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Highlights

• This paper provides an overview of recent deep-learning based methods

for salient object detection in videos;

• A classification of the state-of-the-art methods and their frameworks is

provided;

• The performance of state-of-the-art methods is further analysed through

experimental comparison on different public datasets and ablation study

on the impact of variants.
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Abstract

Video salient object detection is a challenging and important problem in com-

puter vision domain. In recent years, deep-learning based methods have con-

tributed to significant improvements in this domain. This paper provides an

overview of recent developments in this domain and compares the corresponding

methods up to date, including 1) classification of the state-of-the-art methods

and their frameworks; 2) summary of the benchmark datasets and commonly

used evaluation metrics; 3) experimental comparison of the performances of

the state-of-the-art methods; 4) suggestions of some promising future works for

unsolved challenges.

Keywords: deep-learning, salient object detection, video

1. Introduction

Salient Object Detection (SOD) in videos aims at locating primary fore-

grounds mostly attracting the human attention in each frame. Its output is

a saliency map for each frame, where the pixel value indicates the probability

of the corresponding pixel belonging to a salient object [1, 2]. The higher the5

value, the higher the saliency. The SOD is popularly used in applications where

the task is driven by the human attention, such as image segmentation [3], im-

∗Corresponding author
Email address: liyanxian19@gmail.com (Yan LI)

Preprint submitted to Journal of LATEX Templates March 18, 2020

                  



age change detection [4], autonomous driving [5], autonomous facial expression

recognition [6], etc.

Recently, several researchers tend to solve the problems of SOD in videos10

using deep-learning based methods, which largely improves the performance

of both the accuracy and the efficiency. However, there is few related survey.

Table 1 lists the most relevant works, from which we can see that former works

mainly focus on traditional methods for images [7, 8, 9]. Among the recent works

related to deep-learning based methods, the survey presented in [10] is only for15

images; and the benchmark [11] only compares deep-learning based methods

proposed for images with traditional methods proposed for videos. The survey

of existing deep-learning based methods for salient object detection in videos is

less explored.

Table 1: Comparison of the existing survey/benchmark for Salient Object Detection
Year Benchmark Survey Traditional Deep-learning Video Image

[7] 2014 × X X × × X
[8] 2014 × X X × × X
[9] 2015 X × X × × X
[10] 2018 × X × X × X
[11] 2018 X × X X X X

This paper has two main motivations:20

• Recently, deep learning-based video SOD has achieved high performing

results in this research field but there are still several challenging research

directions that need to be explored, so it is interesting to have a general

idea about the existing methods, which may pave the way for future works.

• To serve the research community, it is necessary to present a global assess-25

ment of state-of-the-art methods with common metrics and comprehensive

datasets. To further understand algorithms, it is attractive to make analy-

ses of the strength and weakness of each method, and conduct the ablation

study to offer insights into the impact of different components.

The remaining of this paper is organized as follows. Section 2 gives an30
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classification of deep-learning based methods for SOD in videos. It details the

framework of each of the representative methods. Section 3 introduces popular

used benchmark datasets and evaluation metrics, then gives experimental com-

parison of these methods, presents the ablation study and discusses promising

future works. Section 4 concludes the paper.35

2. Classification of the state-of-the-art methods

Deep-learning based methods for video SOD gain great research interests,

and some methods are proposed. However, there still lack sufficient methods

for comprehensive analysis. Inspired by [11], the inherently correlated tasks like

video foreground object segmentation, moving object segmentation and image40

SOD are considered for analysis and comparison in this work.

According to the common concepts used in deep learning methods, firstly,

the global framework for each method is described in 2.1, then the deep network

in each method is analyzed in 2.2, and finally an overview of the categorization

of methods is shown at a functional level in 2.3. As a matter of convenience,45

the describled methods, are denoted as SCOMd [12], NRF [13], DHSNet [14],

OSVOS [15], NLDF [16], LMP [17], SFCN [18], SegFlow [19], LVO [20], WSS

[21], SCNN [22], DSS [23], SPD [24], AFNet [25] and CPD [26].

