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On the Application of Sparse Spherical Harmonic
Expansion for Fast Antenna Far Field Measurements
Nicolas Mézières, Benjamin Fuchs, Senior Member, IEEE, Laurent Le Coq, Jean-Marie Lerat, Romain Contreres

and Gwenn Le Fur

Abstract—The characterization of 3D antenna radiation pat-
terns is time consuming. The field acquisition duration can be
dramatically reduced by leveraging the sparsity of the radiated
field spectrum into spherical harmonic basis. Only a small
number of measurements points are then necessary to identify
the few significant spherical coefficients describing accurately
the antenna pattern. In practice, this compressed sensing based
procedure requires carefully chosen settings to work efficiently.
The fitting to the data and the field sampling strategy are two
crucial points in order to ensure a successful fast antenna mea-
surement procedure. Techniques with experimental validations
are proposed to ensure a reliable field interpolation. Estimation of
savings in acquisition time are also provided to show the interest
of the proposed method.

Index Terms—Antenna measurements, antenna radiation pat-
terns, compressed sensing, sparse recovery, spherical vector wave
expansion

I. INTRODUCTION

THE increasing complexity of antennas, designed to
achieve always more advanced functionalities such as

multiple or scanned beams or coded beamforming, leads
to challenging measurement tasks. Thus, reducing the field
acquisition time has become a research topic of significant
practical relevance. The characterization of 3D radiation pat-
terns is nowadays a common measurement procedure. The
standard technique [1] requires an important amount of field
samples, which is approximately proportional to (kr0)

2, k
being the wavenumber and r0 the radius of the minimum
sphere enclosing the radiating structure. Recently, the sparse
expansion of the field radiated by antennas into spherical
harmonic basis has been shown to greatly reduce the number
of field samples, leading to important decreases in acquisition
time, as shown in [2]–[5]. This fast measurement procedure,
combined to the associated post-processing method, needs a
proper tuning to ensure a reliable field interpolation.

In this letter, considerations for the fast antenna characteri-
zation via sparse spherical harmonic expansion are numerically
investigated and validated on experimental data. More specifi-
cally, the choice of the error tolerance parameter that controls
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the fitting to the data, the field sampling point number and
their positions are addressed. Estimations of time savings in
the field acquisition phase are provided to demonstrate the
interest of the approach.

II. SPARSE SPHERICAL HARMONIC EXPANSION

A. Spherical Harmonic Expansion

The electric far-field E(θ, ϕ), radiated outside the sphere
enclosing all sources can be expanded into Vector Spherical
Harmonics (VSH) basis as follows [1]:

E(θ, ϕ) =
k
√
η

2∑
s=1

∞∑
n=1

n∑
m=−n

QsmnFsmn(θ, ϕ) (1)

where η is the admittance of the propagation medium, Qsmn
are the spherical coefficients and Fsmn the VSH. To formalize
the problem, the directions (θ, ϕ) are discretized and the
infinite series in (1) is truncated to N , where [1] :

N = bkr0c+ 10. (2)

where k is the wavenumber and r0 the radius of the mini-
mal sphere enclosing the antenna. After discretization of the
directions (θ, ϕ), (1) can be expressed as a linear system :

y = Ax (3)

where the vector x of size Nc contains the spherical coeffi-
cients Qsmn. The vector y of size M gathers the values of
the measured electric far-field yj = E(θj , ϕj). The matrix
A corresponds to the harmonics Fsmn, each column being
associated to a triplet (s,m, n) and each row to a position
(θj , ϕj). The standard method described in [1] requires a
(high) number of measurement points MH = 2(2N+1)(N+1)
to analytically retrieve the spherical coefficients. However,
antenna radiation patterns can be accurately described from
a limited number of spherical harmonics, as shown in [2]–[5].
This sparse vector x can then be identified from a reduced
number of measurements M .

