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Abstract: Deep learning is a hot research topic in the field of machine learning methods and applications. Real-value neural networks (Real NNs), 

especially deep real networks (DRNs), have been widely used in many research fields. In recent years, the deep complex networks (DCNs) and the 

deep quaternion networks (DQNs) have attracted more and more attentions. The octonion algebra, which is an extension of complex algebra and 

quaternion algebra, can provide more efficient and compact expressions. This paper constructs a general framework of deep octonion networks 

(DONs) and provides the main building blocks of DONs such as octonion convolution, octonion batch normalization and octonion weight 

initialization; DONs are then used in image classification tasks for CIFAR-10 and CIFAR-100 data sets. Compared with the DRNs, the DCNs, and 

the DQNs, the proposed DONs have better convergence and higher classification accuracy. The success of DONs is also explained by multi-task 

learning. 
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1. Introduction 

Real-value neural networks (Real NNs) [1-12] attracted the attention of many researchers and recently made major breakthroughs in many 

areas such as signal processing, image processing, natural language processing, etc. Many models of Real NNs have been constructed and reported 

in the literature. These models can generally be categorized into two kinds: non-deep models and deep models. The non-deep models are mainly 

constructed by multilayer perceptron module [13] and hard to train, if we only use the real-valued back propagation (BP) algorithm [14], when 

their layers are larger than 4. The deep models can be roughly constructed by the following two strategies: multilayer perceptron models assisted 

by the unsupervised pretrained methods (for example, deep belief nets [15], deep auto-encoder [16], etc.) and real-value convolutional neural 

networks (Real CNNs), including LeNet-5 [17], AlexNet [18], Inception [19-22], VGGNet [23], HighwayNet [24], ResNet [25], ResNeXt [26], 

DenseNet [27], FractalNet [28], PolyNet [29], SENet [30], CliqueNet [31], BinaryNet [32], SqueezeNet [33], MobileNet [34], etc.  

Although Real CNNs have achieved great success in various applications, the correlations between convolution kernels are generally not 

taken into consideration, that is, there is no connection or special relationship established between convolution kernels. On the opposite of Real 

CNNs, real-value recurrent neural networks (Real RNNs) [35-38], obtains the correlations by establishing connections between convolution 

kernels and by learning their weights. This approach increases significantly the training difficulty and has poor convergence. Thus, a first question 

raised: Can we consider correlations between convolution kernels by mean of some special relationships, which do not require learning, instead of 

adding the connections between convolution kernels?   

Many researchers showed that the performance can be improved when the relationships between convolution kernels are modeled by 

complex algebra, quaternion algebra [39-42], and also octonion algebra [43-45]. Therefore, they attached a lot of attention for extending neural 
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networks from real domain to complex, quaternion, and also octonion domains. These extension models, as in Real CNNs, can also be divided into 

two categories: non-deep models [46-60] and deep models [61-71]. There are many research work focusing on the non-deep models, for example, 

Widrow et al. [46] first introduced the complex-valued neural networks (Complex NNs), which have been widely used in recent years in radar 

imaging, image processing, communication signal processing, and many others [47]. Compared to the Real NNs, the Complex NNs have better 

generalization ability due to their time-varying delays and impulse effects [48]. Arena et al. [49] then extended the neural networks from complex 

to quaternion domain and proposed quaternion-valued neural networks (Quaternion NNs), which have been applied to color image compression 

[50], color night vision [51], and 3D wind forecasting [52]. Furthermore, the quaternion-valued BP algorithms achieve correct geometrical 

transformations in color space for an image compression problem, whereas real-valued BP algorithms fail [53, 54]. Popa [55] further extended the 

neural networks from quaternion to octonion domain and proposed octonion-valued neural networks (Octonion NNs), whose leakage delays, 

time-varying delays, and distributed delays were also introduced [56, 57]. Moreover, Clifford-valued neural networks [58-60] were also proposed 

for the extension of complex NNs and quaternion NNs. For the deep models, Reichert and Serre [61] proposed complex-valued deep networks, 

which interpreted half of the cell state as an imaginary part and used complex values to simulate the phase dependence of biologically sound 

neurons. Then, some researchers proposed complex-valued convolutional neural networks (Complex CNNs) [62-65]. Among them, Trabelsi et al. 

