

Can Ticagrelor be used to prevent sepsis-induced coagulopathy in COVID-19?

Loukman Omarjee, Olivier Meilhac, Frédérique Perrot, Anne Janin,

Guillaume Mahe

► To cite this version:

Loukman Omarjee, Olivier Meilhac, Frédérique Perrot, Anne Janin, Guillaume Mahe. Can Ticagrelor be used to prevent sepsis-induced coagulopathy in COVID-19?. Clinical Immunology, 2020, 216, pp.108468. 10.1016/j.clim.2020.108468. hal-02859926

HAL Id: hal-02859926 https://univ-rennes.hal.science/hal-02859926

Submitted on 16 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Can Ticagrelor be used to prevent sepsis-induced coagulopathy in COVID-19?

Loukman Omarjee, MD-PhD^{1,2}, Olivier Meilhac, PhD^{3,4}, Frédérique Perrot, PhD⁵, Anne Janin,

MD-PhD⁶, Guillaume Mahe, MD-PhD⁷

1: Inserm, NuMeCan Institute (UMR INSERM 1241), Rennes, F-35033, France

2: Univ Rennes, CHU Rennes, INSERM, CIC1414, Clinical Immunology and Vascular Medicine, Rennes, F-35033, France

3: Université de La Réunion, INSERM U1188, Diabetes at nero hrombosis Réunion Indian Ocean (DéTROI), CYROI Plateform, Sainte-Clotilde, F-97420, France

4: CHU de La Réunion, Saint-Pierre, F-97410, France

5: Cellular and Molecular Biology Consultant, Rennes, 5-35033, France

6: Inserm, (U942), Paris Diderot University, Sou unre Paris Cité, Paris, F-75018, France

7: Vascular Medicine Unit, Inserm, (Clir cal Investigation Center 1414), Univ Rennes, CHU Rennes, Rennes, F-35033, France

Corresponding author:

Dr Loukman OMARJEE. NT -PhD

Vascular Physician and Clinic 1 Immunologist NuMeCan Institute, UNR INSERM U1241 Clinical Investigation Certer INSERM CIC1414 Hôpital Pontchaillou – Rennes University Hospital 2 rue Henri Le Guilloux Rennes, F-35033. France. Contact Phone Number: +33 (0) 2 99 28 43 21 Contact Mobile Number: +33 (0) 6 27 49 70 51 Contact Email: <u>loukman.omarjee@chu-rennes.fr</u> Twitter: @LoukmanOmarjee

Abbreviations/Acronyms

ACE2: Angiotensin Converting Enzyme 2

ADP: Adenosine 5'diphosphate

COVID-19: Corona-Virus-Disease-2019

DAPT: Dual Antiplatelet Therapy

DNA: Deoxyribonucleic Acid

DIC: Disseminated Intravascular Coagulation

ENT1: Equilibrative Nucleoside Transporter 1

IL: Interleukin

LMWH: Low molecular weight heparin

LPS: Lipopolysaccharides

MCP-1: Monocyte Chemoattractant Protein 1

NETs: Neutrophil Extracellular Traps

PLA: Platelets - Neutrophils aggregates

PCI: Percutaneous Coronary Intervention.

SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2

SIC: Sepsis-Induced Coagulopa hy

TNF-α: Tumor Necrosis Factor upha

Keywords: COVID-19; Sepsis-Induced Coagulopathy; Neutrophil Extracellular Traps; Platelets – Neutrophils aggregates; Vascular Leakage; P2Y12 inhibitor, Ticagrelor

Word Count: 925

Figure: 1

References: 15

Dear Editor-In-Chief,

Recently, Yuki et al. published "COVID-19 pathophysiology: A review"[1]. We read with great interest this article. The authors mentioned that "coagulation dysfunction, thrombosis and pulmonary embolism have been observed in severe COVID-19[1]." We would like to discuss a potential therapeutic strategy to prevent sepsis-induced coagulopathy (SIC) in coronavirus disease 2019 (COVID-19).

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread into $a_{\rm P}$ -nuemic[1]. Mortality is high in intensive care unit (ICU), and associated with comorbidites such as diabetes mellitus, chronic kidney disease, chronic obstructive pulmonary disease, or cardiovascular disease [2].

