Lotfi Senhadji 
  
Huazhong Shu 
  
Jiasong Wu 
  
Ling Xu 
  
Fuzhi Wu 
  
Youyong Kong 
  
Deep Octonion Networks

Keywords: Convolutional neural network, complex, quaternion, octonion, image classification

  L'archive ouverte pluridisciplinaire

Introduction

Real-value neural networks (Real NNs) [START_REF] Mcculloch | A Logical Calculus of Ideas Immanent in Nervous Activity[END_REF][START_REF] Haykin | Neural Networks: A Comprehensive Foundation[END_REF][START_REF] Bengio | Representation learning: a review and new perspectives[END_REF][START_REF] Lecun | Deep learning[END_REF][START_REF] Goodfellow | Deep learning[END_REF][START_REF] Deng | Deep learning: methods and applications[END_REF][START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF][START_REF] Wang | On the origin of deep learning[END_REF][START_REF] Gu | Recent advances in convolutional neural networks[END_REF][START_REF] Guo | Deep learning for visual understanding: A review[END_REF][START_REF] Prieto | Neural networks: An overview of early research, current frameworks and new challenges[END_REF][START_REF] Liu | A survey of deep neural network architectures and their applications[END_REF] attracted the attention of many researchers and recently made major breakthroughs in many areas such as signal processing, image processing, natural language processing, etc. Many models of Real NNs have been constructed and reported in the literature. These models can generally be categorized into two kinds: non-deep models and deep models. The non-deep models are mainly constructed by multilayer perceptron module [START_REF] Rosenblatt | Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms[END_REF] and hard to train, if we only use the real-valued back propagation (BP) algorithm [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], when their layers are larger than 4. The deep models can be roughly constructed by the following two strategies: multilayer perceptron models assisted by the unsupervised pretrained methods (for example, deep belief nets [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF], deep auto-encoder [START_REF] Hinton | Reducing the dimensionality of data with neural networks[END_REF], etc.) and real-value convolutional neural networks (Real CNNs), including LeNet-5 [START_REF] Lecun | Gradient based learning applied to document recognition[END_REF], AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], Inception [START_REF] Szegedy | Going deeper with convolutions[END_REF][START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF][START_REF] Szegedy | Rethinking the Inception Architecture for Computer Vision[END_REF][START_REF] Szegedy | Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[END_REF], VGGNet [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], HighwayNet [START_REF] Srivastava | Training very deep networks[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], ResNeXt [START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF],

DenseNet [START_REF] Huang | Densely Connected Convolutional Networks[END_REF], FractalNet [START_REF] Larsson | FractalNet: Ultra-Deep Neural Networks without Residuals[END_REF], PolyNet [START_REF] Zhang | Polynet: a pursuit of structural diversity in very deep networks[END_REF], SENet [START_REF] Hu | Squeeze-and-Excitation Networks[END_REF], CliqueNet [START_REF] Yang | Convolutional Neural Networks with Alternately Updated Clique[END_REF], BinaryNet [START_REF] Hubara | Binarized Neural Networks[END_REF], SqueezeNet [START_REF] Iandola | SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[END_REF], MobileNet [START_REF] Howard | MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[END_REF], etc.

