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Lateralization of social signal 
brain processing correlates 
with the degree of social 
integration in a songbird
Hugo cousillas*, Laurence Henry, isabelle George, Schedir Marchesseau & 
Martine Hausberger

Group cohesion relies on the ability of its members to process social signals. Songbirds provide a 
unique model to investigate links between group functioning and brain processing of social acoustic 
signals. in the present study, we performed both behavioral observations of social relationships 
within a group of starlings and individual electrophysiological recordings of HVc neuronal activity 
during the broadcast of either familiar or unfamiliar individual songs. this allowed us to evaluate and 
compare preferred partnerships and individual electrophysiological profiles. The electrophysiological 
results revealed asymmetric neuronal activity in the HVc and higher responsiveness to familiar than 
to unfamiliar songs. However, most importantly, we found a correlation between strength of cerebral 
asymmetry and social integration in the group: the more preferred partners a bird had, the more 
its HVc neuronal activity was lateralized. Laterality is likely to give advantages in terms of survival. 
our results suggest that these include social skill advantages. Better knowledge of links between 
social integration and lateralization of social signal processing should help understand why and how 
lateralization has evolved.

Group cohesion relies in particular on the perception and appropriate processing of signals from conspecifics, i.e. 
on social  cognition1,2. The ability to identify group  membership3, to process social  familiarity4 and to recognize 
individual group  members5 appears to be widespread among animals. Songbirds in particular are very good mod-
els for studying links between “social and vocal brains”4. Since its discovery by  Nottebohm6, their brains’ «song 
system» keep revealing more and more relationships between communication skills and social  interactions7. 
However, understanding how social cohesion, communication skills and brain processes are interrelated requires 
us to bridge the gap between group functioning and brain processes.

Social relationships enhance  attention8, which is important for memory formation and perceptual  tuning9. The 
mere presence of a singing adult model in a group of young naive starlings is not sufficient for them to develop 
all typical adult song features. Individual bonding is essential to trigger appropriate selective attention, i.e. focus-
ing on specific group members or social  models4,10. Attention is a key element in perceptual  lateralization11 and 
loss of attention can lead to total disappearance of the species-specific lateralized responses observed in brain 
processing of social  signals12,13. Evolution of social attentional skills may have been part of social evolution and 
as such may have been associated with the evolution of perceptual  lateralization12. Authors have proposed several 
different, sometimes contradictory, hypotheses concerning the advantages of sensory  lateralization14,15. However, 
researchers generally accept that lateralized individuals possess higher skills for a variety of tasks, especially dual 
tasks requiring them, for example, to divide their attention between searching for food and detecting a  predator16. 
Some types of lateralization develop with  experience18,19. For example, hens’ type of mothering can influence 
chicks’ lateralization, probably through attentional processes involving social interactions with mother or between 
 chicks20. Lateralization of zebra finches’ song processing in the secondary auditory area (NCM) correlates with 
the fidelity of their imitation of their  model21. Recently, several reports have shown in addition the importance 
of the influence of the timing of memory formation on the direction and strength of the lateralization of song 
processing in this  area2,22–24. Yet, we still do not know how the quality of interactions between individuals can 
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influence social signal brain processing and its lateralization, especially concerning population level asymmetries. 
Since more gregarious starlings show increased levels of  opioids25 and since more socially integrated (i.e. with 
more bonding partners) ravens are less stressed  physiologically26, social bonding could well play a major role in 
guiding neurophysiological functioning.

European starlings are open-ended learners and their social bonding is associated with vocal  sharing27. This 
is also the case for other social species of  songbirds28. Outside the breeding season, individual adult starlings 
associate with preferred, often same-sex and same-age partners with which they share parts of their song rep-
ertoire. Changes in group composition lead to new associations and rapid changes in song repertoires so that 
newly formed partnerships are associated with new patterns of vocal  sharing29. While females generally form 
same-sex  pairs30, males form small same-sex groups whose individuals differ in their degree of «social integra-
tion» (i.e. number of preferred partners). This degree of «social integration» is correlated with the degree of vocal 
«conformity» (i.e. proportion of shared structures in the vocal repertoire)29. This suggests individual variations 
in the levels of social motivation, tolerance and/or social attention.