COVID-19 is also associated with sepsis indiced coagulopathy (SIC) leading to disseminated intravascular coagulation (DIC) [3]. In OVID-19, elevation of D-dimer and fibrin/fibrinogen degradation products are the initial coagulopathy markers found [3]. COVID-19 patients also meet Virchow's triad criteria for the ombosis: i) endothelial injury, ii) hypercoagulability and iii) venous stasis. Two fibrine verses markers, D-Dimer and fibrin degradation products, are the hallmarks of SIC-related meetality [3].

Low molecular weight heparin (LMWH) is a commonly used anticoagulant to prevent DIC and venous thromboembolism, but its efficiency in DIC remains controversial [3]. LMWH also exposes to the risk of heparin induced thrombocytopenia, an immune-mediated syndrome characterized by thrombocytopenia and a high risk for venous or arterial thrombosis [4].

Platelets modulate hemostasis and immune responses via interactions with immune cells, through secretion of immune-modulators and cell-cell interactions[5]. Platelets activate leukocytes through cell-cell interactions involving adhesion molecules such as P-selectin, a glycoprotein that, upon cell activation, is rapidly translocated from cytoplasmic α -granules to the cell surface[5]. Platelets-Leukocytes interactions are important in the pathogenesis of sepsis, and Platelets-Neutrophils Aggregates (PNA) and P-selectin secretion are altered in septic patients[5].

The platelet $P2Y_{12}$, a G protein-coupled receptor that are expressed on platelet membranes for adenosine 5'diphosphate (ADP), plays a central role in platelet function, hemostasis, and thrombosis[5] (Figure 1). The $P2Y_{12}$ receptor is involved in platelet aggregation and is thus a biological target for the treatment of thromboembol³ m.³ and other clotting disorders[5] such as SIC and DIC.

Ticagrelor is an orally administered plat let aggregation inhibitor with a cyclopentyltriazolopyrimidine structure[5] (Figure 1). It is a selective reversible $P2Y_{12}$ receptor antagonist, which prevents $P2Y_{12}$ -mediated and $r \Gamma P$ -mediated platelet activation and aggregation[5]. In addition, several studies indicate that ticagrelor may have pleiotropic effects in addition to its anti-platelet properties[6].

Here we aim at discussing the potential use of Ticagrelor in COVID-19, to reduce PNA, neutrophil extracellular traps (NETs) release, and vascular leakage.

Ticagrelor was approved for the prevention of severe cardiovascular events among patients with coronary ischemia or ischemic stroke [7].

Experimental models of sepsis and human clinical trials have also shown that platelet receptor P2Y12 inhibition reduced sepsis-induced mortality [7–10]. In models of LPS-induced inflammation, Ticagrelor reduced cytokines IL-6, TNF- α , MCP-1 and IL-8 [10], and mortality [9]. In a model of intra-abdominal sepsis, Ticagrelor reduced sepsis-induced lung injury, neutrophils pulmonary infiltration, PNA formation, platelet activation and thrombocytopenia [8].

In the PLATelet inhibition and patient Outcomes (PLATO) study, Ticagrelor reduced mortality risk following pulmonary adverse events such as bacterial kung h. c_{o} ction and sepsis in acute coronary syndrome patients [7]. According to neutrophi's a first-line defense against bacterial lung infection, a potential mechanism by which tucherelor could influence host defense against bacterial lung infection is inhibition of cellular up take of adenosine, a known regulator of neutrophil chemotaxis and phagocytosis[6,7].

In the human clinical trial "Targeting Platelet-Leukocyte Aggregates in Pneumonia with Ticagrelor (XANTHIPPE) study", Ticagrelor reduced platelet-leucocyte interactions, and IL-6 levels within 24hrs in patients with pneumonia [9]. It also limited NET release, thus improving lung function, and reducing accular leakage and oxygen need [9]. The findings indicate a mechanistic link between platelets, leukocytes, and lung injury in settings of pneumonia and sepsis, and suggest possible therapeutic use of Ticagrelor to reduce complications. Ticagrelor also decreased D-Dimer levels in healthy volunteers [11].

One important point in the safe use of Ticagrelor. Pulmonary hemorrhage has been reported under dual antiplatelet therapy: Ticagrelor plus aspirin [12]. To avoid an increased bleeding risk, randomized controlled trial showed a net benefit of aspirin-free antiplatelet therapy [13]. This was demonstrated in the XANTHIPPE study, since Ticagrelor use was safe with no major bleeding reported [9].

