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A N T H R O P O L O G Y

Ancient genome-wide DNA from France highlights 
the complexity of interactions between Mesolithic 
hunter-gatherers and Neolithic farmers
Maïté Rivollat1,2*, Choongwon Jeong2,3, Stephan Schiffels2, İşil Küçükkalıpçı2,  
Marie-Hélène Pemonge1, Adam Benjamin Rohrlach2,4, Kurt W. Alt5,6, Didier Binder7, 
Susanne Friederich8, Emmanuel Ghesquière9,10, Detlef Gronenborn11, Luc Laporte10, 
Philippe Lefranc12,13, Harald Meller8, Hélène Réveillas1,14, Eva Rosenstock15,16,  
Stéphane Rottier1, Chris Scarre17, Ludovic Soler1,18, Joachim Wahl19,20, Johannes Krause2,  
Marie-France Deguilloux1, Wolfgang Haak2*

Starting from 12,000 years ago in the Middle East, the Neolithic lifestyle spread across Europe via separate 
continental and Mediterranean routes. Genomes from early European farmers have shown a clear Near 
Eastern/Anatolian genetic affinity with limited contribution from hunter-gatherers. However, no genomic 
data are available from modern-day France, where both routes converged, as evidenced by a mosaic cultur-
al pattern. Here, we present genome-wide data from 101 individuals from 12 sites covering today’s France 
and Germany from the Mesolithic (N = 3) to the Neolithic (N = 98) (7000–3000 BCE). Using the genetic sub-
structure observed in European hunter-gatherers, we characterize diverse patterns of admixture in different 
regions, consistent with both routes of expansion. Early western European farmers show a higher propor-
tion of distinctly western hunter-gatherer ancestry compared to central/southeastern farmers. Our data 
highlight the complexity of the biological interactions during the Neolithic expansion by revealing major 
regional variations.

INTRODUCTION
The Neolithic transition, which broadly describes the shift from 
foraging to farming, is one of the most important events in human 
history. In western Eurasia, the Neolithic way of life has been shown 
to spread westward from the northern Levant and potentially 
bypassing inner Anatolia from the seventh millennium BCE onward 
(1). Farming expanded along two main, archaeologically well- 
defined streams: along the Danube River to central Europe and 
along the Mediterranean coastline to Iberia (2, 3).

Recent large-scale genomic studies have shown that the spread 
of farming was mediated by early farmers through demic diffusion 
(4–11), while studies with a regional focus hinted at more complex 

regional processes of admixture between incoming farmers and 
local indigenous hunter-gatherers (HG) (6, 7, 12). The continental 
route is relatively well documented from southeastern to central 
Europe and shows a rapid expansion with very limited initial 
biological interaction, especially during the Neolithic Linear Pottery 
culture [Linearbandkeramik (LBK)] (5–8), followed by continued 
coexistence and evidence for cultural exchange with local HG for 
more than one millennium (13, 14). The Neolithic expansion in 
southwestern Europe is linked to the Mediterranean route (3), 
where a similar pattern of increasing admixture at least one millennium 
after the initial settlement of first farmer groups is observed in 
Iberia (5, 6, 11, 12, 15). The bigger picture emerging from these 
studies suggests little admixture between first incoming farmers 
and local indigenous HG in all targeted regions, followed by an 
increase of HG ancestry during an advanced phase of the Neolithic 
(5, 6). The contributing HG component detected in later Neolithic 
phases has been shown to be of local origin for the Carpathian Basin 
and Iberia (6, 12, 15).

From an archaeological perspective, it is not trivial to define and 
demonstrate the various modes of interaction between late HG and 
early farmers, and it requires high-resolution data and precise 
analytical methods to generate a clear and accurate spatiotemporal 
framework. Along the continental route, archaeological evidence of 
contact between Mesolithic and Neolithic groups increases toward 
the West (2). Overall, the lithic assemblages of the last HG are tech-
nically and stylistically rather similar to those of the early farmers. 
Signals of contacts with HG are mostly microlith types with regional 
traditions in the late Mesolithic blade-and-trapeze horizon. Archae-
ological signals of contact between immigrant farmers and HG have 
been reported not only from the earliest LBK sites in Hesse but also from 
Vaihingen in southwestern Germany. Here, coexistence between 
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farmers, HG, and groups with ceramics such as the debated 
La Hoguette and Limburg wares is documented within LBK settle-
ments (2, 16). While evidence of coexistence within settlements is 
no longer observable, particular HG objects of adornment have been 
observed from burials in western central Europe, suggesting a 
continuous tradition of coexistence of these different populations 
throughout the Middle Neolithic (17).

Looking at the Western Mediterranean route, the main uncertainties 
revolve around the origin of the dispersal of the Impresso-Cardial 
complex (ICC) in Italy. The late HG settlements are concentrated in 
the northeast of the peninsula, while the earliest farmers appear 
in the south, with little geographic overlap (18). In contrast, the 
discontinuity between the latest HG and earliest farmers is more 
pronounced in southern France, due to the marked stylistic differences 
of the latest HG blade and trapezes industries and the earliest Neolithic 
toolkits. These discrepancies reasonably argue for a cultural and 
population shift. However, only a few stratigraphic sequences 
provide a Mesolithic-Neolithic succession in southern France or Iberia 
and, in most cases, a clear stratigraphic gap is recorded, which is 
hard to reconcile with putative local interactions (19–21). Succes-
sive mixed assemblages, or rare Mesolithic reoccurrences within 
Neolithic sequences (21), appear only in the southern Alps, at least 
three centuries after the pioneer colonization of the Mediterranean 
coasts.