If lateralization of sensory processes reflects attentional and social skills, we would expect that the more 
socially «engaged» male starlings would show higher levels of lateralization in brain processing of social signals. 
To test this hypothesis, we determined first the social relationships within a group of non-breeding captive 
starlings and then we recorded the HVC (as a proper name) electrophysiological activity of some of the males 
while they were listening to either familiar or unfamiliar male starling songs. HVC neurons of starlings not only 
respond to the bird’s own song (as in other  species31) but also to individual whistles of  conspecifics13,32. These 
responses show a right hemisphere dominance when the birds are awake, but not when they are  anesthetized33. 
This reinforces the idea that processing complex social signals requires  attention34.

Our subjects for the present study were a group of eight adult male starlings caught in the wild as adults 2 years 
before the experiment and kept since then in an outdoor aviary. Six months before the behavioral observations, 
they integrated a mixed group of 20 starlings (9 females and 3 other males) and they were observed during the 
non-breeding season which is favorable for determining social preferences (e.g. Henry et al.30). After the end of 
the behavioral observations, we recorded the neuronal activity of both left and right HVC during the playback 
of individual whistles of either familiar or unfamiliar male starlings (Fig. 1) using multielectrode systematic 
 recordings35. We calculated the proportion of neuronal sites of both hemispheres responding to these individual 
whistles and used a hierarchical ascending classification based on an ANOVA to build individual neuronal 
profiles that integrate both neuronal preferences for familiar versus unfamiliar songs and asymmetries in brain 
processing.

Results
The birds spent most of their time in close proximity to another bird (only in 16.64 ± 8.53% of the scans was a 
subject at more than 50 cm from another bird). Aggression was rare (only threats: 1.36 aggression/hour/indi-
vidual). The sociogram showed a pattern with strong dyadic spatial preferences and some birds that were less 
integrated (Fig. 2).

Figure 1.  A set of stimuli including 10 Class-II individual male starling whistles. Left: six familiar whistles 
recorded in the experimental birds’ home aviary. These familiar whistles differed from one bird to another 
(birds’ own songs were not included). Right: four whistles recorded from unfamiliar distant birds. These 
unfamiliar whistles were the same for all birds.
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We recorded the brain activity of 1,264 neuronal sites (632 sites/hemisphere; mean ± S.E.: 158 ± 17.28 sites/
bird). Among these sites, 140 (11.1%) responded to at least one of the acoustic stimuli.

Significantly more neuronal sites were responsive in the right (mean ± S.E.: 10.87 ± 3.94) than in the left 
(mean ± S.E.: 6.75 ± 3.84) hemisphere (Wilcoxon test, n = 8, T = 1.5, p = 0.02). Each neuronal site responded to 
2.70 ± 0.20 stimuli (mean ± SE). Most of them responded to only one or two stimuli (66.4%) whereas 33.5% 
responded to more than 2 stimuli.

Overall familiar stimuli elicited more responses than unfamiliar songs (Wilcoxon test, N = 7, T = 1, p = 0.05). 
However, one bird (A2M7) showed more responses to the unfamiliar songs.

We then evaluated the proportions and locations (right or left) of responsive neuronal sites in relation to type 
and familiarity of the stimulus. A cluster analysis revealed 4 distinct individual profiles (Fig. 3): cluster 1 (one 
single bird: M7) was characterized by a strong right hemisphere dominance and more responses to the songs of 
unfamiliar than familiar birds; cluster 2 (3 birds: M1, M2 and M3 ) was characterized by a strong right hemi-
sphere preference for familiar songs; cluster 3 (one bird: M8) was characterized by a left hemisphere dominance 
for both familiar and unfamiliar stimuli; and cluster 4 (3 birds: M6, M4 and M5) was characterized by bilateral 
responses, hence weak lateralization. The neuronal responses were thus, except for one cluster, clearly lateralized 
with sometimes responsive neuronal sites in one hemisphere only.

