
HAL Id: hal-02900275
https://hal.science/hal-02900275

Submitted on 16 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Sensing Algorithm for IoT Applications with
Data and Temporal Accuracy Requirements

Tayeb Lemlouma

To cite this version:
Tayeb Lemlouma. Adaptive Sensing Algorithm for IoT Applications with Data and Temporal Accu-
racy Requirements. 25th IEEE Symposium on Computers and Communications (ISCC), Jul 2020,
Rennes, France. �10.1109/ISCC50000.2020.9219699�. �hal-02900275�

https://hal.science/hal-02900275
https://hal.archives-ouvertes.fr


Adaptive Sensing Algorithm for IoT Applications
with Data and Temporal Accuracy Requirements

Tayeb Lemlouma
Univ Rennes, CNRS, IRISA

Lannion, France
Tayeb.Lemlouma@irisa.fr

Abstract—This paper proposes an adaptive sensing algorithm
for long-term IoT applications. The objective is to satisfy data and
temporal accuracy requirements while prolonging the lifetime
of battery-powered devices with energy-hungry transmission
modules. The algorithm is based on the Send-on-Delta (SoD)
technique combined with a GM(1,1) prediction and considers a
moving temporal window and outliers removal. Numerical results
show the superiority of our algorithm with respect to a linear
approximation. The effectiveness of the proposal is demonstrated
in terms of adaptability, accuracy, and reduction of data transfer.
This is of particular relevance for applications requiring long
sensing periods and high sampling rate.

Index Terms—adaptive sampling, prediction, grey model, sens-
ing energy, Internet of Things (IoT), wireless sensor networks

I. INTRODUCTION

Several IoT applications rely on battery-operated devices
that regularly sense and transmit data to a central node.
To prolong lifetimes of IoT applications, it is important to
identify a sampling and transfer strategy that considers the
accuracy requirements of sensed data within a limited temporal
threshold and which is more efficient than the conventional
periodic sampling method. Much effort has been devoted to
sensing strategies to reduce the usage of IoT resources and
extend the lifetime of devices. Sampling, data and commu-
nication compressions are the pillars of such strategies [1],
[2]. Context-aware and event-based sensing are relevant to
reduce the transmissions between sensors and sink nodes.
These strategies only consider the situations where a change
in the global context or the tracked data is detected [3], [4].

Major strategies consider the following conditions: (a) the
difference between the sensed value and the last sample sent is
higher than a given threshold (Send-on-Data or SoD strategy)
[5], (b) the expected value exceeds the previously sent value
by at least a threshold (Send-on-Prediction or SoP strategy)
[1]. Two extensions of SoD are the Send-on-Energy and Send-
on-Area strategies where the considered difference between
current and last values are the energy or the cumulative
integral of differences respectively [1], [2]. Proposed strategies
intended to be performed by IoT devices, should simplify the
computing operations and memory usage and consider the
hardware and software limitations of these devices. Therefore,
in this paper, we aim to avoid the recourse to computing-
intensive models such as learning strategies with reinforcement
learning, Neural and Recurrent Neural Networks [6], [7] in
favour of less complex and energy-hungry ranging approach

suitable for the limitations of IoT devices and networks.
To accommodate a majority of use cases, we consider raw
data sequences provided by IoT sensor devices without any
assumption about the raw data distribution [8]. We present an
extensive evaluation conducted to assess the performance of
the proposed prediction, outliers removal and the benefit of
temporal windows. We compare the performance of the pro-
posed algorithm with Kulau et al. [9] in terms of accuracy and
transmissions to satisfy the application requirements. We also
provide insights into the minimal energy saved for different
IoT technologies. To the best of our knowledge, our proposed
algorithm is the first dedicated to IoT devices that comprehen-
sively complies with accuracy and energy requirements with
the presented degree of efficiency and performances.

The remainders of this paper are organised as follows.
Section II discusses a Bollinger Bands based approach used to
reduce nodes sampling. Section III presents the system model,
followed by Section IV which describes our adaptive sensing
and transfer algorithm. Section V evaluates our approach on a
reference real-world dataset (generated by an IoT device that
we have implemented) and provides a comparison with the
Bollinger Bands approach. Section VI concludes the work.