Although Real CNNs have achieved great success in various applications, the correlations between convolution kernels are generally not taken into consideration, that is, there is no connection or special relationship established between convolution kernels. On the opposite of Real CNNs, real-value recurrent neural networks (Real RNNs) [START_REF] Elman | Finding Structure in Time[END_REF][START_REF] Hochreiter | Long short-term memory[END_REF][START_REF] Graves | Framewise phoneme classification with bidirectional LSTM and other neural network architectures[END_REF][START_REF] Cho | Learning phrase representations using rnn encoder-decoder for statistical machine translation[END_REF], obtains the correlations by establishing connections between convolution kernels and by learning their weights. This approach increases significantly the training difficulty and has poor convergence. Thus, a first question raised: Can we consider correlations between convolution kernels by mean of some special relationships, which do not require learning, instead of adding the connections between convolution kernels? Many researchers showed that the performance can be improved when the relationships between convolution kernels are modeled by complex algebra, quaternion algebra [START_REF] Hamilton | Lectures on quaternions[END_REF][START_REF] Ell | Hypercomplex Fourier transforms of color images[END_REF][START_REF] Took | The quaternion LMS algorithm for adaptive filtering of hypercomplex processes[END_REF][START_REF] Zeng | Color image classification via quaternion principal component analysis network[END_REF], and also octonion algebra [START_REF] Okubo | Introduction to Octonion and Other Non-Associative Algebras in Physics[END_REF][START_REF] Gao | From quaternion to octonion: Feature-based image saliency detection[END_REF][START_REF] Błaszczyk | Octonion Fourier transform of real-valued functions of three variables -selected properties and examples[END_REF]. Therefore, they attached a lot of attention for extending neural networks from real domain to complex, quaternion, and also octonion domains. These extension models, as in Real CNNs, can also be divided into two categories: non-deep models [START_REF] Widrow | The complex LMS algorithm[END_REF][START_REF] Hirose | Complex-Valued Neural Networks: Advances and Applications[END_REF][START_REF] Song | Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects[END_REF][START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF][START_REF] Isokawa | Quaternion neural network and its application[END_REF][START_REF] Kusamichi | A new scheme for color night vision by quaternion neural network[END_REF][START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF][START_REF] Isokawa | Quaternion Neural Network and Its Application, International Conference on Knowledge-Based and Intelligent Information and Engineering Systems[END_REF][START_REF] Matsui | Quaternion neural network with geometrical operators[END_REF][START_REF] Popa | Octonion-valued neural networks[END_REF][START_REF] Popa | Global Exponential Stability of Neutral-Type Octonion-Valued Neural Networks with Time-Varying Delays[END_REF][START_REF] Popa | Global Exponential Stability of Octonion-Valued Neural Networks with leakage delay and mixed delays[END_REF][START_REF] Pearson | Neural networks in the Clifford domain[END_REF][START_REF] Buchholz | On Clifford neurons and Clifford multi-layer perceptrons[END_REF][START_REF] Kuroe | Models of Hopfield-type Clifford neural networks and their energy functions -hyperbolic and dual valued networks[END_REF] and deep models [START_REF] Reichert | Neuronal synchrony in complex-valued deep networks[END_REF][START_REF] Haensch | Complex-valued convolutional neural networks for object detection in PolSAR data[END_REF][START_REF] Zhang | Complex-valued convolutional neural network and its application in polarimetric SAR image classification[END_REF][START_REF] Popa | Complex-valued convolutional neural networks for real-valued image classification[END_REF][START_REF] Trabelsi | Deep Complex Networks[END_REF][START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF][START_REF] Gaudet | Deep Quaternion Networks[END_REF][START_REF] Parcollet | Quaterion Neural Networks for Spoken Language Understanding[END_REF][START_REF] Parcollet | Speech Recognition with Quaternion Neural Networks[END_REF][START_REF] Parcollet | Quaternion Recurrent Neural Networks[END_REF][START_REF] Parcollet | Bidirectional Quaternion Long-Short Term Memory Recurrent Neural Networks for Speech Recognition[END_REF]. There are many research work focusing on the non-deep models, for example, Widrow et al. [START_REF] Widrow | The complex LMS algorithm[END_REF] first introduced the complex-valued neural networks (Complex NNs), which have been widely used in recent years in radar imaging, image processing, communication