Most importantly, we evidenced a correlation between “social engagement” (number of unilateral or bilateral 
associated partners) and the degree of lateralization of neuronal responses to the social acoustic signals (absolute 
laterality index: |L − R|/L + R; Spearman test of correlation, r = 0.83 p = 0.01) (Fig. 4).

The five birds (M1, M2, M3, M7 andM8) that showed neuronal responses in only one hemisphere (either the 
right or the left one) were involved in more preferred partnerships than the three birds that showed clear bilateral 
responses (M5, M6, M4) (Mann Whitney U test, n1 = 5, n2 = 3, U = 0, p = 0.018).

Discussion
Our neurophysiological data show important inter-individual variations of lateralization of auditory responses. 
The degree of lateralization, whatever its direction, was correlated with social engagement: the closer the birds 
were socially associated, the more their brain processing of individual social information was lateralized. Audi-
tory-responsive neurons in the HVC showed a bias for processing the songs of familiar rather than those of 
unfamiliar conspecifics and those of the most «socially engaged» subjects were clearer lateralization, with a bias 
in favor of the right hemisphere.

Overall, more HVC auditory-responsive neuronal sites responded to familiar songs, especially in the right 
hemisphere. This is in accordance with the diverse hypotheses concerning the role of this hemisphere, for example 

Figure 2.  Spatial preferences and neuronal profiles of adult male starlings in our group of starlings (A2). 
Sociogram of proximity: Squares represent males and circles represent females. Filled colored squares represent 
males whose neuronal activity was recorded. Open blue squares and pink circles represent individuals that 
were housed in the aviary with the 8 experimental starlings. Solid black arrows link birds that were observed 
more often than expected by chance with another bird as their closest neighbor (χ2 test, large arrow: p ≤ .001, 
thin arrow, p ≤ .05). The different colors correspond to different clusters of neurophysiological profiles that are 
represented as radar plots. Each radius corresponds to the proportion of neuronal sites that responded to either 
the familiar or the unfamiliar stimuli in the left (left axes) and right (right axes) hemispheres.
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in processing individual  information36 or  attention37. Playback experiments showed that female starlings paid 
more attention to songs of familiar  birds38, or became more  aroused39, maybe because they were surprised to 
hear a familiar song in a non-familiar setting. Recent findings suggest that young mammals position themselves 
with their left body side towards their mother, especially in affiliative contexts, reinforcing the idea of a right 
hemisphere dominance for social  processing40. Anyway, this confirms that familiarity is a major aspect of social 
cognition. When typical adult starlings hear a conspecific they modulate the responses of their auditory-respon-
sive neurons according to whether the song is familiar or unfamiliar, indicating a cross-modal representation 
of familiar conspecifics in the  brain41.

Lateralization of the processing of social signals is common in  songbirds42, as in all  vertebrates14 but its 
potential relationships with social integration and cohesion have not been investigated. Here we show that the 
more socially engaged animals presented the strongest lateralization of HVC responses to individual conspecific’s 
songs. The advantages of lateralization have been largely discussed, often in terms of predator avoidance (at the 
level of the population) or conflict resolution between the two hemispheres (at the individual  level17,43). Recent 
studies related lateralization to social systems: social bee species show a lateralization pattern for diverse func-
tions that is not found in asocial  species44. Populational biases of the direction of lateralization have been related 
to sociality, hypothesizing that social coordination may require  alignment45–47. However, asocial mason bees 
present the same lateralized pattern during aggressive interactions as social  bees48. Even basic social processes 
may thus have triggered the evolution of  lateralization45.