[65] proposed deep complex networks (DCNs) which provide the key atomic components (complex convolution, complex batch normalization, 

and complex weight initialization strategy, etc.) for the construction of DCNs and also obtain lower error rate than corresponding deep real 

networks (DRNs) [25] in CIFAR-10 and CIFAR-100 [66]. Then, Gaudet and Maida [67] extended the deep networks from complex to quaternion 

domain and proposed deep quaternion networks (DQNs), which achieve better image classification performance than DCNs [65] in CIFAR-10 and 
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CIFAR-100. Meanwhile, Titouan et al. also proposed deep quaternion neural network (QDNN) [68, 69], quaternion recurrent neural network 

(QRNN) [70], bidirectional quaternion long-short term memory (BQLSTM) [71], and quaternion convolutional autoencoder (QCAE) [72]. Then, a 

second question raised: Can we extend the deep networks from quaternion to octonion domain to obtain a further benefit? How to explain the 

success of these deep networks on these various domains (complex, quaternion, octonion)? 

In an attempt to solving this second question, in this paper, we propose deep octonion networks which can be seen as an extension of deep 

networks from quaternion domain to octonion domain. The contributions of the paper are as follows:  

1） The key atomic components of deep octonion networks, such as octonion convolution module, octonion batch normalization module and 

octonion weight initialization method. 

2） When applying the proposed deep octonion networks on the classification tasks on CIFAR-10 and CIFAR-100, the classification results are 

better than deep real networks, deep complex networks and deep quaternion networks. 

3） The explanation of deep complex networks, deep quaternion networks, and deep octonion networks behaviors from the perspective of 

multi-task learning [73-75]. 

The rest of the paper is organized as follows. In Section 2, octonion representation, its main properties and characteristics are briefly 

introduced. The architectural components needed to build deep octonion networks is described in Section 3. The classification performance of 

deep octonion networks is analyzed and also compared to the deep real networks, deep complex networks, and deep quaternion networks in 

Section 4. Then, Section 5 explains deep networks behaviors on these domains from the perspective of multi-task learning. The conclusions are 

formulated in Section 6. 
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2. Octonion Representation 

An octonion number x is a hypercomplex number, which is an extension of complex number and quaternion number, consists of one real part 

and seven imaginary parts: 

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7x xe xe xe xe xe xe xe xe O                               (1) 

where O denotes the octonion number field, , 1,2,...,7ix R i   (R denotes the real number field), e0=1, and ei, i=1,2,…,7, are seven imaginary 

units obeying the following rules: 
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The above equation shows that the octonion multiplication is neither commutative nor associative. The multiplication tables of the imaginary units 

are also shown in Table 1. 

The conjugate of this octonion x O  is given by 

  
*

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7x x e x e x e x e x e x e x e x e        .               (3) 

The unit norm octonion of x O  is 
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For a complete review of the properties of octonion, the reader can refer to [43]. 

3. Deep Octonion Networks 

This section introduces the methods and the modules required to construct the deep octonion networks and to initialize them: octonion 

internal representation method (Section 3.1), octonion convolution module (Section 3.2), octonion batch normalization module (Section 3.3), and 

octonion weight initialization method (Section 3.4). 

3.1 Octonion internal representation method 

We represent the real part and seven imaginary parts of an octonion number as logically distinct real valued entities and simulate octonion 

arithmetic using real-valued arithmetic internally. If we assume that an octonion convolutional layer has N feature maps where N is divisible by 8, 

then, these feature maps can be split into 8 parts to form an octonion representation. Specifically, as shown in Fig. 1, we allocate the first N/8 

feature maps to the real part and the remaining seven N/8 feature maps to the seven imaginary parts.  