signal processing, and many others [START_REF] Hirose | Complex-Valued Neural Networks: Advances and Applications[END_REF]. Compared to the Real NNs, the Complex NNs have better generalization ability due to their time-varying delays and impulse effects [START_REF] Song | Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects[END_REF]. Arena et al. [START_REF] Arena | Neural networks for quaternion-valued function approximation[END_REF] then extended the neural networks from complex to quaternion domain and proposed quaternion-valued neural networks (Quaternion NNs), which have been applied to color image compression [START_REF] Isokawa | Quaternion neural network and its application[END_REF], color night vision [START_REF] Kusamichi | A new scheme for color night vision by quaternion neural network[END_REF], and 3D wind forecasting [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF]. Furthermore, the quaternion-valued BP algorithms achieve correct geometrical transformations in color space for an image compression problem, whereas real-valued BP algorithms fail [START_REF] Isokawa | Quaternion Neural Network and Its Application, International Conference on Knowledge-Based and Intelligent Information and Engineering Systems[END_REF][START_REF] Matsui | Quaternion neural network with geometrical operators[END_REF]. Popa [START_REF] Popa | Octonion-valued neural networks[END_REF] further extended the neural networks from quaternion to octonion domain and proposed octonion-valued neural networks (Octonion NNs), whose leakage delays, time-varying delays, and distributed delays were also introduced [START_REF] Popa | Global Exponential Stability of Neutral-Type Octonion-Valued Neural Networks with Time-Varying Delays[END_REF][START_REF] Popa | Global Exponential Stability of Octonion-Valued Neural Networks with leakage delay and mixed delays[END_REF]. Moreover, Clifford-valued neural networks [START_REF] Pearson | Neural networks in the Clifford domain[END_REF][START_REF] Buchholz | On Clifford neurons and Clifford multi-layer perceptrons[END_REF][START_REF] Kuroe | Models of Hopfield-type Clifford neural networks and their energy functions -hyperbolic and dual valued networks[END_REF] were also proposed for the extension of complex NNs and quaternion NNs. For the deep models, Reichert and Serre [START_REF] Reichert | Neuronal synchrony in complex-valued deep networks[END_REF] proposed complex-valued deep networks, which interpreted half of the cell state as an imaginary part and used complex values to simulate the phase dependence of biologically sound neurons. Then, some researchers proposed complex-valued convolutional neural networks (Complex CNNs) [START_REF] Haensch | Complex-valued convolutional neural networks for object detection in PolSAR data[END_REF][START_REF] Zhang | Complex-valued convolutional neural network and its application in polarimetric SAR image classification[END_REF][START_REF] Popa | Complex-valued convolutional neural networks for real-valued image classification[END_REF][START_REF] Trabelsi | Deep Complex Networks[END_REF]. Among them, Trabelsi et al. [START_REF] Trabelsi | Deep Complex Networks[END_REF] proposed deep complex networks (DCNs) which provide the key atomic components (complex convolution, complex batch normalization, and complex weight initialization strategy, etc.) for the construction of DCNs and also obtain lower error rate than corresponding deep real networks (DRNs) [START_REF] He | Deep residual learning for image recognition[END_REF] in CIFAR-10 and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. Then, Gaudet and Maida [START_REF] Gaudet | Deep Quaternion Networks[END_REF] extended the deep networks from complex to quaternion domain and proposed deep quaternion networks (DQNs), which achieve better image classification performance than DCNs [START_REF] Trabelsi | Deep Complex Networks[END_REF] in CIFAR-10 and CIFAR-100. Meanwhile, Titouan et al. also proposed deep quaternion neural network (QDNN) [START_REF] Parcollet | Quaterion Neural Networks for Spoken Language Understanding[END_REF][START_REF] Parcollet | Speech Recognition with Quaternion Neural Networks[END_REF], quaternion recurrent neural network (QRNN) [START_REF] Parcollet | Quaternion Recurrent Neural Networks[END_REF], bidirectional quaternion long-short term memory (BQLSTM) [START_REF] Parcollet | Bidirectional Quaternion Long-Short Term Memory Recurrent Neural Networks for Speech Recognition[END_REF], and quaternion convolutional autoencoder (QCAE) [START_REF] Parcollet | Quaternion Convolutional Neural Networks for Heterogeneous Image Processing[END_REF]. Then, a second question raised: Can we extend the deep networks from quaternion to octonion domain to obtain a further benefit? How to explain the success of these deep networks on these various domains (complex, quaternion, octonion)?