The finding here that more lateralized individuals have more preferred social partners fuels the discussion. 
Interestingly, the absolute degree of lateralization rather than its direction appeared important here, although 
overall the right hemisphere tended to present more neuronal responses. Selection for strength, but not direc-
tion, of lateralization is  possible15; this means that strength may reflect evolutionary processes better. Since social 
bonding is associated with well-being25, being more lateralized may advantage an individual. Possibly the ability 
to create and maintain social bonds could be related to increased social attention, a cognitive ability that allows 

Figure 3.  Hierarchical clustering analysis. This clustering analysis was based on a factorial analysis of responses 
to familiar and unfamiliar Class II whistles in the two hemispheres. The colors correspond to the clusters of 
birds showing the same neuronal profiles.
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better vocal copying and may enhance social  bonding49,50. Attention has been proposed as a possible important 
process in the evolution of  lateralization11,12. Anyway, relationships between lateralization of social signal pro-
cessing and social skills deserve further consideration thus opening future lines of research.

Methods
Birds. our subjects were eight adult male starlings (A2). They had been caught in the wild as adults in Nor-
mandy (France) more than 2 years before the experiment. We observed them in October while they were housed 
in a mixed group of 20 starlings (11 females and 1 other male) that had been together for 6 months in an outdoor 
aviary (2 m × 4 m × 2.5 m) with many branches, shelter and open spaces where birds could forage for insects in 
the soil or the air. The aviary was located in a wooded area where wild starlings could be seen and heard. Water 
and food were provided ad libitum (commercial pellets and apples). We ringed all birds with a unique combina-
tion of colors on both legs.

Behavioral observations. Social preferences were evaluated following Hausberger et al.’s29 method. This 
method is based on recording the nearest neighbor (within a 50 cm radius). Social proximity is a very reliable 
indicator of social  preferences51,52. We noted who was the closest neighbor using instantaneous scan  sampling53 
with one scan every 2 min. Observation sessions lasted 40 min and we obtained 323 scans per individual. For 
every bird, we evaluated at what frequency (proportion of scans) each other bird was its nearest neighbor. We 
decided whether this association occurred more or less often than expected by chance using chi-square analyses. 
This allowed us to include asymmetrical relationships. We then built sociograms based on spatial preferences.

We recorded agonistic interactions ad libitum because they are rare and short events.
Only one experimenter made all the behavioral observations from outside the aviary (1 m away).

electrophysiological recordings. In December, after the behavioral observations, we recorded the elec-
trophysiological activity of the birds’ HVC during the playback of acoustic social signals (i.e. song elements) 
while they were awake and restrained. This avoided potential biases related to anesthesia, such as a loss of later-
alization or selectivity in neuronal  responses12,33,34.

Each bird was exposed to a set of stimuli of 10 Class-II individual male starling whistles (Fig. 1). These whistles 
characterize individual birds or closely associated  birds27. We recorded the familiar stimuli in the birds’ home 
aviary. The 6 familiar whistle types differed between birds (a bird’s own songs were not included). Four stimuli 
came from unfamiliar distant birds, i.e. birds that the experimental animals could not have heard (e.g. recorded 
in New Zealand). All the recordings were made with a Marantz PMD670 digital recorder and a Sennheiser 
MKH416 directional microphone.

We arranged the stimuli randomly in a single sequence lasting 19.74 ± 0.02 s. The mean duration of the stimuli 
was 641.55 ± 27.65 ms. As HVC neurons can respond up to 350 ms after the end of a  stimulus54, we avoided any 
interference between two successive responses by using a mean interval between stimuli of 722.66 ± 10.74 ms 
with a minimum of 514 ms.

Using the approach described by George et al.35, we recorded neuronal activity systematically throughout the 
HVC of each hemisphere while broadcasting the acoustic stimuli to starlings that were awake and restrained. 