B. Sparse Spherical Coefficients Reconstruction

The determination of the sparse spherical coefficient vector
x of size Nc from a small number M(< Nc) of field samples
yj can be achieved by solving the following optimization
problem, known as Basis Pursuit DeNoising (BPDN) [6]:

min
x
‖x‖1 s.t. ‖Ax− y‖2 ≤ σ (4)

where the parameter σ > 0 controls the fitting to the data
contained in y and is known as error tolerance. Note that the
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BPDN problem (4) is a specific convex optimization problem,
belonging to sparse recovery category, that can be solved
efficiently using many readily available routines, such as the
SPGL1 algorithm [7], [8]. It takes about 1 minute to solve a
problem involving around 30.000 unknowns on a Intel Xeon
E5-2609 v2.
Two degrees of freedom strongly impact the resolution of (4):
the value of σ and the field sampling positions yj . Their
choices are crucial to converge to a correct solution and then
ensuring a trustworthy field interpolation. These points are
addressed in sections III and IV.

C. Spherical Field Samplings

We consider 3 sampling strategies, showed on Fig. 1:
• the equiangular sampling, defined by δθ = δϕ. This tech-

nique produces oversampling near the poles but enables
to identify analytically the spherical coefficients using a
Fourier Transform [1].

• the igloo sampling, defined by δϕ = δθ
sin θ [4]. It allows

a faster scan of the sphere, especially for step-by-step
measurements, and provides a regular distribution of the
points over the sphere.

• the Fibonacci’s sampling, or spiral sampling, which is
well suited to measurement on-the-fly and provides good
results for sparse reconstruction, as showed in [5]. The
following formulation will be used; the j-th point among
K ones is defined by ϕj = 2π 1+

√
5

2 (j − 1), θj =

arccos
(
1− 2(j−1)

K

)
.

Fig. 1. From left to right: Equiangular sampling, Igloo sampling and
spiral/Fibonacci’s sampling over the hemisphere.

III. ON THE NUMBER OF FIELDS SAMPLES

The determination of the minimum number of field samples
required to successfully recover the sparse spherical harmonic
spectrum is essential for fast antenna measurements. The-
oretical results on sparse recovery performances have been
established for Gaussian matrices, and to this end, Phase
Transition Diagrams (PTD) have been introduced [9]. Inspired
by these works, PTD have been extended for spherical har-
monic matrices in [2], [4], [5]. We propose here to go further
by drawing random sparse sets of spherical coefficients that
better fit the ones of an actual antenna. A concept of effective
sparsity will also be introduced, since non-zero but very small
magnitude spherical coefficients are negligible.

A. Phase Transition Diagrams

These diagrams enable to determine the probability of
success of the coefficients identification as a function of
the sparsity level ζ of the spherical coefficients and the

measurement ratio δ. The sparsity level ζ is the proportion
of non-zero spherical coefficients. The measurement ratio δ is
equal to the number of measurements M over the number of
unknowns Nc. Intuitively, a vector x with a small ζ (a small
number of non-zero coefficients) can be correctly identified
from a small measurement ratio δ.

1) Random Spherical Coefficients: Given a sparsity level ζ
and a measurement ratio δ, we draw numerous random sets
of complex spherical coefficients using a normal distribution
with zero mean. Standard approaches consider random coeffi-
cients drawn with a constant variance. We propose to reduce
progressively the variance for high order modes Fsmn where
N − 10 ≤ n ≤ N in order to be more faithful to real antenna
harmonic spectrum.

2) Effective Sparsity: We introduce the effective sparsity as
the measure of significant coefficients. Indeed, real-world data
are always noisy, there fore low magnitude coefficients are not
relevant. The effective sparsity ζT with threshold T is

ζT =
1

Nc
#

{
|xj |
‖x‖∞

> 10
T
20 , j = 1, . . . , Nc

}
(5)

with # the cardinal operator and ‖x‖∞ the maximum magni-
tude of x’s components.

3) Reconstruction Success: The quantification of the recon-
struction performances are done in the radiated field domain
instead of the spherical harmonic one as usually done. We
compare the interpolated field ỹ to the reference one y using
the Equivalent Error Signal metric, EES [10], which is defined
in dB as follows

EES(y, ỹ) = 20 log10

(
‖y − ỹ‖1
M‖y‖∞

)
. (6)

B. Numerical Results

1) Practical Implementation: For each random coefficient
set, we compute a reference field y over a dense equiangular
sampling. A subsample is selected for a given measurement
ratio δ, and is used to compute an estimation ỹ of the field
using BPDN. The characterization of the field is considered
successful when the EES computed between the reference y
and the one computed by BPDN on the subsample ỹ is below
−50 dB.