When reaching the northwestern parts of Europe, the dispersal 
of the Neolithic way of life became more complex, as shown by 
archaeological research (2, 18), resulting in a highly differentiated 
picture of interaction and exchange from the Mesolithic to the 
Neolithic (including regional variations). There is an even more 
pronounced chronological gap between the colonization of southeastern 
France by the ICC pioneer groups (terminus post quem 5850 BCE) 
(22) and of northeastern France by the LBK (5300 BCE) (23). It was 
suggested that both the concurrence of the two main streams 
(24, 25) of the west European Neolithic expansion up to the Atlantic 
coasts and the degree of interactions with autochthonous Mesolithic 
societies (3, 18) may have created the mosaic pattern of diversity 
seen in the material culture across the region in the subsequent cen-
turies (text S1). This pattern has been well described at the cultural 
level, but no genomic data have been available to date, in particular 
from today’s France. A mitochondrial DNA study conducted on 
farmers from the Paris basin has highlighted a higher amount of 
characteristic HG mitochondrial haplogroups (notably U5) than 
described for regions in central or southern Europe (26), suggesting 
different processes in action.

Our study aims to cover the key geographic region of modern- 
day France and neighboring regions in Germany to unravel the 
complexity and variability in cultural and biological interactions 
between human groups during the earliest stages of the Neolithic 
period. This study region is uniquely suited as it encompasses 
both (i) the convergence of early farming communities from 
central Europe (Danubian route) with those from southern France 
(Mediterranean route) and (ii) variable forms of interaction with 
indigenous late HG.

RESULTS
Here, we present newly typed genome-wide data from 101 individuals 
from 12 sites from modern-day France and Germany (3 Late Meso-
lithic and 98 Neolithic, 7000–3000 cal BCE; table S1). We enriched 

next-generation ancient DNA (aDNA) libraries for ~1.2 million 
single-nucleotide polymorphisms (SNPs) using targeted in-solution 
capture (8), as well as an independent in-house capture array for the 
complete mitogenome [(27) modified following (6)], and sequenced 
these on Illumina platforms to an average depth per site of 0.6× for 
1240K and 249× for mitochondrial capture. Libraries were built 
with a partial uracil–DNA–glycosylase (UDG) treatment, allowing 
the assessment of postmortem deamination patterns (2 to 29%) 
expected for aDNA data. We estimated potential contamination in 
mitochondrial capture DNA using (28) (table S3) and the nuclear 
genome by testing for heterozygosity of polymorphic sites on the X 
chromosome in males (table S2) (29). We estimated kinship to 
exclude first-degree relatives from downstream analyses (text S6) 
(30). We coanalyzed our new data with published ancient (n = 629) 
and modern (n = 2583) individuals from a panel of modern-day 
worldwide populations genotyped on the Affymetrix Human 
Origins (HO) panel (31, 32) as well as with ancient individuals 
genotyped on the 1240K panel. We excluded two individuals with 
low SNP coverage on the HO panel (<10,000) from downstream 
genome-wide analyses (table S1). To support the interpretation of 
our genetic results with a robust chronological context, we report 
new direct radiocarbon dates for 30 individuals (text S2 and table 
S1). A small set of 13 SNPs associated with phenotypes of interest 
were investigated. Results are presented in text S7 and show expected 
genotypes for Mesolithic and Neolithic European individuals.

We explored our new data qualitatively using principal compo-
nents analysis (PCA) by projecting the ancient samples onto the 
genetic variation of a HO set of west Eurasians (Fig. 1C). Newly 
sequenced Late Mesolithic individuals from Bad Dürrenberg (BDB001) 
and Bottendorf (BOT004 and BOT005; see text S6 and fig. S17) fall 
within the variability of western HG (WHG). Individual TGM009, 
attributed to the Late Neolithic site of Tangermünde from an 
Elb-Havel context [Trichterbecherkultur (TRB); texts 1 and 2], 
occupies an intermediate position between WHG and Neolithic 
farmers. Newly sequenced Neolithic individuals cluster with pre-
viously published data, forming two regional subgroups: the first 
including individuals from Neolithic central and southeastern 
Europe and the second individuals from Neolithic western Europe 
(Iberian Peninsula, France, and British Isles), which is shifted slightly 
toward WHG on PC1. Formal f-statistics of the form f4(Mbuti, 
European_HG; test, Anatolia_Neolithic), where test represents 
Neolithic groups, confirm these observations via different degrees 
of affinity with European HG (table S9).

Early Neolithic individuals from Stuttgart-Mühlhausen (SMH), 
Schwetzingen (SCH), and Halberstadt (HBS) in Germany [44 published 
and 42 newly reported, of which 5 low-coverage individuals (<18,000 
SNPs mapping on the HO panel) are shifted toward the centroid] 
representing the LBK horizon (17 sites from Hungary, Austria, and 
Germany) form a homogeneous genetic group of early farmer 
populations in central Europe. Neolithic groups from France cluster 
with western Neolithic individuals, while southern French sites 
Pendimoun (PEN) and Les Bréguières (LBR), attributed to the ICC, 
are shifted even further toward WHG. This suggests a higher HG 
component than in any other early Neolithic individuals, and thus a 
different history of admixture compared to contemporaneous western 
early farmer groups from Iberia. For both of the sites PEN and LBR, 
we split the individuals with significantly different HG ancestry 
contributions into subgroups A (less) and B (more HG ancestry; see 
table S7). Individuals from southern France do not group with ICC 

 on S
eptem

ber 29, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Rivollat et al., Sci. Adv. 2020; 6 : eaaz5344     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 16

individuals from the Adriatic region, who fall within the subgroup 
of southeastern and central European farmers (Fig. 1C).

Both central and western groups are still present during the fifth 
and early fourth millennium BCE, suggesting a geographic border 
along the Rhine River for regions that are situated north of the Alps. 
Individuals from the Middle Neolithic French sites of Gurgy (GRG), 
Prissé-la-Charrière (PRI), and Fleury-sur-Orne (FLR) in the northern 
half of France appear homogeneous (one PRI individual outside of 
the cloud has low SNP coverage), while the individuals from the site 
Obernai (OBN) form three groups: one with other contemporary 
western individuals (OBN A), one with a stronger HG component 
(OBN B), and a third one with central European farmers (OBN C), 
despite sharing similar cultural and chronological backgrounds 
(Fig. 1C and text S2).