3.2 Octonion convolution module 

Octonion convolution can be implemented by convolving an octonion vector N
o Ox  by an octonion filter matrix 

N N
o O W  as follows: 
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which can be expressed as the real matrix form as follows: 
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where *o and * denote octonion convolution and real convolution, respectively. N
i Rx and N N

i R W with i=1,2,…,7. ( )  denotes the real part 

of ,  ( ) , ( ) , ( ) , ( ) , ( ) , ( )  and ( )  denote the seven different imaginary parts of , respectively. The implementation of 

octonion convolutional operation is shown in Fig. 2, where , , , , , , , M M M M M M M Mr i j k e l m n  refer to eight parts of feature maps and 

, , , , , , , K K K K K K K Kr i j k e l m n  refer to eight parts of kernels, and 
1 2 1 2* ( , , , , , , , , )M K p p p p r i j k e l mn  refer to the result of a real convolution 

between the feature maps and the kernels. The real representations of complex convolution, quaternion convolution, and octonion convolution are 
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shown in Appendix 1. From this latter, we can see that the octonion convolution is a kind of mixed convolution, similar to a mixture of standard 

convolution and depth separable convolution, with certain links to the original convolution [76]. Traditional real-valued convolution simply 

multiplies each channel of the kernel by the corresponding channel of the image. The goal of the octonion convolution is to generate a unique 

linear combination of each axis based on the results of a single axis, allowing each axis of the kernel to interact with each axis of the image, 

thereby allowing the linear depth of the channel to be mixed, depending on the structure of the octonion multiplication. For example, using 8 

kernels (m×n×8) to convolve an 8 channels of feature maps (M×N×8), finally generates one feature map. Conventional convolution is one 

convolution kernel applied to one feature map, and then added to the result of the previous operation, regardless of the correlation between the 

feature maps. The octonion convolution, using the octonion arithmetic rule, applies eight convolution kernels to each feature map. Then applying a 

1×1 convolution to the result of the previous operation allows to obtain the linear interaction of the feature map and thus to derive the new feature 

map space. 

3.3 Octonion batch normalization module 

Batch normalization [31] can accelerate deep network training by reducing internal covariate shift. It allows us to use much higher learning rates 

and be less careful about initialization. When applying the batch normalization to real numbers, it is sufficient to translate and scale these numbers 

such that their mean is zero and their variance is one. However, when applying the batch normalization to complex or quaternion numbers, this 

can’t ensure equal variance in both the real and imaginary components. In order to overcome this problem, a whitening approach is used in [65, 

67], which scales the data by the square root of their variances along each principle components. In this section, we use a similar approach, but 

treating this issue as a “whitening” of 8D vector problem.  
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Firstly, whitening is accomplished by multiplying the zero-centered data (x-E[x]) by the inverse square root of the covariance matrix V: 

,                                      (7) 

and 
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,                             (8) 

where E[x] refers to the average value of each batch of training data NOx , and 8 8OV  is the covariance matrix of each batch of data x. 

In order to avoid calculating the   1
V , Eq. (7) can be computed as follows 

,                                     (9) 

where U is one of the matrices from the Cholesky decomposition of V
-1

, and each item of the matrix U is shown in Appendix 2. 

Secondly, the forward conduction formula of the octonion batch normalization layer is defined as 

 (OctonionBN ) x γx β ,                                (10) 

where   8E O β x  is a learned parameter with eight real parameters (one real part and seven imaginary parts) and 8 8O γ V  is also a 

learned parameter with only 36 independent real parameters,  
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Similar to [65] and [67], the diagonal of γ  is initialized to 1/ 8 , the off diagonal terms of γ  and all components of β  are initialized to 0. 