The error tolerance σ of the BPDN in (4) is fixed by
the following estimation: σ̃ =

√
M‖y‖∞S, where S is the

maximum expected error in amplitude. We set S = −60 dB in
this part. Computations are done over the hemisphere and we
use the effective sparsity with threshold T = −40 dB, ζ−40.
Randomly drawing spherical coefficients and thresholding
those under −40 dB from the highest amplitude mode yields
an EES about −50 dB between the exact field and the one
with thresholded spectrum.

2) Description and Interpretation: The transition curve
between successful and failed estimations is contained in a
short measurement ratio interval, as shown in Fig. 2. The
measurement ratio and effective sparsity level ζ−40 observed
for the sparse characterization of the measurements treated
in part IV-B of the cavity antenna for Car to X (C2X)
communications, denoted C2X and the reflectarray, denoted
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RA, are also reported on Fig. 2. As a result, we observe that
a measurement ratio of 0.75 should be enough for almost all
antennas under our hypothesis. However, positioning errors,
alignments errors or various others factors may shift the suc-
cessful reconstruction zone. The EES metric values obtained
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Fig. 2. Successful reconstruction zones, truncation order N = 45 (Nc =
4230), Success criterion: EES < −50 dB, quadratic spline interpolation.

for an effective sparsity level ζ−40 = 0.4, a level closed to the
one observed for both antennas C2X and RA, are reported on
Fig. 3. The dotted lines are the 1% and 99% quantiles, meaning
that 98% of the values lie between them. The markers on Fig.
3 and 4 are the averaged values over 200 random spherical
coefficient sets. Two main differences can be observed. The
transition between failed and successful reconstructions for the
igloo sampling is steeper than the one for the spiral sampling.
This sudden drop is supported by a broader distribution of the
EES values, leading to various situations for each outcome. On
the other hand, when the measurement ratio δ is large enough,
the two sampling strategies roughly have the same behavior.
For various N and ζ−40 = 0.4 again, the safe reconstruction
zone always occurs around δ = 0.65, as illustrated of Fig. 4,
indicating that the safe measurement ratio of δ = 0.75 can be
prolongated to all truncation orders N which can be found in
practical situations.

C. Field Acquisition Time Estimation

All measurements shown in this paper have been carried
out in the IETR centimetric anechoic chamber. The receiver
part is composed of a roll-over-azimuth positioning system and
the transmitter part has only a roll-axis. The estimation of the
field acquisition duration is derived from the values of velocity
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Fig. 3. EES over 200 trials for N = 45, solid lines = medians, dotted lines
= 1% and 99% quantiles, ζ−40 = 0.4, linear interpolation.
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Fig. 4. EES mean value over 200 tries for several truncation orders N , Igloo
Sampling, ζ−40 = 0.4, linear interpolation.

TABLE I
ESTIMATED FIELD ACQUISITION TIME FOR IETR CM WAVELENGTH

CHAMBER WITH STEP-BY-STEP MEASUREMENTS

Standard method BPDN & igloo
Ant. N Nc Data size (MH ) Time Data size Time
C2X 26 1456 2862 3h 1092 1h25
RA 47 4606 9120 7h45 3112 3h20

and acceleration of the step-by-step roll and azimuth engines.
The transition between a successful and failed reconstruction
is very steep, as shown in Fig. 4, meaning that a small amount
of time is enough to shift from the bad reconstruction zone
to the reliable one. The acquisition time estimations between
the standard technique and the sparse characterization with
BPDN using an igloo sampling for antennas considered on
section IV-B are reported in Table I.

D. Summary

The number of data sample M depends on the maximum
electrical size of the antenna. A number of M = 0.752N(N+
2), N as in (2), where the reduction coefficient 0.75 (also
known as them easurement ratio) is achieved by harnessing the
sparsity of the spherical coefficients. This number is lower than
the one required by the standard approach, MH = 2(2N +
1)(N+1). Roughly speaking, this low rate sampling leads to a
reduction of about 50 % as compared to the standard approach
described in [1] in terms of field acquisition duration.

IV. ERROR TOLERANCE

The error tolerance parameter σ in (4) controls the tradeoff
between the sparsity of the spherical coefficients ‖x‖1 and
their fitting to measured data ‖Ax − y‖2. Its choice is
discussed in this section.