II. BOLLINGER BANDS-BASED APPROACH: dynvd

Kulau et al. [9] uses the Bollinger Bands (BB) to reduce
the sampling rate. They adapt the BB with the vertical
distances dynamic estimation: dynvd. BB performances
were already evaluated in [8], [10] and in [9] with a small
real-world time series (1 day and ≈ 1 month) at a high
sample rate (0.3Hz). For n acquired samples, dynvd(t)
is the mean of differences between raw values x(i) and
estimated values x̂(i) using a linear approximation x̂:
dynvd(t) = k

n ·
∑n−1
i=0 |x̂(t − i) − x(t − i)|, where k is a

factor used to control the width between the upper and the
lower bands of series. x̂ is calculated using the raw values
xt0 and xt0−n+1 sensed by the IoT sensor device. The new
determined duration between two sensed and transmitted data
(i.e. the new time slot) is δ(t) = δmax

1+dynvd(t)ϕ
, where δmax

is a fixed maximum waiting period and ϕ is used to weight
dynvd(t). Overall, when the observed data show a linear
dynamics, next values can be approximated with a time slot
that depends on the observed linearity.



III. SYSTEM MODEL

For the sake of clarity, we focus on a typical IoT application
where a battery-powered device must periodically, every δ(t)
time slot, carry out certain tasks and transmit the result to a
sink node or central controller node (CC). Such a process can
be the sampling of the environmental parameters relying on
sensors. In addition to the temporal requirement (δ(t)), the
IoT application may expect an error threshold of ε that the
values transmitted by the device should not exceed. The CC
with high computation performance can control the device’s
activity for instance by imposing some particular settings.

We model the transmitted values of the IoT device as a
time series X(0) = {x(0)(1), x(0)(2), .., x(0)(n)}, where
x(t) represents the value sensed by the device at time t. With
a conventional periodic sampling method, the data points of
X(0) are sensed and transmitted every δ(t) time slot.

A. Prediction

Instead of requiring a systematic data transmission every
new sensed values, raw data can be approximated (predicted)
to lighten the tasks of the IoT device and reduce its energy
and resources consumption. Hence, prolonging the lifetime of
the application and avoid multiple battery replacements. We
propose the adaptation of the Grey Model (GM) first-order
one variable prediction, named GM(1,1), to predict future
values x̂(t). GM theory shows great performances in systems
with uncertainty and poor or incomplete data [11]. In our
context, the GM (1, 1)-based prediction is achieved as follows.
Given the time series X(0), a new sequence X(1) is calculated
with the accumulated generating operation (AGO): x(1)(k) =
k∑
i=1

x(0)(i), 1 ≤ k ≤ n. The generated mean sequence Z(1)

is then derived from X(1): z(1)(k) = 1
2 (x(1)(k)+x(1)(k−1)),

(2≤ k ≤ n). The first order differential equation of GM (1, 1)
is defined by: x(0)(k) + az(1)(k) = b, (2≤ k ≤ n). Thus, the
whitening equation is:

dx(1)

dt
+ ax(1) = b (1)

Then, a and b parameters can be estimated with :
[a, b]T =

(
BTB

)−1

BTY , where:

Y =


x(0)(2)
x(0)(3)

...
x(0)(n)

 , B =


−z(1)(2) 1
−z(1)(3) 1

...
...

−z(1)(n) 1


According to (1), X(1) at time k is:

x̂(1)(k + 1) =
[
x(0)(1)− b

a

]
e−ak +

b

a
(2)

Consequently, to determine the next predicted value of X0 at
time (k + 1), we can use:

x̂(0)(k + 1) =
[
x(0)(1)− b

a

]
e−ak(1− ea) (3)

B. Outliers Removal

The prediction of a next value x̂0(t) depends on previous
values of X0. Although the GM prediction smoothes the
randomness using AGO, it is important to remove outliers from
initial data especially with a small size of X0 and during the
lifetime of the IoT application. To be adapted to the character-
istics of IoT devices, we perform the outliers calculation using
the Welford’s online algorithm and Chebyshev inequality [12],
[13]. We accordingly set the non-outliers range to [X̄0 - (k ·σ),
X̄0 + (k · σ)] with k=5 and σ is the standard deviation which
is computed incrementally as follows:

X̄n =
(n− 1) · X̄n−1 + x(n)

n
= X̄n−1 +

x(n)− X̄n−1

n
(4)

X̄n is the mean of X0 calculated each time a new data x(n)
becomes available, X̄n−1 is the previous mean of X0. The
value of σ is then calculated with: σ2

n = Sn

n , where Sn is
recursively computed: Sn = Sn−1 + Mn with Mn = (x(n)−
X̄n−1)·(x(n)−X̄n). The k value depends on the concentration
of data around the mean of X0. According to the Chebyshev’s
inequality, if X is a random variable with finite expected value
µ and a variance σ2, then P (|X − µ| ≥ k · σ) ≤ 1

k2 . With
k=5, such probability is lower or equal to 0.04.

IV. PROPOSED ALGORITHM

Our sampling and transfert strategy for IoT devices and
CC nodes is depicted in algorithms 1, 2 and 3. We use the
following notation and requirements:
δtmax : the device is required to sense and return a value at
most every δtmax time slot Requirement (1).
ε : the error of each returned value must not exceed ε if
compared to the raw value Requirement (2).
w: the size of the prediction temporal window W which is the
input time series used in the prediction and outliers removal.

Algorithm 1: Helper Function
Input: (W , mode, w0) ≡ current temporal window,

current sampling mode, size of W
Output: Sampling mode

1: function selectSamplingMode (W , mode)
2: if |W | = w0 then
3: if mode = SoD then
4: mode← prediction;
5: Wp ←W ; . start the prediction with a

copie of W

6: else
7: mode← SoD;
8: Wp ← ∅
9: end

10: W ← ∅
11: end
12: end function

Unlike algorithm 2 which is performed uninterruptedly
every δtmax by the CC, algorithm 3 is carried out by the



Algorithm 2: Central Controller
Input: (ε, δtmax) ≡ data accuracy and temporal

threshold requirements
Output: Adaptive sensing

1: mode← SoD;
2: w ← w0; . w0: size of the prediction window

3: if (bat(t) or b̂at(t)) ≤ δbat then
4: Return bat alert
5: else
6: selectSamplingMode (W , mode, w0);
7: if mode = prediction then
8: Wp ← outlier removal(Wp);

x̂(t)← predicted value(Wp);
9: Wp ←Wp _ x̂(t) ; . append x̂(t)

10: Return x̂(t);
11: else
12: Return xlastReceived;
13: end
14: end
15: upon reception of M ≡ (x(t), bat(t)):
16: send (ε, δtmax,mode, w);
17: if timestamp(M(x(t))) - 1 = timestamp(xlastReceived)

then
18: W ←W _ x(t); . append x(t) to W, |W | ≤ w
19: else
20: W ← x(t);
21: end
22: if mode = prediction then
23: Wp ←Wp _ x(t) ; . consider the received

x(t) in the prediction, |Wp| ≤ w
24: end
25: xlastReceived ← x̂(t);
26: update (W , bat(t));
27: Return xlastReceived;
28: end

IoT device every time it wakes up before sleeping (line
32). When the sleeping time is up, the device performs the
algorithm again and so on. In the first active cycle and before
the first communication with the CC, the variables are not
initialized. For instance, the mode (prediction or SoD) is not
initialized. Line 12 (algorithm 3) guarantees a default SoD
mode. Similarly, line 4 guarantees a default ε before the first
setting received from the CC. Line 5 transmits the first sensed
value. Lines 2 in algorithm 3 and 3 in algorithm 2 are used by
the CC to distinguish a flat battery from the absence of data
due to the data transfer reduction. The message mentioned
in line 17 (algorithm 3) is received from the CC (line 16 in
algorithm 2) as an answer to the transmit message (line 16,
algorithm 3). In algorithm 3, the received δtmax is updated
and used in the current active cycle.

Lines 2–11 in algorithm 1 allow determining the sensing
mode to be applied by the IoT device and the CC. The
idea is while the variation of raw data is within a tolerated

error threshold of ε (i.e. x(t) − xlastSent ≤ ε), it is better
to keep the SoD mode and avoid the prediction calculations
and unnecessary transmissions from the IoT device to the CC.
However, when there is a significant variation in raw values,
the prediction becomes more interesting. Moreover, when
there are many outliers, the last transmitted value (xlastSent)
can be affected and being itself outlier. Hence, SoD becomes
inefficient. Note that in this case, considering an older value
(i.e. a value prior to the encountered outlier) as xlastSent is
risky for the required accuracy.