2.1. Analysis of the frameworks

According to the involved tasks, these frameworks can be divided into two50

categories: single-task and multi-task. According to the domain of detection,

these frameworks can be classified into 1) Spatial; 2) Temporal; 3) or Spatio-

temporal.

2.1.1. Single-task vs Multi-task

The single-task framework is designed just for the SOD task, while the multi-55

task framework not only predicts the salient objects, but also evaluates other

tasks. It exploits the connections between the SOD task and other highly related

tasks (such as image classification, optical flow, edge detection and etc.), and
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then improves the SOD performance by making use of the deep representation

from these tasks.60

Specifically, the WSS proposes a network which has two subnetworks: one

is designed for classification and the other is designed for SOD. Both subnet-

works share convolutional layers firstly and then are separated on the top of

the shared layers, as shown in Fig. 1 (a). The SegFlow proposes a network

which also consists of two subnetworks: the segmentation subnetwork and the65

flow subnetwork. A bi-directional feature propagation is built between these

two networks as shown in Fig. 1 (b).

Shared layers

SOD task

Classification task

Input

SOD task

Optical flow task

Input

SOD task

Contour task

Input

Shared layers

SOD task

Classification task

Input

SOD task

Optical flow task

Input

SOD task

Contour task

Input

Figure 1: Multi-tasks models: the left one is the WSS and the right one is the SegFlow.

The OSVOS proposes two fully convolutional networks (FCNs) with the

same architecture. The first FCN is used as a foreground branch and the second

FCN is employed as a edge detection branch. The output of the first FCN70

is optimized by combining with that from the second FCN. The NLDF adds

the boundary loss term to design extra constraints to saliency prediction. The

AFNet applies a boundary-enhanced Euclidean loss to overcome blurred saliency

boundaries. The SPD proposes joint training with the edge detection task. In

the training procedure, the images from the edge detection and salient object75

detection dataset are inputted alternatively. Note that in the published codes,

the OSVOS dose not contain the boundary snapping branch and the SPD does

not contain the joint edge training. We only focus on their SOD task in the

following part.

2.1.2. Domain of used features80

The DHSNet, the DSS, the SPD, the NLDF, the OSVOS, the WSS, the

AFNet and the CPD design networks to predict the salient object from the

spatial domain, while the LMP detects motion patterns in videos with a motion
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pattern network from the temporal domain, as in Fig. 2.

Figure 2: Classification based on the domain of detection.

The SegFlow, the SFCN, the LVO, the SCOMd, the NRF, and the SCNN85

estimate the salient object in a video sequence from the spatio-temporal do-

main. Among them, the SegFlow and the SFCN design the networks to learn

deep features, while the LVO extracts deep features in spatial and temporal

domains from pretrained networks, and builds a visual memory module to get

the prediction, as in Fig. 3.90

The SCOMd, the NRF and the SCNN combine handcrafted features for

detection. The SCOMd uses a pretrained network to get deep spatial features

and formulates the detection as energy minimization using a spatio-temporal

constrained optimization model. In the NRF, the authors firstly obtain the

initial salient object and background estimation with a proposed network, and95

then construct a neighborhood reversible flow to propagate salient object and

background along the most reliable inter-frame correspondences. The SCNN

firstly employs the proposed network to get a spatial prior map, secondly uses a

graph-based algorithm to get superpixels on the optical flow map, and extractes

deep features from a pretrained network for each superpixel to generate the100

temporal prior map, thirdly combines these two prior maps to be a spatio-

temporal prior map which guides the proposed network to generate the spatio-

temporal saliency map. At last, the output saliency map is optimized by a

conditional random field (CRF) model.