3.4 Octonion weight initialization method  

Before starting to train the network, we need to initialize its parameters. If the weights are initialized to the same value, the updated weights will 

be the same, which means that the network can’t learn the features. For deep neural networks, such initialization will make deeper meaningless 

and will not match the effects of linear classifiers. Therefore, the initial weight values are all different and close but not equal to 0, which not only 

ensures the difference between the input and output, but also allows the model to converge stably and quickly. In view of this, we provide an 

initialization method for octonion weight. The 8 parts of every octonion weight N N
o O W  are assumed to be independent Gaussian random 

variables with zero-mean and the same variance 2 . Then, the variance of oW  is provided by:  

                         (12) 

As the 8 parts are zero-mean then  and as they have the same variance then 
   
Var W

o( ) = 8s 2
. The value of the standard deviation 

s  is set according to the following: 
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           if Glorot's initialization [77] is used
=

                     if He's initialization [78] is used

1 2 ,

2 ,

in out

in

n n

n


 



            (13) 

4. Implementation and Experimental Results 

Similar to the 110-layer deep real networks [25], we designed an octonion convolutional neural network named deep octonion networks, 

whose schematic diagram are shown in Fig. 3. Fig. 3(a) shows the detailed convolution structure of the four stages, and Fig. 3(b) shows the entire 

structure including the input and output modules. Then we performed the image classification tasks of CIFAR-10 and CIFAR-100 [66] to verify 

the validity of the proposed deep octonion networks. The following experiment was implemented using Keras (Tensorflow as backend) on a PC 

machine, which sets up Ubuntu 16.04 operating system and has an Intel(R) Core(TM) i7-2600 CPU with speed of 3.40 GHz and 64 GB RAM, and 

has also two NVIDIA GeForce GTX1080-Ti GPUs. 

4.1 Models configurations 

4.1.1 Octonion input construction 

Since the images in datasets of CIFAR-10 and CIFAR-100 are real-valued, however, the input of the proposed deep octonion networks needs 

to be an octonion matrix, which we have to derive first. The octonion has one real part and seven imaginary parts, we put the original N training 

real images into the real part, and similar to [65] and [67], the seven imaginary parts of the octonion matrix are obtained by performing a single 

real-valued residual block ( BN ReLU Conv BN ReLU Conv     ) [25] 7 times at the same time. Then, the 8 vectors are connected 

according to a given axis to form a brand new octonion vector. 

4.1.2 The structure of deep octonion networks 
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   The OctonionConv OctonionBN ReLU   operation is performed on the obtained octonion input, where OctonionConv  denotes the 

octonion convolution module shown in section 3.2 and OctonionBN denotes the octonion batch normalization module shown in section 3.3. Then 

the octonion output is sent to the next three stages. In each stage, there are several residual blocks with double convolution layers. The shape of the 

feature maps in three stages are the same, and the number of them are increased gradually to ensure the expressive ability of the output features. To 

speed up the training, the following layer is an AveragePooling2D layer, which is then followed by a fully connected layer called Dense  to 

classify the input. The deep octonion network model sets the number of residual blocks in the three stages to 10, 9, and 9, respectively, and the 

number of convolution filters is set to 32, 64, and 128. The batch size is set to 64. 

4.1.3 The training of deep octonion networks 

Deep octonion networks are then compiled, the cross entropy loss function and the stochastic gradient descent method are chosen for training 

the model. The Nesterov Momentum is set to 0.9 in the back propagation of stochastic gradient descent in order to increase the stability and speed 

up the convergence. The learning rate is shown in Table 2. Using a custom learning rate schedule, different learning rates are used in different 

epochs in order to make the network more stable. Here, the learning rate from 0 to 80’th epoch is divided into three stages. The first 20 epochs are 

preheated at a learning rate of 0.01, and for the middle 40 epochs we increase the learning rate by a factor ten. For the latter 20 epochs, we restore 

it to 0.01. The deep octonion networks are trained on 120 epochs, which is less than 200 epochs in [65] and [67], because the convergence speed of 

the deep octonion networks is higher than the deep real networks [25], deep complex networks [65], and deep quaternion networks [67]. 