Quantifying universal HG ancestry in European  
farmer groups
We used qpAdm (ADMIXTOOLS) (5) to estimate the proportion 
of European_HG ancestry in all new and published Neolithic indi-
viduals with directly associated radiocarbon dates to track changes 
through time (MODEL A; Fig. 2, text S9, and table S10). We observe 
a notably similar pattern with negligible amounts of HG ancestry 
during the first periods of attested farming in each region of central 
and southwestern Europe, followed by a steady increase after centuries 
of established farming. The last individuals without any traceable 

HG ancestry disappear around 3800–3700 cal BCE. Southeastern 
Europe shows a specific pattern in individuals linked to the Iron 
Gates region, and the British Isles show a sudden and constant 
higher HG component at the time of the arrival of the Neolithic in 
the region. Our new western LBK groups (east of the Rhine) con-
firm the previous estimates from the Middle-Elbe-Saale region and 
Transdanubia, which is in contrast to southeastern European sites 
such as Malak Preslavets in Bulgaria, for which higher and more 
variable estimates were reported (6). However, the situation is dif-
ferent in today’s France, where we observe not only the highest HG 
ancestry proportion overall when compared to other regions in 
Europe but it is also found in the oldest individuals from the southern 
sites of PEN and LBR. This observation is also supported by uni-
parental markers. Y chromosome lineages in western early farmers 
in the southern region are exclusively derived from HG (I2a; table S5 
and text S5). In contrast, mitochondrial DNA results show a more 
universal Neolithic diversity profile, as previously reported [i.e., 
(4, 5)], with only two haplotypes (U5 and U8) that are potentially of 
HG origin (table S4 and text S4).

Two individuals from the Middle Neolithic OBN site located im-
mediately west of the Rhine (Fig. 1A) also show a high proportion 
of the HG ancestry component (OBN B), in contrast to LBK sites 
east of the Rhine. To quantify the extra-HG proportion, we modeled 
LBK from Germany as a mixture of Anatolia_Neolithic and European_
HG, and subsequently OBN subgroups as a more proximal mixture 

Fig. 1. Spatial, temporal, and genetic structure of individuals in this study. (A) Geographic map showing sample locations. (B) Chronological timeline: Maximal 
chronological range according to calibrated radiocarbon date ranges (2-sigma) for each site/individual. (C) Principal components analysis (zoom in). Published ancient 
(no outlined symbols) and newly reported (black outlined symbols) individuals projected onto 777 present-day west Eurasians (gray circles).
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model of LBK and European_HG. We find this model well support-
ed (table S11), and obtained up to 31.8% of excess HG ancestry for 
OBN B. Given the absence of a strong HG contribution in LBK 
groups east of the Rhine, we assume this to be a local contribution 
during the centuries following the arrival of first farmers. Moreover, 
male individuals from OBN carry exclusively the Y chromosome 
haplogroups I2a1a2 and C1a2b, attributed to HG groups (text S5), 
providing further evidence for a greater amount of the HG contri-
bution in this region.

Genetic structure in European HG
The shared recent ancestry of early European farmers with Anatolian 
Neolithic farmers (32) and the rapid expansion across mainland 
Europe render it challenging to distinguish between different 
Neolithic routes at the genomic level as proposed by archaeology. 
Although we observe an increase in HG ancestry from east to west 
in published regions, this might simply be the result of geographic 
distance from the farming origin in line with Lipson et al. (6). To 
test for signals of different routes of expansion, we therefore made 
use of the increasingly emerging geographic structure in European 
HG ancestry (6, 7, 15, 33). Here, post-glacial European HG ancestry 
can be described by three main clusters (Fig. 3 and fig. S1) with 
clines of admixture between each: (i) GoyetQ2-like ancestry, (ii) 
Villabruna-related WHG ancestry, and (iii) eastern HG (EHG) 

ancestry. In addition, two clines between the clusters can be observed: 
one between GoyetQ2 and WHG formed by Iberian HG, and the 
other between EHG and WHG formed by southeastern European, 
Scandinavian, and Baltic HG (7, 12, 15).

Following this observation, we also performed f4-statistics of the 
form f4(Mbuti, test; Villabruna, EHG) testing all HG individuals 
(fig. S2A). Here, negative f4-values for all European groups indicate 
shared ancestry with the Villabruna individual and thus the 
WHG cluster, whereas positive values show more attraction to 
EHG. Using qpAdm, we modeled HG individuals as a mixture of 
the distal sources Villabruna, EHG, and GoyetQ2 to establish the 
best-fitting subclades of European HG individuals as sources of 
ancestry (MODEL B; text S9, fig. S4, and table S12). We also added 
Anatolia_Neolithic to fit some of the HG groups who show signs 
of admixture with early farmers. We chose the most parsimonious 
model, i.e., fitting the data with the minimum number of sources, 
for each set of results. In addition to the GoyetQ2 component 
present in Iberian individuals, as shown recently (15), we confirm 
that individuals from the EHG-WHG cline, including southeastern 
European and Scandinavian HG, can be distinguished from 
WHG individuals, as they carry a substantial proportion of EHG 
ancestry (7). Figure 3 shows that the newly reported Mesolithic 
individuals from Germany (BDB and BOT) also form part of the 
WHG cluster.

Fig. 2. HG ancestry proportions over time. (A) Overall timeline: Results of qpAdm (MODEL A) modeling of European_HG (represented by Loschbour, La Braña, and KO1; 
y axis) and Anatolia_Neolithic ancestry for each individual with a direct radiocarbon date ranging between 6200 and 2800 BCE (x axis). See table S10 for further details. 
(B) Regional timelines: Plots of the data shown in (A), separated by geographic location, to show regional signals.
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In the following, we leverage the observation that, at the time of 
the arrival of farming, this broad ancestry cline between EHG and 
WHG covers key geographical regions in central/southeastern 
Europe (spanning today’s Germany, Hungary, Serbia, Romania, 
and Ukraine), which overlap with the proposed Danubian route of 
the Neolithic expansion. Consequently, we hypothesize that Early 
Neolithic farmers of the Mediterranean route associated with ICC 
Ware and especially those arriving in France and Spain show less 
ancestry from the EHG side of the EHG-WHG cline and instead 
carry an admixture signal dominated by Villabruna-related WHG 
and GoyetQ2-related ancestries.

