith channel that takes into consideration both availability and quality

γ Weight of the quality factor

μQ
i Global mean reward of the ith channel that takes into consideration both availability and

quality

OU(n) Total number of collisions in U-best channels up to n

p Probability of non-collision in best channels

Appendix

�(k,i) = μk − μi Difference between the kth best channel and the ith one

OC(n) Total number of collisions in all channels up to n

Oi(n) Total number of collisions in the ith channel up to n

Dk(n) Total number of collisions under the kth priority user up to n

T ′
k(n) Total number of times where the kth user badly identifies its dedicated channel, the kth

best one

Ss Needed time for a user to return to its prior rank

TBi>Bk (n) Total number of times in which the index of the ith channel exceeds the kth best one up
to n

TBm<Bk (n) Total number of times in which the index of the kth best channel exceeds the mth best
one up to n

where n is the total number of slots; nμ1 is the selected channel in an ideal scenario, i.e.,
when the SU has prior knowledge and always selects the best channel; β(t) denotes the
channel selected under the policy β at time t; and μ

β(t)
i is the mean reward obtained for

the ith channel selected at the time slot t and β(t) = i. The main target of a SU is to
estimate the channels availability as soon as possible to attain the highest available one.
To reach this goal, UCB was firstly proposed in [10] and applied in [25] to optimize the
access over channels and identify the best one with the highest availability probability.
UCB contains two dimensions: exploitation and exploration. These latter are respectively
represented by Xi(Ti(t)) and Ai(t,Ti(t)).
The index assigned to the ith channel can be defined as follows:

Bi (t,Ti(t)) = Xi (Ti(t)) + Ai(t,Ti(t)) (2)
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where Ti(t) is the number of times the channel i is sensed by a SU up to the time slot t.
The user selects the channel β(t) at slot t that maximizes its index in the previous slot,

β(t) = argmax
i

Bi (t − 1,Ti(t − 1))

After a sufficient time, the user establishes a good estimation of the availability
probabilities and thus can converge towards the optimal channel.

2.2 Multi-user case

Let us consider U SUs trying to maximize their network’s global reward. At every time
slot t, each user can access a channel when available and transmits its own data. However,
multiple SUs can work in cooperative or uncooperative modes. In the cooperative one,
the users should coordinate their decisions to minimize the global regret of the network.
On the other hand, in a non-cooperative mode, each user independently makes its own
optimal decision to maximize its local reward. The regret for the multi-user case, under
cooperative or competitive modes, can be written as follows:

R(n,U ,β) = n
U∑

k=1
μk −

n∑

t=1
E
(
Sβ(t)(t)

)
(3)

where μk is the mean availability of the kth best channel; Sβ(t)(t) is defined by the global
reward obtained by all users at the time slot t; E(.) represents the mathematical expecta-
tion, and β(t) represents all the selected channels2 by users at t. We can define Sβ(t)(t) by:

Sβ(t)(t) =
U∑

j=1

C∑

i=1
Si(t)Ii,j(t) (4)

where the state variable3 Si(t) = 0 indicates that the channel i is occupied by the PU at
slot t; otherwise, Si(t) = 1; Ii,j(t) = 1 if the jth user is the sole occupant in channel i at the
slot t and 0 otherwise. In the multi-user case, the regret can be affected by the collision
among SUs and the channel occupancy which allows us to define the regret for U SUs as
shown in the following equation:

R(n,U ,β) = n
U∑

k=1
μk −

U∑

j=1

C∑

i=1
Pi,j(n)μi (5)

where Pi,j(n) =
n∑

t=1
E
[
Ii,j(t)

]
stands for the expectation of times when the user j is the only

occupant of the channel i up to n, and the mean of reward can be given by:

μi = 1
n

n∑

t=1
Si(t)

3 Methods
In this section, we present a new approach inspired from the classical UCB in a single-
user case, and later on, we generalize our study to consider the case of multi-user. The
new approach can find the optimal channel faster than the classical UCB while achieving
a lower regret. The classical UCB contains the exploration-exploitation trade-off to find

2β(t) indicates the channel selected by the user at instant t in the single-user case while in the multi-access it indicates
the selected channels by all users at slot t.
3The variable Si(t) may represent the reward of the ith channel at slot t.
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a good estimate of the channels status and converges to the best one (see Eq. (2)). In
UCB, a non-linear function for the exploration factor, Ai(t,Ti(t)), is used to ensure the
convergence:

Ai(t,Ti(t)) =
√

α ln(t)
Ti(t)

(6)

where α is the exploration-exploitation factor. The effect of α on the classical UCB is
well studied in the literature [22, 44, 45]. According to [28, 44, 46, 47], the best value
of α should be in the range of [1, 2] in order to make a balance between exploration-
exploitation epochs. However, if α decreases, the exploration factor of UCB decreases
and the exploitation factor dominates, then the algorithm converges quickly to the chan-
nel with the highest empirical reward. All previous works study the effect of Ai(t,Ti(t))
on the UCB with different values of α. In this study, we focus on another form of the
exploration factor Ai(t,Ti(t)) based on another non-linear function in order to enhance
the convergence to the best channel of the classical UCB. Different non-linear functions
of Eq. (6) with similar characteristics can be investigated. We should mention that this
function was chosen because it has two main properties:

• A positive function with respect to time t.
• An increasing non-linear function to limit the effect of the exploration.

Therefore, the square-root function introduced in Eq. (6) is widely accepted [24, 28,
46, 47] in order to restrict the exploration factor after the learning phase. Classical UCB
ensures the balance between the exploration-exploitation phases at each time slot up to
n, using two factors, Ai(t,Ti(t)) and Xi(Ti(t)). Indeed, Ai(t,Ti(t)) is used to explore chan-
nels’ availability in order to access the best one with the highest expected availability
probability Xi(Ti(t)). The classical UCB gives the same impact of the exploration factor
Ai(t,Ti(t)) at each time slot up to n. However, our proposal is based on the idea that the
exploration factor Ai(t,Ti(t)) should have an important role during the learning phase
while it becomes less important after this period. Indeed, after the learning phase, the
user will have a good estimation of channels’ availability, then it can regularly access the
best channel. Subsequently, the big challenge is to restrict Ai(t,Ti(t)) after the learning
phase by using another non-linear function with the following features:

• It should be an increasing function with a high derivative with respect to time at the
beginning to boost the exploration factor during the learning phase in order to
accelerate the estimation of channels’ availability.

• It should have a strong asymptotic behavior in order to restrict the exploration factor
Ai(t,Ti(t)) under a certain limit, when the user collects some information about
channels’ availability.