 

4.2 Experimental results and analysis 
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There are two methods for choosing the learning rate. One is to have the same learning rate during training which is called "smooth" learning 

rate (blue line in Fig. 4), and the other is to adjust the learning rate during training which is called "convex" learning rate (red line in Fig. 4). It is 

worth noting that two initialization methods of Glorot et al. [77] and He et al. [78] were used in the experiment, which are shown in the form of 

solid lines and dotted lines, respectively. Experiments show that the "convex" learning rate setting from epoch 0 to epoch 80 is better than the 

"smooth" learning rate. Although the accuracy will fluctuate during the 20 to 60 epochs, the accuracy will increase slightly in the next 20 epochs. 

Therefore, in the subsequent experiments, the "convex" learning rate was used for scheduling. The accuracy of the deep octonion networks, deep 

complex networks [65], and deep quaternion networks [67] in the first 20 epochs are compared in Fig. 5, from which we can see that the proposed 

deep octonion networks perform better compared to the other deep networks. Besides, as shown in Table 3, the deep octonion networks have less 

learning parameters than the other compared deep networks. In addition, as shown in the second and third column of Table 3, we also use floating 

point operations (FLOPs) and multiply-accumulate operations (MACCs) to statistically count the model's calculation volume to obtain the speed 

of the model. Regarding the calculation of FLOPs and MACCs, we followed the same steps as in [79, 80]. The calculation performances show that 

DONs use less computations and achieve the best results under the same conditions. 

For the classification tasks of CIFAR-10 and CIFAR-100: Firstly, we use the 10-fold cross-validation method, that is, we divide the data set into ten 

parts, and take nine parts as training data and one part as testing data, and then the Top-1 error rate is obtained by averaging the 10 results. Secondly, the 

10-fold cross-validation are performed 10 times, and the mean value is obtained as an estimation of the Top-1 error rate of the algorithm. Table 3 shows 

the Top-1 error rate of the deep octonion networks, deep real networks [25], deep complex networks [65], and deep quaternion networks [67] on 

CIFAR-10 and CIFAR-100. It can be seen from Table 3 that the deep octonion networks can achieve lower error rate compared to the other deep 
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networks and the advantage becomes more apparent when there are more classes to distinguish. From the fourth column of Table 3, we can see 

that, compared with deep quaternion networks [67], the improvement of the deep octonion networks is not significant as the relative improvement 

is 1.7%. However, as shown in the fifth column of Table 3, when the number of classes increases, the proposed deep octonion networks the 

relative improvement becomes 5.4% when compared to deep quaternion networks [67]. This also implies that the deep octonion networks have 

better generalization ability than the other compared deep networks. The phenomenon is also explained by the multi-task learning in the next 

section. 

 

5. Explanation of deep octonion networks via multi-task learning 

In Machine Learning, the standard algorithm is to learn one task at a time, we generally train a single model or an ensemble of models to 

perform our desired task and the output of the system is real. When facing the complex learning problems, traditional methods chose a similar 

approach. Firstly, decompose the complex learning problems into simple and independent sub-problems, and then study each sub-problem 

separately. Finally, establish the mathematical model of complex problems by combining the sub-problem learning results, and the model is 

refined through fine tuning until the performance no longer improves. These operations seem reasonable but not accurate, for the reason that many 

problems in the real world cannot be decomposed into independent sub-problems, the rich interrelated information between the sub-problems 

cannot be ignored. Even if it can be decomposed, the sub-problems are interrelated, and connected by sharing factors or share representations. In 

order to solve this problem, multi-task learning (MTL) was born [73]. Compared to single-task learning (STL—learning just one task at a time), 

MTL is a kind of joint learning method which learns multiple related tasks together based on shared representations. The purpose of the shared 
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representation is to improve the generalization. Multiple tasks are learned in parallel, and the results affect each other.  