Tracing different HG ancestries in farmer groups
Analogous to the test with HG individuals, we calculated f-statistics 
of the form f4(Mbuti, test; Villabruna, EHG) for all Neolithic groups 
(fig. S5A) to estimate the affinity of Neolithic groups (test) to the 
distal HG representatives of the east-west cline. Like the HG groups 
(fig. S2A), the f4-values from the Neolithic groups are mostly nega-
tive, indicating shared ancestry with Villabruna, but form a wide 
gradient reaching 0, which implies equal amounts of shared ances-
try with EHG for some groups located in southeastern Europe. We 
used qpAdm to quantify these sources in MODEL B (text S9) for all 
Neolithic European groups. However, using these distal sources 
due to the very small amount of HG component in many early Neo-
lithic groups, the model fails to reliably detect an EHG component 
(table S12).

We therefore restricted the analysis to more proximal sources. 
We chose the deeply covered Mesolithic individual Loschbour from 
Luxembourg as representative of WHG ancestry (west of the Rhine) 
and therefore as a proxy for the Mediterranean route (34). We 
selected the Hungarian individual KO1, which looks genetically 
like a HG, though found in a farming context, for the HG ancestry 
of the continental route (10). We first replicated the f-statistics of 
the form f4(Mbuti, test; Loschbour, KO1) (fig. S5B). Here, positive 
f4-values indicate shared ancestry with KO1 as a proxy for the 
EHG-WHG cline. In turn, negative f4-values indicate excess shared 
ancestry with Loschbour and thus the WHG cluster. The results 
show a tendency for farmer groups east of the Rhine to share 
more ancestry with KO1 and farmer groups west of the Rhine 
with Loschbour. Notable exceptions are individuals from the 
Middle Neolithic Blätterhöhle group (6, 13), individual N22 from 
Poland (35), and our individual TGM009, all of which show a 
strong affinity to WHG-related individuals, although they are 
located east of the Rhine. On the basis of our geographic rationale, 
we then used qpAdm to model HG components in the Neolithic 
groups, including both HG sources that could be encountered en 
route for the proposed expansions (MODEL C; text S9, fig. S6, and 
table S13). We chose the best-fitting model given by qpAdm in 
cases where both HG sources were supported. Figure 4 summarizes 
these results, illustrating the diverse HG ancestries in time windows 
across major regions in Europe, adapting the models used to the 
targeted groups (table S14).

Fig. 3. Multidimensional scaling plot HG individuals. Multidimensional scaling plot of genetic distances based on f-statistics of the form f3(Mbuti; test, test) between 
Eurasian HG individuals. Newly reported individuals have a black outline.
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We caution that because the amount of HG ancestry is very low 
in many Neolithic groups (<10%), it remains difficult to characterize 
the ultimate source reliably. Nevertheless, our admixture patterns from 
supported models show clear geographic signals. Neolithic groups 
associated with the LBK in central Europe (Hungary, Austria, and 
Germany) carry a small HG proportion, which was likely derived from 
admixture with HG individuals of the EHG-WHG cline and could 
have occurred in southeastern Europe during a preceding phase of the 
Neolithic expansion around 6000–5400 BCE. When using f-statistics 
of the form f4(Mbuti, test; BDB001, KO1) with our new Mesolithic 
genome (BDB001) from the Middle-Elbe-Saale region in central 
Germany as a geographically local HG proxy (instead of using 
Loschbour, which is located west of the Rhine), we do not find support 
for a local attraction for LBK groups, but the same pattern as for 
Loschbour (fig. S5C). This suggests that additional gene flow from 
neighboring Loschbour-like HG such as BDB001 in central Europe 
was negligible in the first Neolithic groups. However, the German 

Baalberge group (4000–3500 BCE) shows a marked increase of such HG 
ancestry, as well as individuals from the Blätterhöhle group, as has been 
suggested (5, 6), compared to a combination of both KO1-like and 
Loschbour-like ancestries for LBK groups (6). We can now show 
that this increase in WHG ancestry (up to 21.3 ± 1.5% in Baalberge; 
table S13) is driven by either local Loschbour-like ancestry or an 
expansion of farming groups from the west carrying this signal 
during the fifth millennium BCE, as suggested by archaeological 
data (36). For all studied Neolithic groups west of the Rhine, we 
observe a different pattern with a higher HG ancestry proportion, 
even for earliest groups that appears to be of a local (Loschbour-like) 
HG origin, consistent with archaeological data (2).

Late survival of HG ancestry in central Europe
In contrast to Middle-German Neolithic groups, the Late Neolithic 
individual TGM009 (~3300 BCE) found in an TRB/Elb-Havel group 
context shows a different pattern of HG ancestry. When modeled 
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Fig. 4. Maps of variable sources of HG and Anatolian Neolithic ancestries through time. (A) Proportion of distal sources of Villabruna, EHG, Goyet_Q2, and 
Anatolia_Neolithic of post-LGM HG individuals (14000–4000 cal BCE) estimated according to MODEL B (table S12). The following five panels (B to F) show Neolithic 
farmer groups (6000–3500 cal BCE) modeled with the proximal sources Anatolia_Neolithic, KO1, and Loschbour according to MODEL C, in time increments of 500 years 
each. Transparent colors indicate individuals or groups not sufficiently supported by the models (P < 0.05). Note that not only N22 from the Polish BKG, TGM009, and 
Blätterhöhle, which carry a substantial proportion of HG ancestry, but also Anatolian_Neolithic ancestry have been modeled with MODEL B and were added to (E) and 
(F), respectively. See table S14 for model details.