In an attempt to solving this second question, in this paper, we propose deep octonion networks which can be seen as an extension of deep networks from quaternion domain to octonion domain. The contributions of the paper are as follows:

1) The key atomic components of deep octonion networks, such as octonion convolution module, octonion batch normalization module and octonion weight initialization method.

2) When applying the proposed deep octonion networks on the classification tasks on CIFAR-10 and CIFAR-100, the classification results are better than deep real networks, deep complex networks and deep quaternion networks.

3) The explanation of deep complex networks, deep quaternion networks, and deep octonion networks behaviors from the perspective of multi-task learning [START_REF] Caruana | Multitask Learning[END_REF][START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF][START_REF] Baxter | A Bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF].

The rest of the paper is organized as follows. In Section 2, octonion representation, its main properties and characteristics are briefly introduced. The architectural components needed to build deep octonion networks is described in Section 3. The classification performance of deep octonion networks is analyzed and also compared to the deep real networks, deep complex networks, and deep quaternion networks in Section 4. Then, Section 5 explains deep networks behaviors on these domains from the perspective of multi-task learning. The conclusions are formulated in Section 6.

Octonion Representation

An octonion number x is a hypercomplex number, which is an extension of complex number and quaternion number, consists of one real part and seven imaginary parts: 

where O denotes the octonion number field, , 1,2,...,7

i x R i  
(R denotes the real number field), e 0 =1, and e i , i=1,2,…,7, are seven imaginary units obeying the following rules:
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The above equation shows that the octonion multiplication is neither commutative nor associative. The multiplication tables of the imaginary units are also shown in Table 1.
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The unit norm octonion of xO  is
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For a complete review of the properties of octonion, the reader can refer to [START_REF] Okubo | Introduction to Octonion and Other Non-Associative Algebras in Physics[END_REF].

Deep Octonion Networks

This section introduces the methods and the modules required to construct the deep octonion networks and to initialize them: octonion internal representation method (Section 3.1), octonion convolution module (Section 3.2), octonion batch normalization module (Section 3.3), and octonion weight initialization method (Section 3.4).

Octonion internal representation method

We represent the real part and seven imaginary parts of an octonion number as logically distinct real valued entities and simulate octonion arithmetic using real-valued arithmetic internally. If we assume that an octonion convolutional layer has N feature maps where N is divisible by 8, then, these feature maps can be split into 8 parts to form an octonion representation. Specifically, as shown in Fig. 1, we allocate the first N/8 feature maps to the real part and the remaining seven N/8 feature maps to the seven imaginary parts.

Octonion convolution module

Octonion convolution can be implemented by convolving an octonion vector 
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which can be expressed as the real matrix form as follows: 
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where * o and * denote octonion convolution and real convolution, respectively.

N i R  x and NN i R   W with i=1,2,…,7.
()  denotes the real part of , ( )  , ()  , ()  , ()  , ()  , ()  and ()  denote the seven different imaginary parts of , respectively. The implementation of octonion convolutional operation is shown in Fig. 2, where , , , , , , ,

M M M M M M M M r i j k e l m
n refer to eight parts of feature maps and , , , , , , ,

K K K K K K K K r i j k e l m
n refer to eight parts of kernels, and From this latter, we can see that the octonion convolution is a kind of mixed convolution, similar to a mixture of standard convolution and depth separable convolution, with certain links to the original convolution [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF]. Traditional real-valued convolution simply multiplies each channel of the kernel by the corresponding channel of the image. The goal of the octonion convolution is to generate a unique linear combination of each axis based on the results of a single axis, allowing each axis of the kernel to interact with each axis of the image, thereby allowing the linear depth of the channel to be mixed, depending on the structure of the octonion multiplication. For example, using 8 kernels (m×n×8) to convolve an 8 channels of feature maps (M×N×8), finally generates one feature map. Conventional convolution is one convolution kernel applied to one feature map, and then added to the result of the previous operation, regardless of the correlation between the feature maps. The octonion convolution, using the octonion arithmetic rule, applies eight convolution kernels to each feature map. Then applying a 1×1 convolution to the result of the previous operation allows to obtain the linear interaction of the feature map and thus to derive the new feature map space.

Octonion batch normalization module

Batch normalization [START_REF] Yang | Convolutional Neural Networks with Alternately Updated Clique[END_REF] can accelerate deep network training by reducing internal covariate shift. It allows us to use much higher learning rates and be less careful about initialization. When applying the batch normalization to real numbers, it is sufficient to translate and scale these numbers such that their mean is zero and their variance is one. However, when applying the batch normalization to complex or quaternion numbers, this can't ensure equal variance in both the real and imaginary components. In order to overcome this problem, a whitening approach is used in [START_REF] Trabelsi | Deep Complex Networks[END_REF][START_REF] Gaudet | Deep Quaternion Networks[END_REF], which scales the data by the square root of their variances along each principle components. In this section, we use a similar approach, but treating this issue as a "whitening" of 8D vector problem.

Firstly, whitening is accomplished by multiplying the zero-centered data (x-E[x]) by the inverse square root of the covariance matrix V:

, ( 7 
)
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where E[x] refers to the average value of each batch of training data

N O  x , and 88 
O   V
is the covariance matrix of each batch of data x.