Subsequently, our study finds that the exploration factor can be adjusted by using the
arctan function which has the above features; this proposed UCB version is called AUCB.
Indeed, the arctan enhances the convergence speed to the best channel compared to the
one obtained with the square-root, and the effect of the exploration factor Ai(t,Ti(t)) can
be reduced after the learning phase. The algorithm then gives an additional weight to the
exploitation factor Xi (Ti(t)) in the maximization of the index Bi(t,Ti(t)) (see Eq. (2)). In
the next section, we will prove that AUCB’s regret has a logarithmic asymptotic behavior.
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3.1 AUCB for a single user

This section focuses on the AUCB’s regret convergence for a single user. For the sake
of simplicity with regard to the mathematical developments, the regret of Eq. (1) can be
written as:

R(n,β) =
C∑

i=1
E[Ti(n)]μ1 −

C∑

i=1
E[Ti(n)]μi

=
C∑

i=1
(μ1 − μi)E[Ti(n)] (7)

where Ti(n) represents the number of time slots that the channel i was sensed by the
SU up to the total number of slots n. According to Eq. (7), the regret depends on
the channels’ occupancy probability (for stationary channels, the availability probabil-
ities are considered as constant) and the expectation of Ti(n) which is a stationary
random variable process. Then, the upper bound of E [Ti(n)] indirectly implies the
regret’s upper bound. Subsequently, the regret of our AUCB approach under the single-
user case has a logarithmic asymptotic behavior as shown in the following equation
(see Appendix A):

R(n,AUCB) ≤ 8
C∑

i=2

[
ln(n)

�(1,i)

]
+
(
1 + π2

3

) C∑

i=1
�(1,i) (8)

where �(1,i) = μ1 − μi represents the difference between the best and worst channels.

3.2 Multi-user case under uncooperative or cooperative access

To evaluate the performance of our proposed algorithm in the multi-user case, we will
propose an uncooperative policy for the priority learning access (PLA) to manage a sec-
ondary network. We will also prove the PLA’s convergence, as well as the side channel
policies with AUCB.

3.2.1 Uncooperative learning policy for the priority access

We investigate the case where the SUs should take decisions according to their priority
ranks. In this section, we propose a competitive learning policy that can share the avail-
able spectrum among SUs. In addition, we prove the theoretical convergence of the PLA
policy with our AUCB approach. In the multi-user case, the big challenge becomes how
to collectively learn the channels’ availability for each SU; at the same time, the number of
collisions should be set below a certain threshold. Our goal is to ensure that the U users
are spread separately to the U best channels. In the classical priority access method, the
first priority user SU1 should sense and access the best channel,μ1, at each time slot, while
the target of the second priority user SU2 is to access the second best channel. To reach
this goal, SU2 should sense to find the two best channels at the same time, i.e., μ1 and μ2,
in order to compute their availabilities and thus access the second best channel if avail-
able. Similarly, the Uth user should estimate the availability of all U first best channels at
each time slot to access theUth best one. However, it is a costly and impractical method to
settle down each user to its dedicated channel. For this reason, we propose PLA where, at
each time slot, SU can sense one channel in order to find its dedicated one. In our policy,
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Algorithm 1: Priority Learning Policy (PLA) under AUCB

1 Input: α,C, n,
2 Parameters: k, ξk(t), ri(t),
3 k: indicates the kth user,
4 ξk(t): indicates a presence of collision under the kth user at the instant t,
5 ri(t): indicates the state of the ith channel at instant t,
6 % ri(t) = 1 if the channel is free and 0 otherwise,
7 Output: Bi,k(t,Ti(t)),
8 Bi,k(t,Ti(t)): represents the index of the ith channel for the kth user,
9 for t = 1 to C do

10 SUk senses each channel once,
11 SUk updates its index Bi,k(t,Ti(t)),
12 SUk generates a random rank from the set {1, ..., k},
13 for t = C to n do
14 SUk senses a channel in its index Bi,k(t,Ti(t)) according to its rank,
15 if ri(t)=1 then
16 SUk transmits its data,
17 if ξk(t)=1 then
18 SUk regenerates its rank randomly from the set {1, ..., k},
19 else
20 SUk keeps its previous rank,

21 else
22 SUk stops transmitting at the instant t,

23 SUk updates its index Bi,k(t,Ti(t)) according to eq (2).

each user has a dedicated rank, k ∈ {1, ...,U}, and its target remains the access of the kth
best channel. In PLA, each user generates a rank around its prior one to have informa-
tion about the channels availability, (see Algorithm 1). In this case, the kth user can scan
the k best channels and its target is the kth best one. However, if the generated rank of
the kth user is different than k, then it accesses a channel that has a vacancy probability
in the set {μ1,μ2, ...,μk−1} and may collide with top priority users {SU1, SU2, ..., SUk−1}.
Moreover, after each collision, SUk should regenerate its rank in the set {1, ..., k}.
Thus, after a finite number of iterations, each user settles down to its dedicated
channel.
Equation (9) shows that the expectation of collisions in the U best channels E[OU(n)]

for PLA based on our AUCB approach has a logarithmic asymptotic behavior. Therefore,
after a finite number of collisions each user may converge to its dedicated channel (see
Appendix B):

E[OU(n)]≤ 1 − p
p

[ U∑

k=2

(
8 ln(n)

�2
(k−1,k)

+ 1 + π2

3

)
+

U∑

k=1

(
8 ln(n)

�2
(k,k+1)

+ 1 + π2

3

)]
(9)

where p indicates the probability of non-collision and �(a,b) = μa − μb.
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We have also proven that the total regret of our policy PLA has a logarithmic asymp-
totic behavior. It is also worth mentioning that the upper regret bound not only depends
on the collisions among users but also on the selection of the worst channels (see
Appendix C):

RPLA(n,U ,AUCB) ≤ μ1

[ U∑

k=1

C∑

i=U+1

(
8 ln(n)

�2
(k,i)

+ 1 + π2

3

)
+ E[OU(n)]

]
(10)

The first term of the above equation reflects the selection of the worst channels while
the second one represents the reward loss due to collisions among users in the best
channels. The upper bound of the regret presented in Eq. (10) can be affected by three
parameters:

• The number of users, U, represented through the first summation, where k denotes
the kth best channels for the kth SU.

• The number of channels, C, in the second summation of the regret.
• The total number of time slots, n.