 on S
eptem

ber 29, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Rivollat et al., Sci. Adv. 2020; 6 : eaaz5344     29 May 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

7 of 16

with distal sources, this individual carries 63.6 ± 5.2% Villabruna- 
related ancestry (see MODEL B; table S12 and Fig. 4). When we use 
proximal sources (MODEL C; table S13), we estimate the HG 
component to be split into 48.1 ± 6.4% KO1-related ancestry and 
25.8 ± 6.1% Loschbour-like ancestry (P = 0.12). To test whether the 
subtle EHG-related signal observed in TGM009 (through KO1) 
could also come from Scandinavian HG, as suggested by the archae-
ological records of regional late contacts with the Scandinavian 
Mesolithic (37), we applied f-statistics of the form f4(Mbuti, test; 
Hungary_KO1, Sweden_Motala_HG). The f4 value is significantly 
negative (f4 = −0.0035, Z score = −6.383), indicating that TGM009 
shares more ancestry with southeastern Europe HG than with 
Scandinavian HG (table S16). Consequently, qpAdm models with 
Sweden_Motala_HG in place of Hungary_KO1 received a poor fit 
(P = 1.32−04; table S16).

In the specific case of TGM009, we also tested whether individu-
als of the Pitted Ware Culture (PWC) group (~3200–2300 BCE) 
(38), considered to be “Neolithic HG,” would be a suitable contem-
poraneous proximal source with MODEL C set of outgroups (table 
S16). We find that the tests still support the three-way model with 
Anatolia_Neolithic, Luxembourg_Loschbour, and Hungary_KO1 
as a third source (P = 0.12). However, when we add Sweden_Motala_
HG to the outgroups, we find the best support for a four-way 
mixture model (P = 0.087) of 21.7 ± 2.4% Anatolia_Neolithic, 
24.4 ± 6.2% Luxembourg_Loschbour, 12.6 ± 4.4% Sweden_PWC, 
and 41.3 ± 7.3% Hungary_KO1. The small but stable contribution 
of PWC groups at the northern fringes of the loess belt adds 
additional complexity to the modes of interaction between Late 
Neolithic and the last HG groups in central Europe.

Estimating admixture dates between HG and  
early farmers
To gain further insights into the timing of the admixture of the HG 
ancestry proportion, we used the software package DATES to 
estimate the timing of admixture events between early farmers and 
HG, given in generations in the past (Fig. 5, table S17, and text S10). 
The resulting date estimates, when ordered temporally and geo-
graphically, echo patterns of both groups that are also visible in the 
PCA (east versus west of the Rhine). It confirms that this pattern is 
dependent not only on the amount of HG ancestry but also on the 
qualitative signature of the HG ancestry, as supported by fig. S7. 
Together, the date estimates for the four southern French groups 
from sites PEN A and B and LBR B suggest admixture with local 
HG relatively soon (100 to 300 years) after the arrival of Neolithic 
farmers about 5850 cal BCE, with an admixture date about 
5740–5450 cal BCE for all groups (table S17). These date estimates 
agree with local archaeological data for the establishment of early 
farming in this region (18), although we cannot exclude a sce-
nario in which admixture occurred on the Italian Peninsula 
shortly before.

In the rest of France, post-LBK groups show an older admixture 
date, which, together with a strong local HG component, place the 
admixture event with WHG-related HG during the first phase of 
the local Neolithic (Fig. 4). In contrast, the site OBN reveals a 
heterogeneous genetic signal forming three distinguishable groups 
with different HG proportions and corresponding admixture dates 
(tables S7, S13, and S17). The differences between the date estimates 
for the three groups suggest that the OBN group shows a genetic 
substructure rather than a recent ongoing admixture event.

Tracing GoyetQ2 ancestry in France
We also used qpAdm with GoyetQ2, Villabruna, and Anatolia_
Neolithic as sources to track Magdalenian-associated GoyetQ2-like 
ancestry in the new western Neolithic groups (MODEL D; text S9 
and table S15) (15). The GoyetQ2-related component is observed in 
the sites of PRI (6 ± 3%) in western France and GRG (3.7 ± 1.3%) 
from the Paris basin. Similar to Iberian Neolithic groups, the PRI 
group (4300–4200 BCE) can be modeled successfully with GoyetQ2 
as one of the HG components (fig. S8 and table S15), suggesting 
either admixture with local HG in western France who retained this 
post-Last Glacial Maximum component or genetic contacts with 
Neolithic Iberia in later phases. Of note, individuals from the site PRI 
on the Atlantic coast indicate a slightly more recent admixture date 
with European_HG (about 5200 BCE), which is consistent with a 
later arrival of Neolithic groups in westernmost France (table S17). 
We plotted these results in fig. S9 to complement the summary 
map with the GoyetQ2-related component in Neolithic groups, 
which adds another layer of complexity to the overall genetic picture 
of Neolithic Europe.

Connections with Britain and Ireland
To address questions at broader scale on the western fringe of 
Europe, we also investigated the relationship between Britain and 
Ireland and the European mainland during the Neolithic. Here, we 
performed f4-statistics of the form f4(Mbuti, Britain/Ireland groups; 
PRI, test), which measures whether Neolithic groups from Britain 
and Ireland share more genetic drift with the French Atlantic group 
PRI than with a test population (see fig. S10). As previously 
described (39, 40), we confirm that British Neolithic groups share 
affinities with the Mediterranean Neolithic (LBR_A, France_MN, 
and Iberia_MN), which is also visible in the WHG-rich HG propor-
tion (Fig. 4). However, on the basis of the results from our French 
Neolithic sites, we suggest that English, Welsh, and Scottish groups 
are connected to the Mediterranean Neolithic sphere not only via 
the Atlantic coast but more plausibly also via Normandy (FLR), the 
Paris Basin (GRG), and southern France (LBR A, post-ICC groups).