COVID-19 is associated with coagulopathy through (Figure endothelia l 1): i) injury/dysfunction induced by the binding of SARS-CoV-2 to endothelial ACE2 receptor that leads to excess thrombin generation and fibrinolysis [14]; ii) platelet activation that induces hypercoagulability and membrane receptor expression enabling PNA between platelets and leukocytes [15]; iii) PNA formation that release pro-inflammatory cytokines, reactive oxygen species and NETs; iv) NETs released from activated neutrophile in response to infection such as SARS-CoV-2 can trap, and kill microorganisms [15'. Frey also activate platelets and coagulation, and contribute to thrombogenesis by forming mesh with platelets and fibrin and accumulating coagulation factors such as Tissue Factor: v) Inflammation induced by NETcomponents (DNA, histone, and granule proteins no'ading proteases such as elastase and prooxidant enzymes such as myeloperoxid se) also contribute to triggering cytokine release, oxidative stress and extracellular matrix proteolysis [15].

Cytokines and reactive oxygen beckes released by neutrophils can alter the endothelial barrier function, enhance leakage. a. ⁴ promote the development of tissue oedema and hypoxia [15] leading to acute respiration v distress and multiple organ dysfunction [14]. Therefore, when given at the early onset of COVID-19, Ticagrelor, through inhibition of platelet-neutrophil aggregates, NET release, and vascular leakage might prevent SIC, progression to DIC and associated morbi/mortality in COVID-19 patients. Ticagrelor could be a promised candidate to prevent SIC that it would be interesting to evaluate in a randomized clinical trial in COVID-19.

Author Contribution statement

LO: Conception, design, literature analysis, and manuscript redaction OM: Analysis, revising the manuscript for important intellectual content FP: Drafting the figure, and revising the manuscript for important intellectual content AJ: Analysis, redaction, and revising the manuscript for important intellectual content GM: Analysis, revising the manuscript for important intellectual content Each author revised the report and approved the submitted version of the manuscript. Each author has agreed both to be personally accountable for the puthor's own contributions and to ensure that questions related to the accuracy or integration of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Acknowledgements

The authors wish to thank Ms Hazel Cha. uc' for English language correction.

Funding

This research did not receive any recific grant from funding agencies in the public, commercial, or not-for-profit scretors.

Disclosures and Competing interests

All authors declare they have nothing to disclose, and no competing interests.

Permission Information

The authors do hereby declare that all illustrations and figures in the manuscript are entirely original and do not require reprint permission.

Ethics Approval

Not applicable

REFERENCES

[1] K. Yuki, M. Fujiogi, S. Koutsogiannaki, COVID-19 pathophysiology: A review, Clin. Immunol. 215 (2020) 108427. https://doi.org/10.1016/j.clim.2020.108427.

[2] F. Raucci, A.A. Mansour, G.M. Casillo, A. Saviano, F. Caso, R. Scarpa, N. Mascolo, A.J. Iqbal, F. Maione, Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms, Autoimmun. Rev. (2020) 102572. https://doi.org/10.1016/j.autrev.2020.102572.

[3] N. Tang, H. Bai, X. Chen, J. Gong, D. Li, Z. Sun, Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy, J. Thromb. Haemost. (2020). https://doi.org/10.1111/jth.14817.

[4] C.A. Frazer, Heparin-Induced Thrombocytopenia:, J. Infus. Nurs. 40 (2017) 98–100. https://doi.org/10.1097/NAN.0000000000215.

[5] M. Cattaneo, P2Y ₁₂ receptors: structure and function. Thromb. Haemost. 13 (2015) S10–S16. https://doi.org/10.1111/jth.12952.

[6] K.F. Alsharif, M.R. Thomas, H.M. Judge, H. *V*.han L.R. Prince, I. Sabroe, V.C. Ridger, R.F. Storey, Ticagrelor potentiates adenosine-induct J stimulation of neutrophil chemotaxis and phagocytosis, Vascul. Pharmacol. 71 (2015) 201–207. https://doi.org/10.1016/j.vph.2015.02.006.

[7] R.F. Storey, S.K. James, A. Siegban, C. Varenhorst, C. Held, J. Ycas, S.E. Husted, C.P. Cannon, R.C. Becker, P.G. Steg, Y Åsenblad, L. Wallentin, Lower mortality following pulmonary adverse events and sepsi, y th ticagrelor compared to clopidogrel in the PLATO study, Platelets. 25 (2014) 517–525 h tr s://doi.org/10.3109/09537104.2013.842965.