3.2.2 Cooperative learningwith side channel policy

The coordination among SUs can enhance the efficiency of their network, instead
of dealing with their partial information about the environment. To manage a coop-
erative network, we propose a policy based on the use of a side channel in order
to exchange simple information among SUs with a very low information rate. The
side channels are widely used in wireless telecommunication networks to share data
among the base-stations [48], and specifically in the context of cognitive network.
However, in [49] and [50], the authors considered the cooperative spectrum shar-
ing among PUs and SUs to enhance the transmission rate of the PUs using a side
channel.
The signaling channel in our policy is not wide enough to allow high-data rate trans-

mission unlike that used in [49] and [50] which should have a high rate to ensure the
data transmission among PUs and SUs. In our policy, the transmission is done over peri-
ods. During the first period, i.e., Sub-Slot1, SU1 (the highest priority user) searches for
the best channel by maximizing its index according to Eq. (2). At the same time, and
via the secure channel, SU1 must inform the other users to evacuate its selected channel
in order to avoid any collision with them. While avoiding the first selected channel, the
second user SU2 should repeat the same process and so on. If SU2 does not receive the
choice of SU1 in the first Sub-Slot1 (suppose that SU1 does not need to transmit during
this Sub-Slot), it can directly choose the first suggested channel by maximizing its index
Bi,2(t,Ti,2(t)).
To the best of our knowledge, all proposed policies, such as SLK, kth MAB consider a

fixed priority, i.e., the kth best channel is reserved for the kth user all the time. Later on, if
SU1 does not transmit for a certain time, then other users cannot select better channels.
Subsequently, the main advantages of the cooperation in this policy are as follows:

• An efficient use of the spectrum where best channels are constantly accessed by users.
• An increase in the transmission time of users by avoiding the collision among them.
• Reaching a lower regret compared to several existing policies.
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Hence, AUCB’s regret under the side channel policy can achieve a logarithmic efficiency
according to the following equation (see Appendix D):

RSC(n,U ,AUCB) ≤
U∑

k=1

C∑

i=U+1

⎡

⎢⎢⎢⎣
8 ln(n)

�(k,i)︸ ︷︷ ︸
Term1

+ �(k,i)

(
1 + π2

3

)

︸ ︷︷ ︸
Term2

⎤

⎥⎥⎥⎦ (11)

where �(k,i) = μk − μi. k and i, respectively, represent the best and worst channels. The
upper bound of this regret contains two terms:

• Term 1 achieves a logarithmic behavior over time.
• Term 2 depends on the vacant channels.

3.3 Quality of service of AUCB

In [12], we study UCB’s quality of service (QoS) for the restless model. The QoS has been
studied for both single and multi-users cases using the random rank policy proposed in
[23] to manage a secondary network. Based on the QoS-UCB, the user is able to learn
channels’ availability and quality.
In this work, we also study the QoS of AUCB using our proposed PLA policy for the

priority access of the i.i.d. channels. Supposing that each channel has a binary quality rep-
resented by qi(t) at the slot t: qi(t) = 1 if the channel has a good quality and 0 otherwise.
Then, the expected quality collected from the channel i up to n is given as follows:

Gi(Ti(n)) = 1
Ti(n)

Ti(n)∑

τ=1
qi(τ ) (12)

The global mean reward, that takes into account all channels’ quality and availability, can
be defined as follows [12]:

μ
Q
i = Gi(Ti(n)).μi (13)

The index assigned to the ith channel that takes into account the availability and quality
of the ith channel can be defined by:

BQ
i (t,Ti(t)) = Xi(Ti(t)) − Qi(t,Ti(t)) + Ai(t,Ti(t))) (14)

According to [12], the term Qi(t,Ti(t)) that represents the quality factor is given by the
following equation:

Qi(t,Ti(t)) = γMi(t,Ti(t)) ln(t)
Ti(t)

where the parameter γ stands for the weight of the quality factor; Mi(t,Ti(t)) =
Gmax(t) − Gi(Ti(t)) being the difference between the maximum expected quality over
channels at time t, i.e., Gmax(t), and the one collected from channel i up to time
slot t, i.e., Gi(Ti(t)). However, when the ith channel has a good quality Gi(Ti(t)) as
well as a good availability Xi(Ti(t)) at time t. Then, the quality factor Qi(t,Ti(t))
decreases while Xi(Ti(t)) increases. Subsequently, by selecting the maximum of its index
BQ
i (t,Ti(t)), the user has a large choice to access the ith channel with a high quality and

availability.
To conclude this part, a comparative study in terms of the complexity and convergence

speed to the optimal channel has been presented in Table 2 for UCB, AUCB, QoS-UCB,
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Table 2 Algorithms complexity

Learning algorithms Running time complexity Selection criteria Theoretical
guarantee

Convergence
speed

UCB [28] O(n(5C + 4)) Availability Yes Medium

AUCB O(n(6C + 4)) Availability Yes Fast

QoS-UCB [12] O(n(8C + 6)) Availability and quality Yes Medium

QoS-AUCB O(n(9C + 6)) Availability and quality No Fast

and QoS-AUCB. The latter algorithms behave in O(nC) for large n and C that repre-
sent the number of time slots and channels, respectively. Despite the low complexity of
UCB compared to AUCB, this latter can quickly converge to the optimal channel with the
highest availability probability.

4 Results and discussion
4.1 AUCB’s performance

In our simulations, we will consider that the SU can access a single-available channel at
each time slot to transmit its data. In this section, we investigate AUCB’s performance for
both single and multi-users cases. Many simulations have been conducted using Monte
Carlo methods.

4.1.1 Single user tests

At first, let us consider the simple case of a single SU and let channels’ availability be
represented by � =[ 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.3 0.25 0.1]. The percentage of times,
Pbest, that the SU selects the optimal channel is given by:

Pbest = 100 ×
n∑

t=1

1(β(t)=μ1)

t

where

1(a=b) =
{

1 if a = b
0 otherwise

In Fig. 1, Pbest shows three parts:

• The first part from 1 to C represents the initialization where the SU plays each
channel once to obtain a prior knowledge about the availability of each channel.

Fig. 1 Pbest of the two approaches
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• The second part from C+1 to 2000 slots represents the adaptation phase.
• In the last part, the user asymptotically converges towards the optimal channel μ1.

After the initialization part, the two curves evolve in a similar way. After hundreds of
slots, the proposed AUCB outperforms the classical UCB. AUCB achieved 65% of the best
channel in about 1000 slots, while classical UCB achieved only 45%.
Figure 2 shows AUCB and UCB’s regret factor, evaluated according to Eq. (1) for a single

user. As shown in this figure, the regret has a logarithmic asymptotic behavior for the
two approaches over time. This result can confirm the theoretical upper bound of regret
calculated in Eq. (8) and also presented in Fig. 2, where the upper bound of regret is
logarithmic. The same figure shows that AUCB produces a lower regret compared to the
classical UCB. This means that our algorithm can rapidly recognize the best channel while
the classical UCB required more time to find it.
Figure 3 shows the number of times that the two algorithms sense the sub-optimal chan-

nels up to time n. For worst channels, our approach and classical UCB have approximately
the same behavior. On the other hand, for almost optimal channels (in our example, chan-
nels 2 and 3 which respectively have the availability probabilities of 0.8 and 0.7), the UCB
could not clearly switch to the optimal channel and spends a lot of time exploring the
almost optimal ones.
Figure 4 evaluates AUCB and UCB’s performance with respect to various values of the

exploration-exploitation factor α in the interval ]1, 2]. This figure shows that our approach
outperforms the classical UCB and achieves a lower regret. Moreover, by increasing α, the
classical UCB spends more time to explore the channels in order to find the best channel
while our approach can reach the best one with a lower number of slots. The latter result,
increases the transmission opportunities for the SU, subsequently decreasing the total
regret. In the following sections, we will consider α = 1.5.