In order to avoid calculating the   1  V , Eq. ( 7) can be computed as follows

, ( 9 
)
where U is one of the matrices from the Cholesky decomposition of V -1 , and each item of the matrix U is shown in Appendix 2.

Secondly, the forward conduction formula of the octonion batch normalization layer is defined as

( OctonionBN )   x γx β, (10) 
where
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is also a learned parameter with only 36 independent real parameters, 
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Similar to [START_REF] Trabelsi | Deep Complex Networks[END_REF] and [START_REF] Gaudet | Deep Quaternion Networks[END_REF], the diagonal of γ is initialized to 1/ 8 , the off diagonal terms of γ and all components of β are initialized to 0.

Octonion weight initialization method

Before starting to train the network, we need to initialize its parameters. If the weights are initialized to the same value, the updated weights will be the same, which means that the network can't learn the features. For deep neural networks, such initialization will make deeper meaningless and will not match the effects of linear classifiers. Therefore, the initial weight values are all different and close but not equal to 0, which not only ensures the difference between the input and output, but also allows the model to converge stably and quickly. In view of this, we provide an initialization method for octonion weight. The 8 parts of every octonion weight

NN o O   W
are assumed to be independent Gaussian random variables with zero-mean and the same variance 2  . Then, the variance of o W is provided by: (

As the 8 parts are zero-mean then and as they have the same variance then Var W o ( ) = 8s 2 . The value of the standard deviation s is set according to the following:

  if Glorot's initialization [77] is used = if He's initialization [78] is used 1 2 , 2 , in out in n n n        (13)

Implementation and Experimental Results

Similar to the 110-layer deep real networks [START_REF] He | Deep residual learning for image recognition[END_REF], we designed an octonion convolutional neural network named deep octonion networks, whose schematic diagram are shown in Fig. 3. Fig. 3(a) shows the detailed convolution structure of the four stages, and Fig. 3(b) shows the entire structure including the input and output modules. Then we performed the image classification tasks of CIFAR-10 and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] to verify the validity of the proposed deep octonion networks. The following experiment was implemented using Keras (Tensorflow as backend) on a PC machine, which sets up Ubuntu 16.04 operating system and has an Intel(R) Core(TM) i7-2600 CPU with speed of 3.40 GHz and 64 GB RAM, and has also two NVIDIA GeForce GTX1080-Ti GPUs.

Models configurations

Octonion input construction

Since the images in datasets of CIFAR-10 and CIFAR-100 are real-valued, however, the input of the proposed deep octonion networks needs to be an octonion matrix, which we have to derive first. The octonion has one real part and seven imaginary parts, we put the original N training real images into the real part, and similar to [START_REF] Trabelsi | Deep Complex Networks[END_REF] and [START_REF] Gaudet | Deep Quaternion Networks[END_REF], the seven imaginary parts of the octonion matrix are obtained by performing a single real-valued residual block ( BN ReLU Conv BN ReLU Conv     

) [START_REF] He | Deep residual learning for image recognition[END_REF] 7 times at the same time. Then, the 8 vectors are connected according to a given axis to form a brand new octonion vector.

The structure of deep octonion networks

The OctonionConv OctonionBN ReLU  

operation is performed on the obtained octonion input, where OctonionConv denotes the octonion convolution module shown in section 3.2 and OctonionBN denotes the octonion batch normalization module shown in section 3.3. Then the octonion output is sent to the next three stages. In each stage, there are several residual blocks with double convolution layers. The shape of the feature maps in three stages are the same, and the number of them are increased gradually to ensure the expressive ability of the output features. To speed up the training, the following layer is an AveragePooling2D layer, which is then followed by a fully connected layer called Dense to classify the input. The deep octonion network model sets the number of residual blocks in the three stages to 10, 9, and 9, respectively, and the number of convolution filters is set to 32, 64, and 128. The batch size is set to 64.