5.1 The relationship between DONs and MTL 

MTL can be seen as a method that inspired by human learning. We often learn tasks to acquire the necessary skills in order to master more 

complex problems. There are many forms of MTL that can further improve CNN performance. Figures 6(a) and 6(b) show a single-task learning 

and multi-task feedforward neural network with one input layer, two hidden layers and one output layer, respectively. In single-task learning, 

learning between tasks is independent of each other. In MTL, parameters between multiple tasks are shared. MTL methods can be divided into two 

categories based on how parameters are shared between different task models. In the soft parameter sharing category, each task has its own model 

and its own parameters. The methods in this category focus on how to design weight-sharing approaches. The most common way is to share all 

convolutional layers and split on fully connected layers for heuristic decisions for loss of specific tasks, such as Cross-Stitch Networks [81], Sluice 

Network [82], etc. In hard parameter sharing category, all task models share exactly the same feature extractor, and each branch head executes its 

own task. In the context of deep learning, MTL is usually done by sharing hard or soft parameters of the hidden layer [74]. Fig. 6 (b) shows the 

MTL mode of hard parameter sharing. We refer to the structure between the input layer and the output layer as the shared layer. 

However, currently it is difficult to determine the best shared feature position [83], the best sharing / splitting scheme [81] and the existing CNN 

structure only receives feature tensors with a fixed number of feature channels. If multitasking is used for the existing CNN structure, the number 

of channels will increase as the number of multitasking tasks increases. The tandem features will not be available to subsequent layers of the CNN. 

There are multiple solutions to this problem. One is the NDRR layer proposed in [84], which is plug-and-play extended to the existing CNN 

architecture and uses feature transformation to discriminate cascaded features and to reduce their dimensions. The DONs network proposed in this 
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paper solves the problem of channel number mismatch by improving the network structure, and constructs a new octonion convolutional neural 

network for eight-task learning. 

Generally, when considering the optimization of more than one loss function, we are effectively dealing with a MTL problem. Next, we only 

focus on one task, that is, there is only one optimization goal, and the learning of auxiliary tasks may still help improving the learning performance 

of the main task. Auxiliary tasks can provide inductive bias, which makes the model more inclined to those solutions that can explain multiple 

tasks at the same time, and the generalization performance of the model is then better. The DONs shown in Fig. 6 (c) uses a network structure with 

hard parameter sharing similar to Fig. 6 (b) to learn eight related tasks together. The input of the last seven tasks is learned through the input of the 

first task, which plays a supporting role in the first task. Therefore, there are relevant and irrelevant parts in these eight tasks. The details of the 

DONs shared layer follow the rules in Fig. 2. 

5.2 Effectiveness of DONs 

In [75], it has been proven that the number of parameters in the multi-task model is less than the number of parameters for establishing multiple 

models, and the task is optimized to reduce the risk of over-fitting and the generalization ability is then stronger. The effectiveness of MTL is 

mainly reflected in the following five aspects: implicit data augmentation, attention focusing, eavesdropping, representation bias and regularization. 

Therefore, considering the DONs as a specific MTL is supported by the following:  

- Neural networks can help the hidden layer to avoid local minima through the interaction between different tasks during learning. When 

learning the main task, the parts that are not related to the task will produce noise during the learning process. Since different tasks have different 

noise patterns, a model that learns eight tasks simultaneously is able to learn a more general representation. Eight tasks learned at the same time 
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can average the noise patterns, which can make the model better representative of the data. This is similar to implicit data augmentation for MTL.   

- DONs takes the first of the eight tasks as the main one, and the latter seven tasks are learned through the input of the first task, which assists 

the first task. The gap between tasks is not particularly large, so the model can be focused on those features that do have an impact, as in the 

process of attention focusing for MTL. Studies have shown that if auxiliary tasks and main tasks use the same characteristics for decision-making, 

they will benefit more from MTL. Therefore, we need to find suitable auxiliary tasks to benefit from MTL. The choice of auxiliary tasks is diverse 

[74].  

- DONs restrict the model by using octonion operation rules, so that models that are more in line with real rules can be selected from the 

hypothesis space. This kind of regularization is such that the risk of overfitting as well as the complexity of the mode are reduced.   