With a high fluctuations of data during a temporal window
W , the sampling and transfer is based on the prediction
while the new prediction is within the ε threshold. When
the prediction deviates too far from real data during W , the
sampling mode becomes SoD. This is an adaptive method to
the fluctuation of raw data. It is a flexible way suitable for the
tracked values dynamics. Note that the moving window W
includes the latest consecutive values with a size of w0 (Lines
17–24 in algorithm 2). Sensed values with a variation higher
than ε are sent with line 16 (algorithm 3) to continuously
follow the data evolution and adapt the sampling mode. The
same sampling mode (SoD or prediction) is applied by both
the device and the CC. This is important because it ensures
that the returned values by the CC are the same as the sensor
node. As there is no systematic communication between the
device and the CC, lines 19, 28 and 30 (algorithm 3) ensure a
persistent storage available in next wake-up cycles of the IoT
device. Lines 15–32 in algorithm 3 ensure that the CC returns
sensed values that satisfy requirements of ε and δtmax.

V. PERFORMANCE EVALUATIONS

At data point t, let At be the real data that can be sensed
by the IoT device and Ft the forecast value. We consider the
following metrics in the evaluation of our approach:
• The percentage error (PE or FE): pet = 100·(At−Ft)/At
• The Mean Forecast Error (MFE):

MFE= 1
n

∑n
t=1(At−Ft), (n: the size of the original data)

• The Mean Absolute Deviation (MAD or Mean Absolute
Error –MAE): MAD= 1

n

∑n
t=1 |At − Ft|

• The mean absolute percentage error (MAPE):
MAPE = 1

n

∑n
t=1 |pet|

• The mean absolute percentage forecast accuracy (FA):
FA = 1

n

∑n
t=1 100− |pet| (or 100−MAPE)

• The mean absolute scaled error (MASE) for j predictions:
MASE = 1

j

∑j
t=1 |

At−Ft
1

n−1

∑n
i=2 |Ai−Ai−1|

|
To validate our approach, we use the data-trace illustrated

in Fig. 1 as a reference for the prediction. Data represent
the sensed values (outdoor temperature) as transmitted by an
IoT device implemented using a WiFi-enabled ESP8266-12E
board with a DS18B20 digital temperature sensor. A step-by-
step implementation is available online on http://1do.me/Uk.

A. Prediction with outliers removal and temporal window

We evaluate our prediction, with and without outliers re-
moval, during the three periods P1, P2, and P3 of the reference



Algorithm 3: IoT sensor node
Input: (ε, δtmax,mode, w) ≡ data accuracy, temporal

threshold, sensing mode, temporal window
Output: Adaptive sensing

1: x(t)← sense value(t);
2: bat(t)← sense battery(t);
3: if ε = null then
4: ε← default value;
5: transmit (x(t), bat(t));
6: end
7: selectSamplingMode (W , mode, w0);
8: if mode = prediction then
9: Wp ← outlier removal(Wp);

x̂(t)← predicted value(Wp);
10: Wp ←Wp _ x̂(t); ; . append x̂(t)

11: ∆← |x(t)− x̂(t)|;
12: else
13: ∆← |x(t)− xlastSent|;
14: end
15: if ∆ > ε then
16: transmit (x(t), bat(t));
17: receive (ε, δtmax,mode, w);
18: update (δtmax);
19: save (ε, δtmax, mode, w);
20: if timestamp(x(t)) - 1 = timestamp(xlastReceived)

then
21: W ←W _ x(t) ; . |W | ≤ w
22: else
23: W ← x(t)
24: end
25: if mode = prediction then
26: Wp ←Wp _ x(t);
27: end
28: save (W );
29: xlastSent ← x(t);
30: save (xlastSent);
31: end
32: sleep (δtmax);

 P1                            P2                                           P3

Fig. 1: Reference data: outdoor temperature in °C and battery
level, ≈ 7 months of measurement (from July 14, 2019 to
Feb. 2, 2020), 49463 samples with 3 continuous periods (P1,
P2 and P3) at the following sampling/transfer rates: 0.0167
Hz (i.e. every 60s), 0.0033 Hz, and 0.0017 Hz respectively.