DISCUSSION
The expansion of Anatolian Neolithic farmer–related ancestry 
across Europe has been described for many geographic regions 
(5–7, 9–11, 39, 40). A recurrent pattern of increasing HG gene flow 
in individuals associated with a farming lifestyle many centuries 
after initial contact and tentatively termed “HG resurgence” (5) has 
hitherto been observed in the Iberian Peninsula, northern/central 
Europe, the Carpathian Basin, and the Balkans (6). However, a 
comparison of genomic data in the light of the proposed main 
routes of Neolithic expansion has not yet been attempted. Our new 
results provide important insights for the region of modern-day 
France where both routes had intersected. This region has not been 
documented so far, but is ideally positioned to address these 
questions. The different Mesolithic genetic substratum in Europe 
(6, 7, 15, 33) enables us to track both Neolithic expansion routes in 
the form of the quantity and quality of the admixed HG component 
observed in Neolithic groups.

Neolithic groups from southern France, which are a part of the 
Mediterranean/ICC route of expansion, show a different genetic 
profile when compared to early periods of expansion in other regions, 
with a substantially higher HG component than groups associated 
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with the continental route (up to 56 ± 2.9% of HG component for 
PEN B; table S10). Although the sites PEN and LBR date ~400 years 
(i.e., ~16 generations) later than the first local coastal settlements in 
Liguria, Provence, and Mediterranean Languedoc, they suggest a 
recent local admixture event (between three and six generations 
earlier; Fig. 5 and table S17). Archaeological research has argued for 
increased interaction between incoming farmers and indigenous HG 
in the western Mediterranean during a second stage of the Neolithization 
process and especially in areas with higher HG population densities, 
e.g., the Tosco-Emilian Apennine and Po plain (18). We are now able 
to confirm that these contacts left a traceable biological signal during 
the Neolithic expansion in southern France. From an archaeological 
perspective, this suggests that HG have contributed to the clear 
changes observed within the material culture postdating the pioneer 
phase. Note that ICC individuals from the eastern Adriatic coast have 

only a very small amount of HG ancestry with a greater affinity to 
central European groups (see table S8). This fits with the hypothesis 
of a differentiation of technical traditions within material cultures 
observed from both sides of Apennine Mountains in Italy: an Adriatic 
tradition connected to the Balkans and a Tyrrhenian one whose 
origin is still unknown (41). It is tempting to associate such a strong 
HG component on the Tyrrhenian side with the characteristic/spe-
cific pottery traditions observed in this same region and to consider 
these original traditions the result of a HG reinterpretation (41). 
However, the scarcity of genomic data available from central and 
southern Italy currently does not allow this hypothesis to be tested 
directly. Moreover, ICC individuals from the Iberian Peninsula also 
carry less HG ancestry. Together, this rejects the hypothesis that 
ICC-associated individuals represent a uniform genetic horizon per 
se and argues for more regionally nuanced scenarios of interaction.

Fig. 5. Admixture dating per group. Admixture date estimation according to DATES software, obtained in generations. Radiocarbon date intervals (given with 2-sigma) 
for each site are black lines; blue diamonds are the estimated admixture date (SE = 1). Admixture is estimated with two sources: European_HG and Anatolia_Neolithic. 
Number of years calculated on the basis of 28 years for one generation. Admixture time calculated according to the oldest date of the radiocarbon interval for each group 
(table S17 and text S10).
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Early central European farmers carried a very small percentage 
of HG component (about 5% on average), which is most likely 
nonlocal and instead derives from admixture in Transdanubia during 
an early stage of expansion. This not only matches general observa-
tions in the archaeological record (2) but could also explain why the 
earliest LBK lithic assemblages resemble those of the Late Mesolithic 
Blade and Trapeze Complex. It also confirms previous aDNA studies 
(5, 6), which argued for a fast spread of the first farmers across the 
German loess regions. LBK groups from southwestern and eastern 
Germany share more affinities with KO1 than with Loschbour 
(fig. S5). The admixture date estimates for southern German sites, 
SMH and SCH, 19.2 ± 3.8 and 12.3 ± 8.2 generations, respectively, 
are younger or contemporaneous to admixture date estimates from 
the Carpathian Basin and Austria (Fig. 5 and table S17). The temporal 
lag, and the subtle increase of shared KO1-like HG ancestry, allows 
us to trace LBK groups chronologically and matches well with the 
proposed model of LBK expansion from the core region in Trans-
danubia as suggested by archaeological research (14). However, the 
present picture does not explain the increasing amount of archaeo-
logical evidence of contact with HG and groups with southern 
influences in more western sites, particularly during the early LBK, 
such as the debated La Hoguette and Limburg phenomena (16).

In contrast to the situation in central Europe, regions west of the 
Rhine show a different profile during the following fifth millennium 
BCE. Here, first farmers carry a higher local Loschbour-related HG 
component, later increasing to up to 33.3 ± 3% in several individu-
als in Alsace (OBN B). Mitochondrial data support this finding with 
a higher average proportion of HG-affiliated haplotypes (U5 and 
U8) in all French groups from the fifth millennium BCE (15.5%; 
table S4 and text S4) compared to LBK groups east of the Rhine 
(1.4%). Although we do not have genomes from LBK individuals 
from northern France, we can infer from this HG component that 
admixture processes happened locally after the first farmers arrived. 
When modeling the European_HG component in the three groups 
from OBN with qpAdm, we observe an increase in the HG component 
of between 4.3 and 31.8%, which we attribute to local Loschbour- 
related sources (table S11). However, this approach cannot be 
directly applied to other contemporaneous French groups as poten-
tial additional movements linked to the Mediterranean route of 
Neolithic expansion that are supposed to have followed the first 
LBK farmers’ arrival in northern France could complicate the sim-
ple assumption of a two-way HG/farmer interaction (26, 42). The 
current genomic data do not allow us to distinguish whether the 
detected signal is confounded by a potential southern contribution. 
However, the estimated admixture dates for GRG and FLR in 
northern France indicate older admixture events that occurred 
more than 30 generations (840 to 930 years) earlier (Fig. 5 and table 
S17). In accordance with the established chronology of first Neolithic 
settlements in the French territory, the overlapping/synchronous 
date estimates obtained for southern ICC sites are consistent with 
the signal of a first HG contribution in the south of France, followed 
by a subsequent northward expansion of groups carrying this HG 
legacy (42).