The training of deep octonion networks

Deep octonion networks are then compiled, the cross entropy loss function and the stochastic gradient descent method are chosen for training the model. The Nesterov Momentum is set to 0.9 in the back propagation of stochastic gradient descent in order to increase the stability and speed up the convergence. The learning rate is shown in Table 2. Using a custom learning rate schedule, different learning rates are used in different epochs in order to make the network more stable. Here, the learning rate from 0 to 80'th epoch is divided into three stages. The first 20 epochs are preheated at a learning rate of 0.01, and for the middle 40 epochs we increase the learning rate by a factor ten. For the latter 20 epochs, we restore it to 0.01. The deep octonion networks are trained on 120 epochs, which is less than 200 epochs in [START_REF] Trabelsi | Deep Complex Networks[END_REF] and [START_REF] Gaudet | Deep Quaternion Networks[END_REF], because the convergence speed of the deep octonion networks is higher than the deep real networks [START_REF] He | Deep residual learning for image recognition[END_REF], deep complex networks [START_REF] Trabelsi | Deep Complex Networks[END_REF], and deep quaternion networks [START_REF] Gaudet | Deep Quaternion Networks[END_REF].

Experimental results and analysis

There are two methods for choosing the learning rate. One is to have the same learning rate during training which is called "smooth" learning rate (blue line in Fig. 4), and the other is to adjust the learning rate during training which is called "convex" learning rate (red line in Fig. 4). It is worth noting that two initialization methods of Glorot et al. [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] and He et al. [START_REF] He | Delving deep into rectifiers: Surpassing human-level performance on imagenet classification[END_REF] were used in the experiment, which are shown in the form of solid lines and dotted lines, respectively. Experiments show that the "convex" learning rate setting from epoch 0 to epoch 80 is better than the "smooth" learning rate. Although the accuracy will fluctuate during the 20 to 60 epochs, the accuracy will increase slightly in the next 20 epochs.

Therefore, in the subsequent experiments, the "convex" learning rate was used for scheduling. The accuracy of the deep octonion networks, deep complex networks [START_REF] Trabelsi | Deep Complex Networks[END_REF], and deep quaternion networks [START_REF] Gaudet | Deep Quaternion Networks[END_REF] in the first 20 epochs are compared in Fig. 5, from which we can see that the proposed deep octonion networks perform better compared to the other deep networks. Besides, as shown in Table 3, the deep octonion networks have less learning parameters than the other compared deep networks. In addition, as shown in the second and third column of Table 3, we also use floating point operations (FLOPs) and multiply-accumulate operations (MACCs) to statistically count the model's calculation volume to obtain the speed of the model. Regarding the calculation of FLOPs and MACCs, we followed the same steps as in [START_REF] He | Convolutional neural networks at constrained time cost[END_REF][START_REF] Han | Learning both weights and connections for efficient neural network[END_REF]. The calculation performances show that DONs use less computations and achieve the best results under the same conditions.

For the classification tasks of CIFAR-10 and CIFAR-100: Firstly, we use the 10-fold cross-validation method, that is, we divide the data set into ten parts, and take nine parts as training data and one part as testing data, and then the Top-1 error rate is obtained by averaging the 10 results. Secondly, the 10-fold cross-validation are performed 10 times, and the mean value is obtained as an estimation of the Top-1 error rate of the algorithm. Table 3 shows the Top-1 error rate of the deep octonion networks, deep real networks [START_REF] He | Deep residual learning for image recognition[END_REF], deep complex networks [START_REF] Trabelsi | Deep Complex Networks[END_REF], and deep quaternion networks [START_REF] Gaudet | Deep Quaternion Networks[END_REF] on CIFAR-10 and CIFAR-100. It can be seen from Table 3 that the deep octonion networks can achieve lower error rate compared to the other deep networks and the advantage becomes more apparent when there are more classes to distinguish. From the fourth column of Table 3, we can see that, compared with deep quaternion networks [START_REF] Gaudet | Deep Quaternion Networks[END_REF], the improvement of the deep octonion networks is not significant as the relative improvement is 1.7%. However, as shown in the fifth column of Table 3, when the number of classes increases, the proposed deep octonion networks the relative improvement becomes 5.4% when compared to deep quaternion networks [START_REF] Gaudet | Deep Quaternion Networks[END_REF]. This also implies that the deep octonion networks have better generalization ability than the other compared deep networks. The phenomenon is also explained by the multi-task learning in the next section.