4.1.2 Multiple SUs tests

In this section, we consider U = 3 with C = 10 channels and their availabilities are
given by:

� =[ 0.9 0.8 0.7 0.6 0.5 0.45 0.4 0.3 0.2 0.1]. Figure 5 shows the comparison between the
regret under the multi-user case defined in Eq. (5) for the two approaches (i.e., UCB and
AUCB) under the random rank policy [23]. The latter was used under the UCB; however,

Fig. 2 Regret of the two approaches
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Fig. 3 Access sub-optimal channels of the two approaches

it is easy to implement this policy under AUCB to study both algorithms’ performance in
the multi-user case.
In the random rank policy, when a collision occurs among the users, each of them

should generate a random rank in {1, ...,U}. Although, both approaches’ regret achieves a
logarithmic asymptotic behavior, our algorithm achieves a lower asymptotical regret and
converges faster than the classical UCB.
Under the random rank policy, Fig. 6 shows the number of collisions in the U best

channels (1, 2, and 3 having availability probabilities of 0.9, 0.8, and 0.7, respectively)
for AUCB and classical UCB. Let us remind that, when a collision occurs among users,
no-transmission can be achieved and each of them should generate a random rank
∈ {1, ...,U}. The same figure shows that the number of collisions under a random rank
policy with AUCB or classical UCB is quite similar. This can be justified based on a nice
random rank policy property; indeed, this policy does not favor any user over another.
Therefore, each user has an equal chance of settling down in any of U-best channels. In
other word, the random rank policy can naturally achieve a probabilistic fairness access

Fig. 4 Regret of the two approaches with different values of α
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Fig. 5 Regret comparison for two approaches under the random rank policy

among users. Moreover, in the case of AUCB, the user switches to the optimal chan-
nel faster than in the classical one, as shown in Fig. 3 for the single-user case. This fact
decreases the number of collisions among users.
Figure 7 depicts the regret of AUCB and classical UCB under the side channel policy.

As expected, both approaches’ regret increase rapidly at the beginning. At a later time,
the increase is slower for the AUCB compared to the classical one. We thus notice that
our algorithm presents the smaller regret.

4.2 The performance of the PLA policy

This section investigates the performance of the PLA policy under AUCB and UCB
compared to the musical chair [31] and SLK [33], and 4 priority users are considered to
access the channels based on their prior rank. We then compare UCB and AUCB’s QoS
based on the PLA policy.

Figure 8 compares the regret of PLA to SLK and the musical chair policies on a set of
9 channels where PLA achieves the lower regret under AUCB. It is worth mentioning
that our policy and SLK take into account the priority access while in the case of the
musical chair, users access the channels randomly. As shown in Fig. 8, the musical chair
produces a constant regret after a finite number of slots while other methods’ regret is
logarithmic. However, during the learning time T0 in the case of the musical chair, the

Fig. 6 Number of collisions in the best channels under the random rank policy



Almasri et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:145 Page 17 of 31

Fig. 7 Regret comparison for two approaches under the side channel policy

users randomly access the channels to estimate their availability probabilities as well as
the number of users, after that the users just access the U best channels in the long run.
Consequently, the musical chair does not follow the dynamism of channels (e.g., assuming
that the vacancy probabilities can change with time). The same figure shows that SLK
achieves the worst regret.
In Table 3, we compare the regret of the four methods with a fixed number of SUs

(U = 4) and different number of channels (C = 5, 9, 13, 17, and 21). As the users spend
more time to learn the availability of channels, the regret may increase significantly. This
result is due to the access to worst channels and to the collision produced among users.
As shown in Table 3, the regret increases with the number of channels, while our PLA
policy under AUCB achieves the lowest regret for different considered scenarios (i.e., C
= 5, 9, 13, 17, and 21). Thanks to the fact that, under our policy, the SUs quickly learn
channels’ vacancy probabilities compared to the others.
To study AUCB’s QoS, let us define the empirical mean of the quality collected from

channels as follows: G =[ 0.75 0.99 0.2 0.8 0.9 0.7 0.75 0.85 0.8], then the global mean
reward that takes into account the quality as well as the availability �Q can be given by:
�Q =[ 0.67 0.79 0.14 0.48 0.37 0.28 0.22 0.17 0.08]. After estimating channels’ availabil-
ity and quality (i.e., �Q) and based on the PLA policy, the first priority user SU1 should
converge to the channel that has the highest global mean, i.e., channel 2, while the target

Fig. 8 PLA, SLK, and musical chair regret
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Table 3 Regret comparison in the multi-user case with n = 105 using the four algorithms PLA-AUCB,
PLA-UCB, musical chair, and SLK with a changing number of channels

Number of PLA- PLA- Musical SLK

channels (C) AUCB UCB chair

5 968 4769 1702 6790

9 1192 5391 4213 7241

13 1413 6332 5769 8361

17 1741 7466 7202 9313

21 2089 8823 8636 10570

of SU2, SU3, and SU4 should respectively be channels 1, 4, and 5. This result can be con-
firmed in Fig. 9, where the priority users access their dedicated channels in the case of
QoS-UCB or QoS-AUCB.Moreover, QoS-AUCB significantly grants users access of their
dedicated channels more often than in QoS-UCB.
Figure 10 diplays the achievable regret of QoS-AUCB and QoS-UCB in the multi-user

case. In [12], the performance of QoS-UCB in the restless MAB problem is compared to
several learning algorithms, such as the regenerative cycle algorithm (RCA) [51], the rest-
less UCB (RUCB) [52], and Q-learning [53] where Qos-UCB achieved the lowest regret.
From Fig. 10, one can notice that the QoS-AUCB policy achieves better performance
compared to QoS-UCB.

4.3 AUCB compared to Thompson sampling

Thompson sampling has shown its superiority to a variety of versions of UCB and other
bandit algorithms [35]. Instead of comparing different versions of UCB to AUCB, in this
section, we will study TS and AUCB’ performance in the multi-user case based on the
PLA policy for the priority access. We will thus use two factors to make this comparison:
access the best channels by each user and the regret that depends not only on the selection
of worst-channels but also on the number of collisions among users.
In Fig. 11, we display Pbest (the percentage of times where the priority users access suc-

cessfully their dedicated channels) and the cumulative regret using the PLA policy for 4
SUs based on AUCB, UCB, and TS.