The GoyetQ2-like HG component detected in individuals from 
the sites PRI and GRG suggests connections with the Iberian Peninsula 
where this post-LGM residual component is found, either by an 
admixture with HG (which could also be local) carrying this com-
ponent or by contact with first farming communities from Iberia or 
because of exchanges with Neolithic groups from Iberia during the 

subsequent fifth millennium. To date, archaeological data are 
compatible with all three hypotheses (25, 43). However, while we 
can show affinities between PRI on the Atlantic coast and the Iberian 
Peninsula, the previously described affinities between the British 
Isles and Mediterranean Neolithic (39, 40) are currently best ex-
plained by sites mainly in Normandy and the Mediterranean area 
via the Paris Basin. English, Scottish, and Welsh groups show more 
genetic affinities to northern and southern France and Iberia than 
to western France (fig. S10). In contrast, Neolithic Ireland shows 
less affinities with the northern French coastline and the Mediterranean 
area than other British groups, which could be explained within an 
Atlantic framework. This whole pattern is in line with the hypothesis 
of two different phenomena and speeds of Neolithic expansion to 
the western and eastern British Isles, as proposed by archaeological 
data (44).

In summary, our study highlights a diverse pattern of cultural 
and biological interactions between first farmers and indigenous 
HG along the western Mediterranean coastline and west of the 
Rhine, which confirms a high variability of processes during the 
Neolithic expansion, distinct in the proportion of the HG compo-
nent as well as processes and duration. The genetic structure among 
HG groups allowed us to track local admixture in early farmers, 
which not only is higher west of the Rhine compared to central and 
southeastern Europe but also is largely attributed to local and dis-
tinctly WHG-related sources. We show that nuanced sampling as 
well as increasing cohort numbers of both HG and early farmers 
can help to unravel the regional dynamics of the Neolithic transi-
tion and aid in refining our understanding of the underlying 
processes and developments over time, at both micro- and macro-
regional scales. On the basis of our observations, we find that broad-brush 
models are increasingly less likely to reconcile the full spectrum and 
details of the farmer-forager interactions and thus advocate the use 
of models with more regional focus in future studies.

MATERIALS AND METHODS
Study design
Archaeological samples
We processed and analyzed samples from 101 individuals, 3 Mesolithic 
and 98 Neolithic (7000–3300 cal BCE), from 12 sites in modern-day 
France and Germany. A detailed description of each site is provided 
in the Supplementary Materials, including contextual data and 
available radiocarbon dates (text S2 and table S1).

We sampled, extracted, and prepared DNA for next-generation 
sequencing in three different dedicated aDNA facilities. Individuals 
from PRI and PEN were sampled in the clean room of the Laboratoire 
PACEA, Bordeaux University, France. Samples coded “XN” from 
the site SMH were processed at the Interfaculty Centre for Archae-
ology at the University of Tübingen, Germany, and all other 
samples were processed at the Max Planck Institute for the Science 
of Human History (MPI-SHH) in Jena, Germany.
Sampling
We sampled mainly petrous bones and tooth and, for a few individ-
uals, also other type of skeletal remains (femur and phalanges; table 
S1). Samples were first irradiated with ultraviolet light for 30 min 
on all sides. All teeth were cleaned with a low-concentration bleach 
solution (3%). Teeth prepared in Tübingen and Jena were cut along 
the cementum/enamel junction, and powder was collected by drilling 
into the pulp chamber. Teeth prepared in Bordeaux were ground to 
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fine powder completely. Petrous bones were either cut in half and 
powder drilled from the denser regions around the cochlea (GRG) 
or drilled from the outside (FLR, LBR, OBN, and PEN). Before that, 
a layer of the bone surface was mechanically removed.
DNA extraction
From the extraction step onwards, all samples were processed at 
MPI-SHH in Jena, except the samples labeled XN, which were 
processed at the University of Tübingen. At MPI-SHH, DNA was 
extracted following the protocol described by Dabney et al. (45), 
with the High Pure Viral Nucleic Acid Kit (Roche). The same 
protocol was used in Tübingen with MinElute columns (Qiagen).
Library construction
One hundred and four double-stranded libraries were built with 
unique index pairs (46, 47). We applied the partial UDG (UDG 
half) protocol to remove most of the aDNA damage while preserv-
ing the characteristic damage pattern in the terminal nucleotides 
(48). A separate set of non-UDG libraries prepared in Tübingen was 
used for the mito-capture of SMH samples (table S3).
Shotgun screening and capture (1240K and mitochondrial)
We first screened all indexed libraries via shotgun sequencing of 
5 million reads on an Illumina HiSeq 4000 sequencer using either a 
single [1 × 75–base pair (bp) reads] or double end (2 × 50–bp reads) 
kit. We used EAGER (49) to process the raw data and to select 
libraries with >0.1% endogenous human DNA and those showing 
characteristic damage aDNA patterns for downstream SNP capture. 
Selected libraries were hybridized in-solution to different oligo-
nucleotide probe sets synthesized by Agilent Technologies to enrich 
for 1,196,358 informative nuclear SNP markers (8) and an in-house 
capture for the complete mitogenome following Maricic et al. (27) 
and modified after Haak et al. (5).