Explanation of deep octonion networks via multi-task learning

In Machine Learning, the standard algorithm is to learn one task at a time, we generally train a single model or an ensemble of models to perform our desired task and the output of the system is real. When facing the complex learning problems, traditional methods chose a similar approach. Firstly, decompose the complex learning problems into simple and independent sub-problems, and then study each sub-problem separately. Finally, establish the mathematical model of complex problems by combining the sub-problem learning results, and the model is refined through fine tuning until the performance no longer improves. These operations seem reasonable but not accurate, for the reason that many problems in the real world cannot be decomposed into independent sub-problems, the rich interrelated information between the sub-problems cannot be ignored. Even if it can be decomposed, the sub-problems are interrelated, and connected by sharing factors or share representations. In order to solve this problem, multi-task learning (MTL) was born [START_REF] Caruana | Multitask Learning[END_REF]. Compared to single-task learning (STL-learning just one task at a time), MTL is a kind of joint learning method which learns multiple related tasks together based on shared representations. The purpose of the shared representation is to improve the generalization. Multiple tasks are learned in parallel, and the results affect each other.

The relationship between DONs and MTL

MTL can be seen as a method that inspired by human learning. We often learn tasks to acquire the necessary skills in order to master more complex problems. There are many forms of MTL that can further improve CNN performance. Figures 6(a) and 6(b) show a single-task learning and multi-task feedforward neural network with one input layer, two hidden layers and one output layer, respectively. In single-task learning, learning between tasks is independent of each other. In MTL, parameters between multiple tasks are shared. MTL methods can be divided into two categories based on how parameters are shared between different task models. In the soft parameter sharing category, each task has its own model and its own parameters. The methods in this category focus on how to design weight-sharing approaches. The most common way is to share all convolutional layers and split on fully connected layers for heuristic decisions for loss of specific tasks, such as Cross-Stitch Networks [START_REF] Misra | Cross-stitch networks for multi-task learning[END_REF], Sluice Network [START_REF] Ruder12 | Learning what to share between loosely related tasks[END_REF], etc. In hard parameter sharing category, all task models share exactly the same feature extractor, and each branch head executes its own task. In the context of deep learning, MTL is usually done by sharing hard or soft parameters of the hidden layer [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. Fig. 6 (b) shows the MTL mode of hard parameter sharing. We refer to the structure between the input layer and the output layer as the shared layer.

However, currently it is difficult to determine the best shared feature position [START_REF] Md | Visualizing and understanding convolutional networks[END_REF], the best sharing / splitting scheme [START_REF] Misra | Cross-stitch networks for multi-task learning[END_REF] and the existing CNN structure only receives feature tensors with a fixed number of feature channels. If multitasking is used for the existing CNN structure, the number of channels will increase as the number of multitasking tasks increases. The tandem features will not be available to subsequent layers of the CNN.

There are multiple solutions to this problem. One is the NDRR layer proposed in [START_REF] Gao | NDDR-CNN: Layerwise feature fusing in multi-task CNNs by neural discriminative dimensionality reduction[END_REF], which is plug-and-play extended to the existing CNN architecture and uses feature transformation to discriminate cascaded features and to reduce their dimensions. The DONs network proposed in this paper solves the problem of channel number mismatch by improving the network structure, and constructs a new octonion convolutional neural network for eight-task learning.

Generally, when considering the optimization of more than one loss function, we are effectively dealing with a MTL problem. Next, we only focus on one task, that is, there is only one optimization goal, and the learning of auxiliary tasks may still help improving the learning performance of the main task. Auxiliary tasks can provide inductive bias, which makes the model more inclined to those solutions that can explain multiple tasks at the same time, and the generalization performance of the model is then better. The DONs shown in Fig. 6 (c) uses a network structure with hard parameter sharing similar to Fig. 6 (b) to learn eight related tasks together. The input of the last seven tasks is learned through the input of the first task, which plays a supporting role in the first task. Therefore, there are relevant and irrelevant parts in these eight tasks. The details of the DONs shared layer follow the rules in Fig. 2.

Effectiveness of DONs

In [START_REF] Baxter | A Bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF], it has been proven that the number of parameters in the multi-task model is less than the number of parameters for establishing multiple models, and the task is optimized to reduce the risk of over-fitting and the generalization ability is then stronger. The effectiveness of MTL is mainly reflected in the following five aspects: implicit data augmentation, attention focusing, eavesdropping, representation bias and regularization.