Figure 4.  Correlation between the HVC laterality index (absolute laterality strength) and social engagement 
(number of significant reciprocal and non-reciprocal preferred spatial associations). (Spearman correlation test: 
rs = 0.83, p = .01).
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We used a four-microelectrodes array (two electrodes in each hemisphere) made of tungsten wires insulated 
by epoxylite (FHC). Electrodes were 1.2 mm apart in the sagittal plane and 5 mm apart in the coronal plane. 
Electrodes’ impedance was in the range of 5–6 MΩ.

We positioned the electrodes very precisely (± 2.5 µm) using stereotaxic coordinates (first extrapolated from 
the canary atlas of Stokes et al.55 and then confirmed by the 3D atlas of the starling brain made by De Groof 
et al.56). This approach is sufficiently precise (validated by earlier histological  studies29,33), respects the 3R rules 
(reducing number of animals) and keeps the animals alive.

We made 12 penetrations throughout the HVC every 230 µm in a rostrocaudal row. As we lowered the four 
electrodes simultaneously, it required one to three recording sessions (only one session per day) to perform all 
the recordings. We therefore collected data in 1–3 days. We recorded electrophysiological activity systematically 
every 100 µm, dorso-ventrally along the path of the penetration of an electrode without any preselection of the 
recording sites with acoustic test stimuli. Between the recording sessions the birds were kept in individual cages 
placed in the same room where the birds could hear one another and interacted vocally. Food and water were 
provided ad libitum.

We played the acoustic stimuli in an anechoic soundproof chamber through a loudspeaker located 20 cm 
in front of the bird’s head. The peak sound pressure at the bird’s ears was 85 dB SPL for all stimuli which corre-
sponded to 65 dB RMS for all stimuli. The whole sequence of stimuli was repeated 10 times at each recording site. 
The neuronal activity recorded by each electrode was visualized with raster plots in which each dot represented 
a spike. Spikes were detected with a voltage threshold trigger. At each recording site, before playing the stimuli, 
the experimenter manually adjusted the amplitude discrimination to limit recordings to the neurons exhibiting 
the biggest spikes, with a custom-made time- and level-window  discriminator35. The spontaneous activity of each 
recording site was recorded during 1.5 s before the first acoustic stimulus of each sequence.

Neuronal responsiveness was assessed by comparing spontaneous activity level (number of action potentials) 
with activity during stimulation using binomial tests. Only responsive sites were analyzed further. We calculated 
the proportion of sites responding to each stimulus and to each type of stimulus. We then used the mean values 
calculated for individual birds for statistical comparisons.

Statistical analyses (see also cousillas et al.57, George et al.32). We used non-parametric statistics 
to analyze behavioral data, i.e. Chi-square tests to assess whether birds were more often than expected by chance 
close to some neighbors.

We compared neuronal responses between hemispheres and between stimuli using Wilcoxon tests for paired 
data. We compared responses to baseline with Chi-square/binomial tests.

In addition we built neurophysiological individual profiles: these profiles were built on the basis of the per-
centage of neuronal responses recorded in each hemisphere for each type of stimulus (familiar/unfamiliar). A 
hierarchical cluster analysis (HCA), based upon a Correspondence Factorial Analysis followed by a hierarchical 
cluster analysis was conducted to characterize individual bird’s electrophysiological profiles (Fig. 3). Birds dis-
playing the same distribution of responses were identified and their data combined to represent profile clusters. 
Clusters, based on multivariate analyses, have proved useful in studies of personality and family  psychology58 or 
individual behavioral  profiles50. Each profile was represented by a radar plot and each ray of the plot represented 
the proportion of neuronal responses in one hemisphere for a given stimulus. Tests to identify the predominant 
responses on each radar were χ2 tests. We used Mann Whitney U tests to compare groups (i.e. clusters).

We calculated correlations between behavioral and neurophysiological data using a Spearman correlation test.

ethical approval. These studies comply with the French laws related to animal experimentation and the 
European directive 86/609/CEE and 2010/63/UE and were approved by the Rennes local Animal Care Commit-
tee (CREEA).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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