Fig. 9 Access channels by the priority users using QoS-AUCB and QoS-UCB
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Fig. 10 QoS-AUCB and QoS-UCB regret

In Figs. 11a, b, the first priority user SU1 converges to its channel, i.e., the best one,
followed by SU2, SU3, and SU4, respectively. Figure 11c compares Pbest of the first prior-
ity user under AUCB and TS. According to this figure, the first priority user can quickly
converge to its dedicated channel using the AUCB algorithm while in the case of TS, the
user needs more time to find the best channel. Figure 11d compares the regret of AUCB,
UCB, and TS in the multi-user case using the PLA policy for the priority access. How-
ever, in TS algorithm, users have to spend more time exploring the C−U worst channels;
while in AUCB’s case, the users reach quickly their desired channels. However, a lower
regret can increase the successful opportunities of transmission for users. Moreover,
selecting dedicated channels in a short period becomes a significant event in a dynamic
environment.

5 Conclusion
In this paper, we investigated the problem of opportunistic spectrum access (OSA) in

cognitive radio networks, where a SU tries to access PUs’ channels and find the best avail-
able channel as fast as possible. We also proposed a new AUCB algorithm to achieve a
logarithmic regret with a single user. On the other hand, to evaluate AUCB’s performance
in the multi-user case, we proposed a learning policy called PLA for secondary networks
that takes into account the priority access. We have also investigated PLA’s performance
compared to recent works, such as SLK and themusical chair.We have theoretically found
the upper bounds for AUCB’s total regret for a single user as well as for themulti-user case
under the proposed policy. Our simulation results show logarithmic regret under AUCB

Fig. 11 The performance of AUCB, UCB, and TS
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and corroborate AUCB’s performance compared to UCB or TS. It has also been shown
that AUCB rapidly converges to the best channel while achieving a lower regret, improv-
ing the transmission time and rate of SUs. Moreover, PLA under AUCB can decrease the
number of collisions among users under the competitive scenario, thanks to a faster esti-
mation of the channels’ vacancy probability.
Like most important works in OSA, this work focused on the independent identical dis-
tributed (IID) model in which the state of each channel is supposed to be drawn from an
IID process. In future work, we are planning to consider theMarkov process that may rep-
resent a dynamic memory model to describe the state of available channels; however, it is
a more complex process compared to IID. Moreover, our actual model ignores dynamic
traffics at the secondary nodes; therefore, the extension of our algorithm to include a
queueing-theoretic formulation is desirable.
For a more realistic model, the future work will also investigate the effects of using the
state of the art of spectrum sensing techniques to detect the activity of the primary
users on the performance of the learning and decision-making. Moreover, considering
the imperfect sensing, i.e., the probability of false alarm and miss detection, represents a
new challenge to developing a more realistic network.

Appendix A: Convergence proof of AUCB
In this Appendix, we show that the upper bound of the regret of AUCB is logarithmic with
respect to time that means that after a finite time, the user will luckily find and access the
best channel with the availability μ1. The regret for a single user up to the total number
of slots n under a policy β can be expressed as follows:

R(n,β) =
C∑

i=1
(μ1 − μi)E [Ti(n)] (15)

where C represents the number of channels; μ1 and μi being the availability proba-
bilities of the best channel and ith worst one respectively; E(.) represents the math-
ematical expectation; Ti(n) is the number of times that the ith channel has been
sensed by the user up to n. According to Eq. (15) and with constant availabili-
ties of channels, the upper bound of Ti(n) can contribute to find an upper bound
of R(n,β).
Normally, the user senses the ith channel during the initialization stage and every time

β(t) = i, and where β(t) represents the selected channel at the instant t under the policy
β ; then, Ti(n) can be expressed as follows:

Ti(n) = 1 +
n∑

t=C+1
1{β(t)=i} (16)

where the logic operator 1{β(t)=i} equals one if β(t) = i and zero otherwise. Let us con-
sider that a SU senses at least l times each channel up to n, then according to Eq. (16),
Ti(n) should be bounded as follows:

Ti(n) ≤ l +
n∑

t=C+1
1{β(t)=i;Ti(t−1)≥l} (17)

As AUCB selects at each time slot the channel with the highest index obtained in the
previous slot, the user may access, at the slot t, a non-optimal channel if the index of
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this channel at (t − 1), Bi(t − 1,Ti(t − 1)), is higher than the index of the best channel
Bi(t − 1,T∗(t − 1)). In this case, we can develop further Eq. (17) as follows:

Ti(n) ≤ l +
n∑

t=C+1
1{Bi(t−1,T∗(t−1))<Bi(t−1,Ti(t−1));Ti(t−1)≥l} (18)

According to Eq. (2), the index of channels Bi(t,Ti(t)) = Xi(Ti(t)) + Ai(t,Ti(t)) is
based on:

• The exploitation factor Xi(Ti(t)) representing the expected availability probability.
• The exploration factor Ai(t,Ti(t)) that forces the algorithm to explore different

channels. This factor under AUCB is defined as follows:
Aa (t,Ti(t)) = arctan

(
α ln(t)
Ti(t)

)
,

Using Eq. (18), we can prove that:

Ti(n) ≤ l +
n∑

t=C+1
1{Xi(T∗(t−1))+Aa(t−1,T∗(t−1))<

Xi(Ti(t−1))+Aa(t−1,Ti(t−1));Ti(t−1)≥l}
(19)

The summation argument in the above equation follows Bernoulli’s distribution (i.e.,
E{X} = P{X = 1}). In this case, the expectation of Ti(n) should satisfy the following
constraint:

E[Ti(n)]≤ l +
n∑

t=C+1
P
{
Xi(T∗(t − 1))+

Aa(t − 1,T∗(t − 1)) < Xi(Ti(t − 1))+
Aa(t − 1,Ti(t − 1)) and Ti(t − 1) ≥ l}

(20)

The probability in Eq. (20) becomes:

Prob = P
{
Xi(T∗(t − 1)) − Xi(Ti(t − 1)) ≤

arctan
(

α ln(t)
Ti(t − 1)

)
− arctan

(
α ln(t)

T∗(t − 1)

)

and Ti(t − 1) ≥ l
}

(21)

After the learning period where Ti(t − 1) ≥ l, the user will have a good estima-
tion of channels availability and thus may access regularly the best channel. Therefore,
Ti(t − 1) � T∗(t − 1); and arctan

(
α ln(t)
Ti(t−1)

)
≥ arctan

(
α ln(t)
T∗(t−1)

)
. Using the asymptotic

behaviors of the non-linear functions sqrt and arctan, the probability in Eq. (21) becomes
bounded by:

Prob ≤ P
{
Xi(T∗(t − 1)) − Xi(Ti(t − 1)) ≤

√
α ln(t)

Ti(t − 1)
−
√

α ln(t)
T∗(t − 1)

andTi(t − 1) ≥ l
} (22)
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By taking the minimum value of Xi(T∗(t − 1)) +
√

α ln(t)
T∗(t−1) and the maximum value of

Xi(Ti(t − 1)) +
√

α ln(t)
Ti(t−1) at each time slot, we can upper bound Eq. (20) by the following

equation:

E[Ti(n)]≤ l +
n∑

t=C+1

P
{

min
0<S∗<t

[
Xi
(
S∗)+

√
α ln(t)
S∗

]
≤

max
l≤Si<t

[
Xi(Si) +

√
α ln(t)
Si

]}

(23)

where Si ≥ l to fulfill the condition Ti(t − 1) ≥ l. Then, we obtain:

E[Ti(n)]≤ l +
n∑

t=1

t−1∑

S∗=1

t−1∑

Si=l

P
{
Xi(S∗) + Ai(t, S∗) < Xi(Si) + Ai(t, Si)

}
(24)

The inequality Xi(S∗) + Ai(t, S∗) < Xi(Si) + Ai(t, Si) is satisfied when at least one
inequality among the three following ones does:

Xi
(
S∗) ≤ μ1 − Ai

(
t, S∗) (25a)

Xi(Si) ≥ μi + Ai(t, Si) (25b)

μ1 < μi + 2Ai(t, Si) (25c)

In fact, if all three inequalities are wrong, then we should have:

Xi
(
S∗)+ Ai

(
t, S∗) > μ1 ≥ μi + 2Ai(t, Si)

> Xi(Si) + Ai(t, Si)

which gives a contradiction with the inequality (24). Using the ceiling operator �	, let
l = � 4α ln(n)

�2
(1,i)

	, where �(1,i) = μ1 − μi and Si ≥ l, then Eq. (25c) becomes false, in fact:

μ1 − μi − 2Ai(t, Si) = μ1 − μi − 2

√
α ln(t)
Si

≥ μ1 − μi − 2
√

α ln(n)

l
≥ μ1 − μi − �(1,i) = 0

Based on Eqs. (24), (25a), and (25b), we obtain:

E[Ti(n)]≤
⌈
4α ln(n)

�2
(1,i)

⌉
+

n∑

t=1

t−1∑

S∗=1

t−1∑

Si=l
{
P
{
Xi(S∗) ≤ μ1 − Ai(t, S∗)

}+
P {Xi(Si) ≥ μi + Ai(t, Si)}

}

(26)
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Using Chernoff-Hoeffding bound4 [54], we can prove that:

P
{
Xi(S∗) ≤ μ1 − Ai(t, S∗)

} ≤ exp
−2
S∗
[
S∗
√

α ln(t)
S∗

]2

= t−2α (27)

P {Xi(S) ≥ μi + Ai(t, Si)} ≤ exp
−2
Si

[
Si
√

α ln(t)
Si

]2

= t−2α (28)

The two equations above and Eq. (26) lead us to:

E[Ti(n)] ≤
⌈
4α ln(n)

�2
(1,i)

⌉
+

n∑

t=1

t−1∑

S∗=1

t−1∑

Si=l
2t−2α

≤ 4α ln(n)

�2
(1,i)

+ 1 + 2
n∑

t=1
t−2α+2 (29)

According to Cauchy series [55], the parameter α should be higher than 3
2 in order to find

an upper bound of the second term in the above equation. Let α = 2, to resolve
n∑

t=1
t−2

we consider the Taylor’s series expansion of sin(t):

sin(t) = t − t3

3!
+ ... + (−1)2k+1 t2k+1

(2k + 1)!
+ ... (30)

As sin(t) = 0 when t = ±kπ , then we obtain:

sin(t) = t ×
(
1 − t2

π2

)
× ... ×

(
1 − t2

k2π2

)
...

= t −
( n∑

i=1

1
i2π2

)
t3 + ...

where qk is a general coefficient. By comparing the above equationwith Eq. (30), we obtain
n∑

i=1

1
i2 = π2

3! . Finally, we obtain the upper bound of E[Ti(n)] as follows:

E[Ti(n)]≤ 8 ln(n)

�2
(1,i)

+ 1 + π2

3
(31)

Appendix B: Upper bound the collision number under PLA
Here, we show that the total number of collisions occurs among secondary users in the

U best channels, OU(n) =
U∑
k=1

Ok(n), under our policy PLA has a logarithmic asymptotic

behavior. In this case, after a finite number of collisions, the users may converge to their

dedicated channels, the U best ones. Let OC(n) =
C∑
i=1

Oi(n) be the total number of col-

lisions encountered by users in all channels, where C represents the number of available
channels. Let Dk(n) be the total number of collisions under the kth priority user in all
channels. To clarify our idea, Table 4 presents a case study with corresponding Dk(n) and
Ok(n). E[OU(n)] can be expressed as follows:

4According to [54], Chernoff-Hoeffding theorem is defined as follows: Let X1, ...,Xn be random variables in [0,1], and

E[Xt]= μ, and let Sn =
n∑

i=1
Xi . Then, ∀ a ≥ 0, we have P{Sn ≥ nμ + a} ≤ exp

−2a2
n and P{Sn ≤ nμ − a} ≤ exp

−2a2
n .
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Table 4 Two SUs access three available channels

SU1 SU2 DSU1(t) DSU2(t) OC1(t) OC2(t) OC3(t)
t=1 C1 C1 1 1 2 0 0

t=2 C2 C3 0 0 0 0 0

t=3 C2 C2 1 1 0 2 0

t=4 C3 C2 0 0 0 0 0

t=5 C3 C3 1 1 0 0 2

t=6 C1 C1 1 1 2 0 0

In this case, the total number of collisions for the two users is D(n) =
U∑

k=1
Dk(n) = DSU1(n) + DSU2(n). The number of collisions in

all channels produced by the users is OC(n) =
C∑
i=1

Oi(n) = OC1(n) + OC2(n) + OC3(n), while the number of collisions in the best

channels, i.e., C1 and C2, is OU(n) =
U∑

k=1
Ok(n) = OC1(n) + OC2(n)

E[OU(n)] =
U∑

k=1
E[Ok(n)]≤

C∑

i=1
E[Oi(n)]

=
U∑

k=1
E[Dk(n)] (32)

We assume that when users have a good estimation of channel availabilities and each
one accesses its dedicated channel, then non-collision state can be achieved. On the other
hand, the kth user may collide with other users in two cases:

• If it does not clearly identify its dedicated channel.
• If it does not respect its prior rank5.