TABLE I: Algorithm’s prediction with and without outliers
removal (sampling rate: 0.0167 Hz, fixed window W=|X(0)|

Prediction algorithm MAPE MASE

Prediction without O.R. 6.28% 5.43
Prediction with O.R. 5.98% 4.81

data with different sampling and transfer rates. As observed
in Fig. 2 and 3, the predicted values are tracking favourably
the trend of real data during P1 and P2. This observation is
confirmed by the low values of the MAPE and MASE metrics
(Table I and II) with a better performance when applying
outliers removal (O.R.), e.g. in P1, 5.98% of MAPE with O.R.
against 6.28% without O.R. Of course, this depends on the
number of outliers present in the tracked data. As expected,
the prediction shows better results regarding the accuracy (FA)
and the mean error (MFE and MAD) when the sample rate
is low (e.g. accuracy of 94,02% at a sample rate of 0.016Hz
against 81.31% at a sample rate of 0.0033Hz).

The bad prediction accuracy observed in P3 (-18,31% of
FA) can be explained by the strong variability of real values
due to the low sampling rate. Another reason is the low
values of sensed data in P3 (remember that the PE is a
percentage of the real value). This is confirmed by the high
value of MAD that accumulates the mean absolute value of
the prediction error. Indeed, in P3, the MAD is 2,48 while
during a comparable period in term of duration (i.e. P1) the
MAD is much smaller with a value of 1,44.
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Fig. 2: Prediction evaluation (instant PE and cumulative
MAPE) with and without outliers removal on data during P1
(9777 samples, sample rate: 0.0167 Hz).

For a better match between predicted and real values and to
mitigate the effects of data variability, we consider a moving
prediction window W and evaluate the resulting performance
(Fig. 4). Only the last values sensed within the size of W
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Fig. 3: Predictions during P2 (0.0033Hz) and P3 (0.0017Hz),
|X(0)| ∈ {29233, 10455} samples.

TABLE II: Algorithm’s prediction with O.R. and W=|X(0)|

Sample rate FA MFE MAD MASE

0.0167Hz (Period 1) 94.02% 0.48 1.44 4.81
0.0033Hz (Period 2) 81.03% 0.02 1.95 8.16
0.0017Hz (Period 3) -18.31% 0.05 2.48 5.85

are considered in the prediction (Fig. 4). Table III shows the
significant improvement of the prediction in terms of FA and
MASE during P3 when using a window size |W |=8. For the
same period, the good match between predicted and real values
is observed in Fig. 5. Table IV shows a further performance
improvement in P1/P2/P3 when compared to the prediction
without the moving window (Table II). For instance, with
|W |=8, the accuracy in P1 surges from 94.02% to 99.68%.

B. Comparison of the algorithm performance and dynvd
Unlike our approach which provides an easy way to satisfy

the requirements of data accuracy with a temporal threshold,

TABLE III: Prediction with O.R. and variable window (P3).

|W | FA MASE |W | FA MASE |W | FA MASE

8 90.95% 0.96 9 88.61% 0.91 10 88.19% 0.91
20 86.19% 0.96 30 86.56% 1.04 40 85.73% 1.14
50 87.47% 1.24 100 77.24% 1.87 500 28.96% 3.93

1000 11.32% 5.22

TABLE IV: Predictions with O.R. and |W |=8 (P1, P2, P3).

Period |W | W duration (s) FA MAD MASE

1 8 480 99.68% 0.18 0.59
2 8 2400 98.18% 0.24 0.99
3 8 4800 90.95% 0.41 0.96
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Fig. 4: Predictions evaluation (FA and MASE) with outliers
removal and variable prediction window |W |={10, 20, .., 200,
500, 1000, 2000, 5000, 10.000} during P3 (10455 samples).
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Fig. 5: An extract (Dec. 18, 2019 – Dec. 30, 2019) from the
prediction applied during P3 with O.R and |W |=8.

i.e. (ε, δtmax), it is not obvious with the dynvd approach
(Section II) to find the optimal setting that guarantees the
(ε, δtmax) desired requirements. To ensure a fair comparison,
we evaluate dynvd within a large dataset (periods 1–3) by
varying the parameters of the estimation function and identify
the best setting of dynvd so that we can compare it with our
approach (Fig. 6). As stated in [9], the variation of the buffer
size n used in dynvd has no significant impact on the error
ε = |x̂(t) − x(t)|. Therefore, we set n to 8 to provided the
best performances of dynvd as evaluated in [9]. This selected
setting allows to use the same storage space of the IoT device
as in our approach (in our prediction |W |=8).