[8] M. Rahman, D. Gustafs, n, Y. Wang, H. Thorlacius, O.Ö. Braun, Ticagrelor reduces neutrophil recruitment and lung camage in abdominal sepsis, Platelets. 25 (2014) 257–263. https://doi.org/10.3109/09537194.2013.809520.

[9] T.R. Sexton, C. Zhang, T.E. Macaulay, L.A. Callahan, R. Charnigo, O.A. Vsevolozhskaya, Z. Li J. Smyth, Ticagrelor Reduces Thromboinflammatory Markers in Patients With Pneumonia, JACC Basic Transl. Sci. 3 (2018) 435–449. https://doi.org/10.1016/j.jacbts.2018.05.005.

[10] M.R. Thomas, S.N. Outteridge, R.A. Ajjan, F. Phoenix, G.K. Sangha, R.E. Faulkner, R. Ecob, H.M. Judge, H. Khan, L.E. West, D.H. Dockrell, I. Sabroe, R.F. Storey, Platelet P2Y ₁₂ Inhibitors Reduce Systemic Inflammation and Its Prothrombotic Effects in an Experimental Human Model, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 2562–2570. https://doi.org/10.1161/ATVBAHA.115.306528.

[11] L. Traby, M. Kollars, A. Kaider, J.M. Siller-Matula, M.F. Wolkersdorfer, M. Wolzt, P.A. Kyrle, S. Eichinger, Differential Effects of Ticagrelor With or Without Aspirin on Platelet Reactivity and Coagulation Activation: A Randomized Trial in Healthy Volunteers, Clin. Pharmacol. Ther. 107 (2020) 415–422. https://doi.org/10.1002/cpt.1616.

[12] S.K. Parasuraman, A.I. Teo, C.G. Millar, A. Noman, Pneumonitis and pulmonary haemorrhage after acute myocardial infarction, Clin. Med. Lond. Engl. 15 (2015) 591–593. https://doi.org/10.7861/clinmedicine.15-6-591.

[13] M. Tomaniak, P. Chichareon, Y. Onuma, E.N. Deliargyris, K. Takahashi, N. Kogame, R. Modolo, C.C. Chang, T. Rademaker-Havinga, R.F. Storey, G.D. Dangas, D.L. Bhatt, D.J. Angiolillo, C. Hamm, M. Valgimigli, S. Windecker, P.G. Steg, P. Vranckx, P.W. Serruys, for the GLOBAL LEADERS Trial Investigators, Benefit and Risks of Aspirin in Addition to Ticagrelor in Acute Coronary Syndromes: A Post Hoc Analysis of the Randomized GLOBAL LEADERS Trial, JAMA Cardiol. 4 (2019) 1092. https://doi.org/10.1001/jamacardio.2019.3355.

[14] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Agents 55 (2020) 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924.

[15] A.Z. Zucoloto, C.N. Jenne, Platelet-Neutrophil Lterplay: Insights Into Neutrophil Extracellular Trap (NET)-Driven Coagulation in Infection, Front. Cardiovasc. Med. 6 (2019). https://doi.org/10.3389/fcvm.2019.00085.

Figure 1: Ticagrelor use to prevent sepsis-induced coagulopathy in COVID-19

- SARS-CoV-2 entry into lungs through respiratory droplets
- SARS-CoV-2 binds to ACE2 and enters into alveolar (type II) epithelial cell
- SARS-CoV-2 replication into alveolar (type II) epithelial cell
- Increased inflammation
- Increased vascular remodelling
- Endothelial dysfunction
- Cardiopulmonary dysfunction
- Pulmonary arteriole
- SARS-CoV-2 binds to ACE2 and enters into endc "he'al cells
- Decreased ACE2
- Increased Angiotensin 2
- Decreased Angiotensin 1-7
- Increased ROS (Reactive Oxygen Species)
- Decreased endothelial NO (Nitric Oxide)
- Increased endothelial dysfunction
- Vascular leakage
- Arteriole and blood cells
 - Thrombus formation in 19 functional and leaky arteriole
 - Platelet activation promot's thrombosis
 - PNA (Platelets-neutrophic aggregates) formation
 - Ticagrelor inhibits thrombus formation
 - Platelet activatio. by ADP binding P2Y12 receptor
 - PNA (Platek t-Nutrophil Aggregates) formation
 - NET releas. by neutrophil
 - NET contribute to triggering cytokine and ROS release by neutrophil and can alter endothelial barrier, and enhance leakage.
 - Ticagrelor inhibits reversibly P2Y12 receptor and the whole cascade of events described below