In addition, as described in the previous section, hard parameter sharing (DONs can be considered as such models) is the most common method 

of MTL in neural networks, which can greatly reduce the risk of overfitting [74]. It has been demonstrated in [75] that the risk of overfitting the 

shared parameters is smaller than overfitting the specific parameters for each task. What's more, regards the number of tasks as N, a larger N 

means that the more tasks are learned simultaneously, the more the model can find a representation that captures all tasks, and the less likely the 

original task is to overfitting. This also explains that the performance can be improved when the relationships between convolution kernels are 

modeled by complex algebra, quaternion algebra, and also octonion algebra and why deep neural networks can achieve better results on octonion 

domains. 

 

6. Conclusion 
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 In this paper, we propose deep octonion networks (DONs) as an extension of DRNs, the DCNs, and the DQNs. The main building blocks of 

DONs are given, such as octonion convolution, octonion batch normalization, and octonion weight initialization. DONs were applied to the image 

classification tasks of CIFAR-10 and CIFAR-100 to verify their validity. Experiments showed that compared with the DRNs, the DCNs, and the 

DQNs, the proposed DONs have better convergence, less parameters, and higher classification accuracy. The success of DONs is also explained 

through multi-task learning approach.  
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Fig. 1. The octonion internal representation 
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Fig. 2. Illustration of the real convolution (a) and octonion convolution (b)  
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(a) Convolution modules 

 

 
(b) Network architecture for DONs 

 

Fig. 3. The implementation details of deep octonion networks (DONs) 
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Fig. 4. Results of different learning rate settings 
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Fig. 5. Accuracy curves of four models in the first 20 epochs 
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(a) Single-task learning (STL) 

 

 
(b) Multi-tasking learning (MTL) 

 

 
(c) Deep Octonion Networks (DONs) 
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Fig. 6. The comparison of Single-task learning (a), Multi-tasking learning (b) and Deep octonion networks (c) 

 

 

Table 1 

The multiplication table of the unit octonions 
  

je  

 i jee  1 1e  2e  3e  4e  5e  6e  7e  

ie  

1 1 1e  2e  3e  4e  5e  6e  7e  

1e  1e  1  3e  2e  5e  4e  7e  6e  

2e  2e  3e  1  1e  6e  7e  4e  5e  

3e  3e  2e  1e  1  7e  6e  5e  4e  

4e  4e  5e  6e  7e  1  1e  2e  3e  

5e  5e  4e  7e  6e  1e  1  3e  2e  

6e  6e  7e  4e  5e  2e  3e  1  1e  

7e  7e  6e  5e  4e  3e  2e  1e  1  

 

Table 2 

The learning rate (%) of octonion convolution neural network.  

Epoch Learning-rate 

(0 , 20) 0.01 

(20, 60) 0.1 

(60, 80) 0.01 

(80,110) 0.001 

(110, 120) 0.0001 
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Table 3 

The classification error rate of three models in two types of datasets. FLOPs and MACCs denote floating point operations and 

multiply-accumulate operations, respectively. 

Architecture Params FLOPs MACCs
 

CIFAR-10 CIFAR-100 

Real [25] 3,619,844 1081,333,248 340,380,416 6.37 - 

Complex [65] 1,823,620 541,132,288 270,273,792 5.60 27.09 

Quaternion [67] 932,792 271,922,688 135,662,848 5.44 26.01 

Octonion 481,150 137,350,144 68,368,896 5.35 24.60 

 

Appendix 1 The real representations of complex convolution, quaternion convolution, and octonion convolution. e  denotes imaginary 

component, where 2 1ie  , i j j i j iee e e e e  , ( ) ( )i j k i j k i j kee e e e e ee e  ,  , 1 , , 7i j k i j k     .  * , *c , *q , and *o  denote real 

convolution, complex convolution, quaternion convolution, and octonion convolution, respectively. ( )  denotes the real components of ,  ( ) , 

( ) , ( ) , ( ) , ( ) , ( )  and ( )  denote the different imaginary components of   respectively. 
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i iR R i  x W , where R, C, Q, and O denote real, complex, quaternion, 

and octonion domain, respectively.  
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Appendix 2  The matrix U: 
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