Let T ′
k(n) and Ss be respectively the total number of times, where the kth user

badly identifies its dedicated channel and the time needed to return to its prior rank.
After each bad estimation, the user will change its dedicated channel. In this case, it
may collide with other users till the convergence to its prior rank. Subsequently, for
all values of n, the total number of collisions for the kth user Dk(n) can be upper
bounded by:

Dk(n) ≤ T
′
k(n)Ss (33)

As T ′
k(n) and Ss are independent, we have:

E[Dk(n)]≤ E[T
′
k(n)]E[ Ss] (34)

Let us find an upper bound of E[T ′
k(n)], and let Ak(t) be the event that the kth user

identifies its dedicated channel, the kth best one, at the instant t. Then, ∀ k + 1 ≤ i ≤ C
and 1 ≤ m ≤ k − 1, the event Ak(t) takes place when the following condition is
satisfied:

Ak(t) : Bi(t) ≤ Bk(t) ≤ Bm(t)

For a bad estimation event at instant t, ∃ i ∈ {k + 1, ...,C} and ∃ m ∈ {1, ..., k − 1}, Āk(t)
is true when we have the following condition:

Āk(t) : [Bi(t) > Bk(t)] or [Bk(t) > Bm(t)]

5After each collision and according to our policy PLA, the user should regenerate a rank.
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Then, the total number of times of a bad estimation where the kth priority user does
not access its channel up to n, E

[
T ′
k(n)

]
, can be upper bounded as follows:

E
[
T

′
k(n)

]
≤ E

[
TBi>Bk (n)

]+ E
[
TBm<Bk (n)

]
(35)

where TBi>Bk (n) represents the number of times in which the index of the ith channel
exceeds that of the kth best one for all i ∈ {k + 1, ...,C} up to n; and TBm<Bk (n) repre-
sents the number of times in which the index of the kth best channel exceeds the mth
one for all m ∈ {1, ..., k − 1}. It is worth mentioning that, for the first priority user,
E
[
TBm<Bk (n)

]
should equal 0, since its dedicated channel has the highest availability

probability. TBi>Bk (n) for the kth user has the similar definition as in Eq. (31) for a single
user, then this term, for the kth user, can be upper bound as in Appendix A by:

E
[
TBi>Bk (n)

] ≤ 8 ln(n)

�2
(k,i)

+ 1 + π2

3
(36)

where �(k,i) = μk − μi. As μi ≤ μk+1 for all i ∈ {k + 1, ...,C} and μk ≥ μk+1 ≥ ... ≥ μC ,
then �(k,i) ≥ �(k,k+1). Subsequently, E

[
TBi>Bk (n)

]
can be upper bounded by:

E
[
TBi>Bk (n)

] ≤ 8 ln(n)

�2
(k,k+1)

+ 1 + π2

3
(37)

Similarly, the second term E[TBm<Bk (n)] in Eq. (35) should satisfy:

E
[
TBm<Bk (n)

] ≤ 8 ln(n)

�2
(m,k)

+ 1 + π2

3
(38)

where �(m,k) ≥ �(k−1,k) for allm ∈ {1, ..., k − 1}. Then, we obtain,

E
[
TBm<Bk (n)

] ≤ 8 ln(n)

�2
(k−1,k)

+ 1 + π2

3
(39)

Based on Eq. (35), (37), and (39), E
[
T ′

(n)
]
can be expressed as follows:

E
[
T

′
(n)
]

≤
U∑

k=1

(
8 ln(n)

�2
(k,k+1)

+ 1 + π2

3

)
+

U∑

k=2

(
8 ln(n)

�2
(k−1,k)

+ 1 + π2

3

)
(40)

Let us estimate the time Ss and let us consider U users with different priority levels
based on our policy PLA. At a certain moment, supposing that each user has a random
rank, then at least two of them may have the same rank, and a collision may occur. In this
case, each user with a collision case should regenerate a random rank around its prior
rank6. After a finite number of collisions, the system will converge to the steady state
where each user has a unique rank, i.e., its prior rank. Let Ss be a random variable with a
countable set of finite outcomes 1,2,... occurring with the probability p1, p2... respectively,
where pt represents a non-collision at instant t. The expectation of Ss can be expressed as
follows:

E [Ss] =
∞∑

t=1
tp[ Ss = t] (41)

where the random variable Ss follows the probability p[ Ss = t]:

p[ Ss = t]= (1 − p)tp

6For SUk , it should regenerate a rank in the set {1, ...k}.
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Table 5 Three SUs trying to converge towards a steady state where each one finds its prior rank. The
roman number indicates the number of users selecting the same rank

Cases Rank 1 Rank 2 Rank 3

1 | || 0

2 ||| 0 0

3 | | |
4 || | 0

5 || 0 |

and p indicates the probability of non-collision at an instant t, while (1− p)t indicates the
probability of having collisions from the instant 0 till t − 1. Then, we obtain:

E[ Ss]=
∞∑

t=1
t(1 − p)tp (42)

Let Ia(x) be defined as follows:

Ia(x) = (1 − a)
∞∑

t=1
(ax)t (43)

where a is a constant number such that ax < 1. I(x) can converge to:

Ia(x) = (1 − a)ax
1 − ax

Based on the previous equation, we have:
dIa(x)
dx

= (1 − a)a
(1 − ax)2

Using the previous equation, we obtain:
dIa(x)
dx

∣∣∣
x=1

= a
(1 − a)

(44)

Considering that a = 1−p, we conclude that E[ Ss]= 1−p
p . To clarify the idea and estimate

the probability p, we consider that three SUs are trying to find their prior rank where
the Table 5 displays all the possible cases. Subsequently, the probability to converge to a
steady state, i.e., the case 3, is p = 1

5 , and E[ Ss]= 4.
To estimate the value of p as well E[ Ss], let us introduce the problem suggested in [[56]

Chapter 5] , to count the number of ways of putting U identical balls into U different
boxes. According to [[56] Chapter 5] , the probability p to converge to a steady state where
each box has just one ball is p = 1

( U
2U−1)

and E[ Ss]=
( U
2U−1

) − 1. However, our problem
of convergence to a steady state represents a restricted case of the problem introduced in
[56]. Then, the expected time to converge to a steady state of our policy PLA for U SUs
can be upper bounded by:

E[ Ss]≤
(

U
2U − 1

)
− 1 (45)

Based on Eqs. (32), (34), (40), and (45) the total number of collisions in the best channels
for U SUs can be upper bounded by:

E[OU(n)]≤
[(

U
2U − 1

)
− 1
]

.
[ U∑

k=1

(
8 ln(n)

�2
(k,k+1)

+ 1 + π2

3

)
+

U∑

k=2

(
8 ln(n)

�2
(k−1,k)

+ 1 + π2

3

)] (46)



Almasri et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:145 Page 27 of 31

The above equation shows that there is a finite number of collisions in the U best
channels for PLA based on AUCB before each user converges to its dedicated channel.