Therefore, considering the DONs as a specific MTL is supported by the following:

-Neural networks can help the hidden layer to avoid local minima through the interaction between different tasks during learning. When learning the main task, the parts that are not related to the task will produce noise during the learning process. Since different tasks have different noise patterns, a model that learns eight tasks simultaneously is able to learn a more general representation. Eight tasks learned at the same time can average the noise patterns, which can make the model better representative of the data. This is similar to implicit data augmentation for MTL.

-DONs takes the first of the eight tasks as the main one, and the latter seven tasks are learned through the input of the first task, which assists the first task. The gap between tasks is not particularly large, so the model can be focused on those features that do have an impact, as in the process of attention focusing for MTL. Studies have shown that if auxiliary tasks and main tasks use the same characteristics for decision-making, they will benefit more from MTL. Therefore, we need to find suitable auxiliary tasks to benefit from MTL. The choice of auxiliary tasks is diverse [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF].

-DONs restrict the model by using octonion operation rules, so that models that are more in line with real rules can be selected from the hypothesis space. This kind of regularization is such that the risk of overfitting as well as the complexity of the mode are reduced.

In addition, as described in the previous section, hard parameter sharing (DONs can be considered as such models) is the most common method of MTL in neural networks, which can greatly reduce the risk of overfitting [START_REF] Ruder | An overview of multi-task learning in deep neural networks[END_REF]. It has been demonstrated in [START_REF] Baxter | A Bayesian/information theoretic model of learning to learn via multiple task sampling[END_REF] that the risk of overfitting the shared parameters is smaller than overfitting the specific parameters for each task. What's more, regards the number of tasks as N, a larger N means that the more tasks are learned simultaneously, the more the model can find a representation that captures all tasks, and the less likely the original task is to overfitting. This also explains that the performance can be improved when the relationships between convolution kernels are modeled by complex algebra, quaternion algebra, and also octonion algebra and why deep neural networks can achieve better results on octonion domains. 

Conclusion

Table 2

The learning rate (%) of octonion convolution neural network.

Epoch Learning-rate (0 , [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF] 0.01 [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF][START_REF] Kuroe | Models of Hopfield-type Clifford neural networks and their energy functions -hyperbolic and dual valued networks[END_REF] 0.1 [START_REF] Kuroe | Models of Hopfield-type Clifford neural networks and their energy functions -hyperbolic and dual valued networks[END_REF][START_REF] Han | Learning both weights and connections for efficient neural network[END_REF] 0.01 [START_REF] Han | Learning both weights and connections for efficient neural network[END_REF]110) 0.001 (110, 120) 0.0001 ()  denotes the real components of , ( )
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  r i j k e l mn refer to the result of a real convolution between the feature maps and the kernels. The real representations of complex convolution, quaternion convolution, and octonion convolution are shown in Appendix 1.
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Table 1

 1 The multiplication table of the unit octonions

Table 3

 3 The classification error rate of three models in two types of datasets. FLOPs and MACCs denote floating point operations and multiply-accumulate operations, respectively.

	Architecture	Params	FLOPs	MACCs	CIFAR-10	CIFAR-100
	Real [25]	3,619,844	1081,333,248	340,380,416	6.37	-
	Complex [65]	1,823,620	541,132,288	270,273,792	5.60	27.09
	Quaternion [67]	932,792	271,922,688	135,662,848	5.44	26.01
	Octonion	481,150	137,350,144	68,368,896	5.35	24.60
	Appendix 1 The real representations of complex convolution, quaternion convolution, and octonion convolution. e denotes imaginary
	component, where 2 i e  , 1	i j ee e e e e j i j i   , ( ) i j k ee e e e e ee e ( ) i j k i j k  	,	, 1 , , 7 i j k i j k      . * , *

c , * q , and * o denote real convolution, complex convolution, quaternion convolution, and octonion convolution, respectively.

In this paper, we propose deep octonion networks (DONs) as an extension of DRNs, the DCNs, and the DQNs. The main building blocks of DONs are given, such as octonion convolution, octonion batch normalization, and octonion weight initialization. DONs were applied to the image classification tasks of CIFAR-10 and CIFAR-100 to verify their validity. Experiments showed that compared with the DRNs, the DCNs, and the DQNs, the proposed DONs have better convergence, less parameters, and higher classification accuracy. The success of DONs is also explained through multi-task learning approach.
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