aDNA data processing
Read processing and aDNA damage
After demultiplexing, raw sequence data were processed using 
EAGER. This included clipping adaptors with AdapterRemoval (50), 
mapping with BWA (Burrows-Wheeler Aligner) v0.7.12 (51) against 
the Human Reference Genome hs37d5, and removing duplicate reads 
with the same orientation and start and end positions. After using 
mapDamage v.2.0.6 to observe characteristic aDNA damage patterns, 
we used BamUtil (https://genome.sph.umich.edu/wiki/BamUtil:_
trimBam) to clip two bases at the ends of each read for each sample to 
remove residual deaminations and 10 bases for reads from the non-
UDG libraries performed for mito-capture on SMH samples (tables 
S2 and S3).
Sex determination
Following Mittnik et al. (52), we determined the genetic sex by calculat-
ing the number of reads mapping to each of the sex chromosomes with 
respect to the autosomes. We set a threshold of Y ratio < 0.05 for 
a female and Y ratio > 0.4 for a male (text S3 and table S2).
Contamination estimation
We used the ANGSD (Analysis of Next Generation Sequencing 
Data) package to test for heterozygosity of polymorphic sites on the 
X chromosome in male individuals, applying a contamination 
threshold of 5% (table S2) (29). For mito-captured samples, we estimated 
contamination levels using contamMix 1.0.10 (53) by comparing 
the consensus mitogenome of the ancient sample to a panel of 311 
worldwide mitogenomes as a potential contamination source (table 
S3). Fourteen individuals from FLR and SMH gave a rate of con-
tamination over 5%, but while checking the read assembly visually, 

we found no consistent pattern of contaminating mitochondrial 
DNA lineages. On the basis of low contamination estimates for 
males on the X chromosome—when available—we opted to include 
these individuals in the downstream analyses. Libraries used for 
mito-capture for SMH samples are non-UDG–treated, and hence, 
damage is also biasing our contamination estimates (53).
Genotyping
We genotyped our bam files with pileupCaller (https://github.com/
stschiff/sequenceTools/blob/master/src/SequenceTools) by randomly 
calling one allele per position considering the human genome as 
pseudo-haploid genome. We called the SNPs according to the Affymetrix 
HO panel (~600K SNPs) (31, 32) and the 1240K panel (8). Numbers 
of SNPs covered at least once are given in table S1.
Mitochondrial and Y chromosome haplogroup assignment
To process mitochondrial DNA data, we extracted reads from 
mito-capture data when available or from 1240K data using samtools 
v1.3.1 (54) and mapped these to the revised Cambridge reference 
sequence. We called consensus sequences using Geneious R8.1.974 
(55) and used HaploGrep 2 to determine mitochondrial haplotypes 
(text S4 and table S4) (56).

We used pileup from the Rsamtools package (57) to call the Y 
chromosome SNPs of the 1240K SNP panel from all male individuals 
(mapping quality ≥30 and base quality ≥30). We manually assigned 
Y chromosome haplogroups using pileups of Y-SNPs included in 
the 1240K panel that overlap with SNPs included on the ISOGG 
SNP index v.14.07 (text S5 and table S5).
Kinship analysis
We estimated the degree of genetic relatedness between our individuals 
by applying Relationship Estimation from Ancient DNA (READ) 
(text S6) (30).
Phenotypic and functional analysis
We investigated individual genotypes for 13 SNPs associated with 
phenotypes of interest (8) by calculating genotype likelihoods based 
on the number of reads from our bam files (quality <30) for each 
specific position to determine the presence of the ancestral (non-effect) 
or derived (effect) alleles. We restricted the analysis to individuals 
with >200,000 SNPs mapping to the HO panel (text S7).

Population genetic analysis
Merging new dataset with published data
Two datasets were created for genome-wide analysis. We first 
merged our new data with published ancient data to the HO panel 
(~600K SNPs) (31, 32). This dataset was only used for PCA (see 
below). We then merged our data with published ancient data to 
the 1240K SNP panel (8) including 300 present-day individuals 
from 142 populations sequenced to high coverage (58). This second 
dataset, restricted to the autosomes, was used for all other population 
genetic analyses.
Group labels
Table S6 describes analysis groups and labels, for new, as well as 
published ancient samples.
Principal components analysis
We performed PCA using the “smartpca” program v10210 (EIGENSOFT) 
on the HO dataset (Fig. 1C) (59). We computed principal com-
ponents from 777 present-day west Eurasians on which ancient 
individuals were then projected using the options lsqproject: 
YES and shrinkmode: YES. We excluded individuals with less 
than 10,000 covered SNPs. A zoomed-out version of the PCA is 
presented in text S8.
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f-Statistics
Outgroup f3-statistics were calculated using qp3Pop and f4-statistics 
using qpDstat with the f4 mode from ADMIXTOOLS (31) on the 
1240K SNP panel. To investigate HG diversity, we performed 
outgroup f3-statistics of the form f3(test, test; outgroup) to create a 
similarity matrix, which was then used to generate the heatmap 
using the heatmap.2 function of the R-package gplots (fig. S1) (60). 
By calculating the values of 1-f3, we created a dissimilarity matrix 
from our f3-statistics. We performed multidimensional scaling on 
two dimensions for the dissimilarity matrix and then plotted the 
principal dimensions (Fig. 3). We computed SEs using the default 
block jackknife approach. We report and plot three standard errors 
for the f4-statistics test in supplementary figures (figs. S2, S3, S5, 
and S9).
qpAdm modeling
We used qpAdm and the 1240K SNP panel to estimate ancestry 
proportions (ADMIXTOOLS) (5) with respect to a basic set of 11 
outgroups: Mbuti, Papuan, Onge, Han, Karitiana, Mota, Ust_Ishim, 
MA1, Czech_Vestonice, Caucasus_HG, and Israel_Natufian. We 
then added additional outgroups according to the tests performed 
(see text S9 and tables S10 to S13 and S15 for further details).
Admixture date estimation
We used the method DATES v.753 to leverage patterns of ancestry 
covariance to estimate the date of admixture between European_HG 
and Anatolia_Neolithic (see text S11 and table S17 for further details).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/22/eaaz5344/DC1
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