To be able to perform the performances evaluation with a
reference real-world dataset and evaluate the forecast accuracy
of dynvd, the time slot δ(t) used in dynvd must be at least
the value of the required temporal threshold (δtmax). This will
allows the IoT device to sense or linearly approximate the data
each δtmax time slot. This implies:
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Fig. 6: Mean absolute deviation error and samples transmis-
sions of dynvd (with n=8, k=1, ϕ=2) according to δmax.

δ(t) =
δmax

1 + dynvd(t)ϕ
≥ δtmax (5)

According to (5) and with a perfect linearity of the observed
data (i.e. dynvd(t)ϕ=0), δ(t) is the same as δmax. Conversely,
when data are not linear, dynvd(t)ϕ grows significantly and
δ(t) approaches 0. In the latter case, dynvd can not be eval-
uated within a reference data except if δ(t) is greater than or
equal to the original time slot of the reference data. All in sum,
the following requirement must be satisfied: δmax ≥ δtmax
and δ(t) ≥ δreference data. When the new time slot δ(t)
is exactly equal to the required time slot δtmax, the data is
sensed and transmitted to the CC, hence no approximation
is applied. When δ(t) is greater than δtmax, all the required
values at times t = i · δtmax ≤ δ(t), where i is an integer
value, are approximated using the dynvd. If there are plenty of
approximated values, the number of transmissions is reduced
but the risk of errors increases. Note that with dynvd, to
update the linear approximation function and identify the next
time slot δ(t), all the values of the buffer used in dynvd
(i.e. the n values) are sensed. Since these values can not be
approximated, they must be transmitted every time to the CC.

The evaluation illustrated in Table IV shows the good
quality of the proposed prediction. However, the FA metric
does not guarantee the satisfaction of Requirement (2) with

a reduced number of transmitted values. For this reason,
in Fig. 7, the satisfaction of Requirement (2) is evaluated
according to the required ε and the number of transmissions
that ensures the satisfaction of the ε by all the returned values.
Our combination of the prediction and SoD avoids unnecessary
calculations related to the prediction. Requirement (1) is
satisfied by the algorithm’s design (line 32 in algorithm 3).
In Fig. 7, the performance of our algorithm is compared with
the best setting of the dynvd. Indeed, for each new period,
we select a new δmax that satisfies the ε requirement with
the smallest number of transmissions, i.e. the higest value of
δmax (Fig. 6.b and 6.d). Thanks to the performed evaluation
illustrated in Fig. 6, the selected δmax enables dynvd to either
sense or approximate data every δtmax. While the proposed
algorithm ensures the error of returned values will never
exceed ε (lines 15–31 in algorithm 3), the MAD measurement
of dynvd (Fig. 6) indicates that the overall mean error is less
than ε. However, some values can violate Requirement (2).

The results of Fig. 7 demonstrate the superiority of our
approach. For the same requirement, our approach outperforms
dynvd by requiring a smaller number of transmissions from
the IoT device to the CC whatever the value of ε. Moreover,
with the input (ε, δtmax) requirements, the same adaptive
algorithm is applied for different periods without a need to
adjust the setting to face the fluctuation of tracked data. The
important number of transmissions is observed during P2. This
is explained by the fact that P2 is the longest period with an
important number of samples: 29233. Although P1 and P3
have approximately the same number of samples, we observe
that for the same value of ε, P3 requires more sampling than
P1. This is due to the fluctuation of raw data in P3 (Fig. 3)
and the small sampling rate (0.0017Hz).
Table V confirms the best performance of the proposed algo-
rithm in comparison to the dynvd strategy. While ensuring
the desired precision for all the returned values, the algo-
rithm succeeds to provide a high reduction of the number
of transmissions if compared to the periodic sampling and
transfer method which makes the proposed approach very
interesting in terms of bandwidth and energy-saving for IoT
sensor devices. For instance, with a guaranteed error threshold
of 0.5, the algorithm saves 84.29% of the IoT device transmis-
sions. This performance becomes more beneficial for energy-
efficient communications, particularly with unreliable network
links. Indeed, in networks with a high network packet error
rate (PER), saving only one transmission prevents additional
retransmissions for all the related packets (application data and
network control), thus the consumption of energy is further
reduced.