2.2. Analysis of the networks105

In this part, according to the common concepts used in deep learning, we

analyze the networks designated in representative methods from aspects of the
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(a) (b) (c) (d)

Figure 3: Models detected from the spatio-temporal domain: (a) the SFCN, (b) the LVO, (c)

the SCOMd and the NRF, (d) the SCNN.

architecture and training details.

2.2.1. Architecture

The architecture of the designed networks can be divided into side-fusion110

network and bottom-up/top-down network.

The side-fusion network aggregates multi-layer responses of the backbone

network (i.e. an existing trained model with published weights). In the SCNN,

the OSVOS and the SegFlow, feature maps from various layers of the backbone

are up-sampled and summed together. The SCNN considers responses from 4th115

and 5th layers. The SegFlow mainly uses that from 3rd to 5th layers. While,

the OSVOS adopts all layers for predicting the final output. Feature maps

obtained from each layer are fused into a single output and short connections

are added from the low-level layer to the high-level layer. The DSS adds multiple

short connections from deeper side outputs to the shallower ones. The NLDF120

fuses multi-level features to generate a local map, then integrates the local map

with the global map got by the top layer of the backbone to obtain the final

prediction.

The bottom-up/top-down network generates hierarchical features layer by

layer. In the WSS, the SFCN, the LMP, the DHSNet, the SPD, the AFNet and125

the CPD, the rich and detailed low-level representations are incorporated into

the coarse-level semantic representations, which benefits the high-level features

with finer details. The DHSNet uses recurrent convolutional layers (RCL) that

can incorporate recurrent connections into each convolutional layer in the de-

coder. For refining the high-level representations, pooling-based modules are130
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adopted in the SPD and the NRF. The SPD builds pyramid pooling module

(PPM), and the NRF uses three parallel modules with “à trous” pyramid pool-

ing (ASPP). Attentive maps are added in the AFNet and the CPD. The AFNet

builds Attentive Feedback Modules to guide the boundary-aware learning phase,

and the CPD generates the attention map for refining high-level features. Be-135

sides, the designed “visual memory module” in the LVO is realized with the

convolutional recurrent unit. The classification of architectures can be found in

Fig. 4.

Figure 4: Classification of the architectures.

2.2.2. Training details

The training details of networks are introduced from aspects of the strategy,140

the backbone, the training dataset and the loss function.

The strategy to employ CNNs on salient object detection can be divided

into “Off-the-shelf CNN features” (without retraining the CNN) and “Multi-

stage/end-to-end trained”.

In “Off-the-shelf CNN features”, the used deep representations are directly145

extracted from pretrained deep networks. Thus, this is a simple way to di-

rectly use these deep representations for further researches. The SCOMd and

the SCNN extract deep features from image SOD networks (built on VGGNet

and AlexNet respectively, and pretrained on MSRA-B dataset), while the LVO

gets deep spatial features using a semantic segmentation network (built on VG-150

GNet and pretrained on PASCAL VOC 2012 dataset) and obtains temporal

features from a pretrained moving object segmentation network (pretrained on

FlyingThings3D dataset).
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In “Multi-stage/end-to-end trained”, methods usually get more efficient deep

representations through their own training phase, where the inputs-outputs re-155

lationship is learned by their designed deep architectures. “Multi-stage trained”

models are with intermediate supervision to ones trained end-to-end.

Specifically, the networks designed in the DHSNet, the DSS, the SPD, the

NLDF, the OSVOS, the NRF, the LMP, the LVO, the AFNet and the CPD are

end-to-end trained, while the WSS, the SegFlow, the SCNN and the SFCN are160

multi-stage trained. The WSS jointly trains the network for the foreground and

image-level tag prediction to produce the initial saliency map, which is then

used to fine-tune the foreground branch. The SegFlow uses an iterative training

between the segmentation task and optical flow task. The SCNN firstly trains

the network to get a spatial prior map, and then uses a fine-tuning strategy to165

generate the spatio-temporal saliency map with the guidance of spatio-temporal

prior map. The SFCN uses the proposed network for spatial saliency detection

with the input of each frame (the generated spatial saliency map is denoted as

the SFCNs), and uses the same network for spatio-temporal saliency detection

with the input of adjacent frame pairs and the detected spatial-temporal saliency170

results.