A. Selection Criterion

One way to choose σ is to apply the L-curve approach
proposed for Tikhonov’s regularization [11]. This curve helps
visualizing the balance between sparsity and data fidelity,
defined in our context by σ 7→ (‖Axσ − y‖2, ‖xσ‖1), σ > 0.
Using the convex optimization optimal condition on subgradi-
ent, we know that ‖Axσ−y‖2 = σ whenever σ ≤ ‖y‖2. The
curve took its name from its L shape. It has been proved by
[11] that the point of maximum curvature at the corner of the L
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is a good guess in practical situations. However, this criterion
is not perfect, and the maximum curvature point sometimes
overshoots the best possible value, as observed in [11].

The computation of the L-curve and its curvature is tedious
and time consuming. We can give an estimation of the relevant
σ interval by using the formula σ̃ =

√
M‖y‖∞S, explained

in part III-B1. To go further, we adapt an algorithm presented
in [12] for Tikhonov’s regularization to find the maximum
curvature point in an effective way using a golden ratio
search by providing the research interval. The curvature can
be estimated using Menger’s method [12] or parabola method
[13]. The error tolerance parameter choice returned by this
algorithm is denoted by σκ.

B. Validations on Experimental Data

Two different metrics are used to validate the procedure,
one based on the `1 norm, the EES (6), and another one using
the `2 norm, the residual field ε [14], defined by, using the
same notations

ε(y, ỹ) =
‖y − ỹ‖2
‖y‖2

. (7)

Reference pattern y is computed on an equiangular sam-
pling with a 2 degrees step from a dense measurement grid.
The interpolated field ỹσ is derived from solving the BPDN (4)
from a coarse igloo. We then plot the L-curve and comparison
metric results between y and ỹ as functions of σ to validate
the selection criterion of the error tolerance.

1) Cavity Antenna with radiating slots: We consider a
radiating cavity at 6 GHz designed for C2X communications
with radius r0 = 13 cm, then a truncation order N = 26,
(or Nc = 1456 coefficients). A sample of size M = 1092 is
used to compute ỹσ using BPDN (4), with parameter σ for
the error tolerance. The formula given in IV-A with S = −50
dB yields σ̃ ≈ 1.4 × 10−3. The L-curve and its curvature
are presented on Fig. 5, the point of maximum curvature can
be found around 0.5 × 10−3 using Menger approximation
method. The greyed out zone corresponds to the aera where
the maximum curvature is observed and Fig. 6 shows metrics
variations. Both figures also display σκ, the value returned by
the algorithm described in section IV-A.

2) Reflectarray: The procedure is now applied on a reflec-
tarray measured at 12 GHz with a radius r0 = 15 cm, then
a truncation order N = 47, (or Nc = 4606 coefficients). The
interpolated field ỹσ is computed using an igloo sampling with
M = 3112. Estimation σ̃ yields approximately 0.6×10−2 for
S = −50 dB. Results are displayed on Fig. 7 and 8.

3) Conclusion: In both cases, the best reconstruction zone
is observed around the maximum curvature point. The es-
timation σ̃ allows to provide a tight search interval for the
algorithm to return a relevant choice σκ in a convenient time.

V. CONCLUSION

The practical aspects of a fast antenna measurement proce-
dure have been addressed in this letter. This procedure takes
advantage of the a priori sparsity in the spherical harmonic
representation of the radiated field to decrease the number
of required measurement points and therefore significantly
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Fig. 5. BPDN L-curve and its curvature (Menger’s method) - C2X, 6 GHz
Cavity Antenna.
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Fig. 6. Metrics values between EREF and Eσ - C2X, 6 GHz Cavity Antenna.
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Fig. 7. BPDN L-curve and its curvature (Parabola method) - RA, 12 GHz
Reflectarray.
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Fig. 8. Metrics values between EREF and Eσ - RA, 12 GHz Reflectarray.

reducing the field acquisition time. The number of necessary
field samples for a successful field reconstruction has been
thoroughly discussed. An automatic algorithm has been pro-
posed to choose an appropriate parameter to efficiently solve
the sparse recovery problem. Experimental validations have
been carried out and estimations of the field acquisition time
savings have been given, demonstrating the practical interest
of the proposed approach.
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