Appendix C: Upper bound the regret of PLA under AUCB
The global regret under the multi-user case according to Eq. (5) can be defined as follows:

R(n,U ,β) = n
U∑

k=1
μk −

U∑

j=1

C∑

i=1
E
[
Pi,j(n)

]
μi (47)

where μk is the availability probability of the kth best channel and Pi,j(n) represents the
total number of non-collision up to n in the channel i for user j. Let Ti,j(n) be the total

number of times where the jth user senses the ith channel up to n. Let Ti(n) =
U∑
j=1

Ti,j(n)

and Pi(n) =
U∑
j=1

Pi,j(n) represent, respectively, the total number of times, where the ith

channel is sensed by all users, and the total number of times, where the users access
the ith channel without making any collision with each other up to n. Let Ok(n) be
the number of collisions in the kth best channel (as defined at the beginning of the
Appendix B). Based on Tk(n) and Pk(n) for the kth best channel (Tk(n) and Pk(n) rep-
resent, respectively, the total number of times where the kth best channel is sensed
by all users and the total number of times where the users access the kth best chan-
nel without making any collision with each other up to n), Ok(n) can be expressed as
follows:

Ok(n) = Tk(n) − Pk(n) (48)

It is worth mentioning that the number of channels C should be higher than the number
of users U, otherwise:

• Using a learning algorithm to find the best channels does not make any sense, since
all channels need to be accessed.

• Considering that the user should sense one channel at each time slot, at least one
collision may occur among users, then users cannot converge to free-collision state
under any learning policy.

Subsequently, by supposing that C ≥ U and μ1 ≥ μi, ∀ i, we can upper bound the regret
in Eq. (47) of our policy PLA under our algorithm AUCB by the following equation:

RPLA(n,U , AUCB) ≤ n
U∑

k=1
μk −

U∑

k=1
μkE [Pk(n)] ≤ μ1

(
Un −

U∑

k=1
E [Pk(n)]

)

At each time slot, the user can sense one channel, then we can consider that:
C∑

i=1

U∑

j=1
Ti,j(n) =

C∑

i=1
Ti(n) = Un (49)

Based on the above expression, the regret can be expressed as follows:

RPLA(n,U ,AUCB) ≤ μ1

( C∑

i=1
E [Ti(n)] −

U∑

k=1
E [Pk(n)]

)
(50)
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We can break
C∑
i=1

E [Ti(n)] into two terms:

C∑

i=1
E[Ti(n)]=

U∑

k=1
E [Tk(n)] +

C∑

i=U+1
E[Ti(n)] (51)

Based on Eq. (50) and (51), we obtain the following equation:

RPLA(n,U , AUCB) ≤ μ1

[( C∑

i=U+1
E[Ti(n)]

)
+ E[OU(n)]

]
(52)

It is worth mentioning that the global regret in the multi-user case depends on the
selection of worst channels as well as the number of collisions among users. However,
Eq. (52) confirms the definition of the regret where the first term Ti(n) represents the
access of worst channels for all users, and the second term OU(n) is the number of
collisions for all users in the U best channels. In order to bound the regret, we need
to bound the two terms E [Ti(n)] and E [OU(n)]. In Eq. (31), we calculated the upper
bound of E[Ti(n)] for a single user. In fact, E[Ti(n)] in Appendix A has the same
properties of E[Ti,j(n)] in the multi-user case. The difference is that, in the single-user
case μi ∈ {μ2,μ3, ...,μC} while in the multi-user case, and according to Eq. (52), μi
should be in {μ(U+1),μ(U+2), ...,μC}. Therefore, for each user in the multi-user case,
we obtain:

E
[
Ti,1(n)

] ≤ 8 ln(n)

�2
(1,i)

+ 1 + π2

3
...

E
[
Ti,U(n)

] ≤ 8 ln(n)

�2
(U ,i)

+ 1 + π2

3

Consequently, the upper bound of E[Ti(n)] for all users becomes:

E[Ti(n)]=
U∑

j=1
E
[
Ti,j
] ≤

U∑

k=1

[
8 ln(n)

�2
(k,i)

+ 1 + π2

3

]
(53)

Finally, based on Eqs. (46), (52), and (53), the global regret of users for AUCB and under
PLA can be expressed as follows:

RPLA(n,U , AUCB) ≤

μ1

[ U∑

k=1

C∑

i=U+1

(
8 ln(n)

�2
(k,i)

+ 1 + π2

3

)
+

1 − p
p

[ U∑

k=2

(
8 ln(n)

�2
(k−1,k)

+ 1 + π2

3

)
+

U∑

k=1

(
8 ln(n)

�2
(k,k+1)

+ 1 + π2

3

)]]

(54)

The above regret contains three components: The first one is due to the loss of reward
when selecting worst channels by all users. The second and third components represent
the loss of reward due to collisions among users in the U best channel. In fact, the regret
of PLA is worse than the regret under the side channel policy that will be introduced in
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Appendix D, Eq. (60). Indeed, the cooperation among the SUs under the side channel can
avoid the collisions and achieve a lower regret compared to PLA.

Appendix D: Upper bound the regret of the side channel under AUCB
In this section, we prove that the upper bound of regret of our algorithm AUCB
for the multi-user case under the side channel policy has a logarithmic asymp-
totic behavior. In this policy, we supposed that no-collision occurs among users
when the priority user broadcast the choice of its channel, without considering that
the broadcast packet of the priority user may loss. However, considering the lat-
ter scenario may add some constant values to the regret as a result of the colli-
sions among users so that the regret under the cooperative access can be defined
as below:

RSC(n,U ,AUCB) = n
U∑

k=1
μk −

C∑

i=1

U∑

j=1
μiE

[
Ti,j(n)

]
(55)

According to Eq. (49), we obtain:
C∑

i=1

U∑

j=1
E
[
Ti,j(n)

] =
C∑

i=1
E [Ti(n)] = Un (56)

Based on Eqs. (55) and (56), the regret can be expressed as follows:

RSC(n,U ,AUCB) = 1
U

U∑

k=1

C∑

i=1
μkE [Ti(n)] −

C∑

i=1
μiE[Ti(n)]

= 1
U

U∑

k=1

C∑

i=1
(μkE[Ti(n)]−μiE[Ti(n)] )

= 1
U

U∑

k=1

C∑

i=1
E [Ti(n)]�(k,i) (57)

where �(k,i) = μk − μi, k and i represent, respectively, the kth best channel and the ith
channel. To simplify the above equation, we consider the summation over worst and best
channels as follows:

RSC(n,U , AUCB) = 1
U

U∑

k=1

U∑

k=1
E [Tk(n)]�(k,k) + 1

U

U∑

k=1

C∑

i=U+1
E[Ti(n)]�(k,i) (58)

The first term of the regret in Eq. (58) equals 0, then we obtain:

RSC(n,U , AUCB) = 1
U

U∑

k=1

C∑

i=U+1
E[Ti(n)]�(k,i) (59)

E[Ti(n)] has the same properties and definition to that calculated in Appendix C, Eq. (53).
Finally, the regret of AUCB under the side channel policy is bounded as:

RSC(n,U ,AUCB) ≤
U∑

k=1

C∑

i=U+1

[
8 ln(n)

�(k,i)
+ �(k,i)

(
1 + π2

3

)]
(60)

In this Appendix, we proved that the global regret of AUCB under the side channel
policy has a logarithmic asymptotic behavior with repspect to n, which means that after a
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period of time, each user will have a good estimation of the channels availability and will
access a channel based on its rank.
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