C. Energy saving

With the same assumptions of the realistic energy compar-
ison detailed in [14] without PER and based on the energy
consumption model of [15], Table VI summarizes the energy
saving of our algorithm during periods 1–3 for different
technologies and a device operating at 3.3V with a typical
current consumption of 70mA in normal operation mode.
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Fig. 7: Required transmissions with dynvd (with different
δmax) and the proposed algorithm according to the error
requirement ε ∈{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} during P1
(δtmax=60 s), P2 (δtmax=300 s), and P3 (δtmax=600 s).

TABLE V: Transfer reduction by the proposed algorithm and
dynvd with a fixed δmax within P1, P2 and P3.

dynvd proposed algorithm

ε # samplesa (with δmax
b) reduction # samplesa reduction

0.05 44632 (2) 9.77 % 28148 43.09 %
0.1 37019 (4) 25.16 % 19489 60.60 %
0.2 31695 (6) 35.92 % 13081 73.55 %
0.3 26112 (9) 47.21 % 10393 78.99 %
0.4 22138 (12) 55.24 % 9386 81.02 %
0.5 19224 (15) 61.13 % 7771 84.29 %
athe number of transmitted samples by the approach.
bthe best possible (i.e. highest) value of δmax satisfying ε for the 3 periods.

Note that the saved amount of energy is undervalued and
simplified since we only consider the transmission reduction of
small application packets (a minimal packet structure without
network control and security overhead). Furthermore, we only
consider the Tx/Rx states of the IoT device (without Idle and
Sleep states) with known power consumption patterns and
timing constraints [14]. In real-world usages, the expected
amount of saved energy is much higher. As depicted in Table
V, it can be easily inferred that the percentage of energy-
saving is at least 84.29% of the energy required by the sensor
to transfer data using the conventional periodic sampling.

TABLE VI: Energy saving with a required ε of 0.5, sample
rates: 60 s (P1), 300 s (P2), 600 s (P3).

PTX /PRX Data Min-Energy
Technology Min-Energy (mW) rate Saving (J)a

Bluetooth Low Energy (BLE) 24.11 / 19.26 2 Mb/s 842.80
802.15.4 24.11 / 19.26 250 kb/s 842.80
SIGFOX 147 / 39 1000 b/s 1080.66
LoRa Classe A 419.6 / 44.06 11 kb/s 1543.71

aEnergy =
∑

s=Tx/Rx Ps · ts , Ps: power consumption in state s, ts: time spent
in states Tx/Rx [14] [15]. Here, ts =

∑n
i=1 ti , where ti is the time required

to transmit one acknowledged packet, and n= (size of one sample)/(max data packet
size). n set at one (i.e. data without fragmentation) and tTX/RX at 40ms for one data
sample.

VI. CONCLUSION

In this paper, we proposed a new adaptive algorithm for
reducing the sample transfer rate of IoT sensor nodes. We

combined a GM(1,1) based prediction with outliers removal
and moving temporal window to guarantee data and temporal
accuracy. The results of this study reveal that relying exclu-
sively on prediction in sampling and transfer reduction for IoT
sensor devices can not guarantee the satisfaction of application
requirements in terms of maximal error threshold and temporal
accuracy. For this reason, we believe that without any assump-
tion on the distribution of tracked data, the proposed combina-
tion of SoD and prediction will give, for several real-world use
cases, the best results regarding the reduction of transfer rate,
energy-saving and strict satisfaction of accuracy requirements.
This is beneficial for long-term IoT application especially
with devices using energy-hungry transmission modules and
requiring long periods of sensing at a high sampling rate.
Extensive experimental results demonstrated the effectiveness
of our approach for IoT applications if compared to linear
approximations.
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