The backbone is commenly used to build networks in most methods. Image

classification networks (e.g. VGGNet and ResNet) and the optical flow network

(e.g. FlowNetS), trained on large-scale datasets, have a strong ability to learn

both low-level and high-level features. The SegFlow initializes segmentation175

branch and optical flow branch using the weights from ResNet-101 and FlowNetS

respectively. The DHSNet, the DSS, the SPD, the NLDF, the OSVOS, the WSS,

the SFCN, the SCNN, the NRF, the AFNet and the CPD adopt the VGG16 as

the backbone.

The training dataset is used for networks to learn deep representations.180

According to their utilization degree of the labeled datasets, the models can be

further divided into supervised and weakly-supervised models. Supervised mod-

els need training datasets with accurate ground truth, while weakly-supervised

models train the network without requiring all training datasets to have accurate
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annotations.185

For weakly-supervised models, in the WSS, the image-level annotations (Im-

ageNet dataset) are used as weakly labeled datas, based on the assumption that

image-level tags can provide the classes of the dominant objects which can be re-

garded as the salient foregrounds. Sometimes, pseudo pixel-level labels are used.

In the SCNN, saliency maps generated from existing image saliency detection190

are used, while the WSS adopts its initial saliency maps for training.

For the supervised datasets: Image-based SOD datasets (e.g. MSRA-B,

MSRA10K, DUT-OMRON, HKU-IS and CSSD) are commenly used in the DSS,

the NLDF, the SCNN, the DHSNet, the SFCN and the NRF, and video object

segmentation datasets (e.g. SegTrackV2, DAVIS 2016) are used in most methods195

(the SFCN, the LVO, the SegFlow, the SCNN and the OSVOS); image object

segmentation datasets (e.g. DUTS) are used in the SPD, the AFNet and the

CPD; moving object segmentation datasets (e.g. FBMS is used in methods

SFCN and SCNN; optical flow datasets (FlyingThings3D) are used in the LMP;

and datasets (MPI Sintel, KITTI, Scene Flow) are used in the SegFlow.200

Besides, due to the limitation of existing datasets, some methods generate

new video datasets. In the SFCN, the authors create synthesized video dataset

from two large image saliency datasets (MSRA10K and DUT-OMRON), and

in the LVO, the authors create training sequences from DAVIS 2016 dataset,

which simulate cases where the object stops moving.205

The loss function is used to compute the error between the result and the

ground truth. During the training phase, a network learns all the parameters via

minimizing errors. The “cross entropy” is commonly used for methods DHSNet,

SegFlow, LMP, LVO, NRF, DSS, SPD, WSS, NLDF, AFNet and CPD. Given

the generated saliency map S and the ground truth G, the cross entropy loss P

is given by Eq (1).

P = −
h1×w1∑

i=1

(gilogsi + (1− gi)log(1− si)) (1)

where h1 is the frame height, w1 is the frame width, gi ∈ G and si ∈ S. Since

the numbers of salient and non-salient pixels are not balanced, the “balanced
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cross entropy”, given by Eq (2), is more commonly used for methods OSVOS,

SCNN and SFCN.

P = −
h1×w1∑

i=1

((1− α)gilogsi + α(1− gi)log(1− si)) (2)

where α is the ratio of the number of salient pixels in ground truth G over that

of all pixels in G. Besides, the NLDF adds a boundary Intersection over Union

(IOU) loss, given by Eq (3), for SOD.

IOUloss = 1− 2 |Gb
⋂
Sb|

|Gb|+ |Sb|
(3)

Gb and Sb are contours pixels of G and S respectively, which are obtained using

the magnitude of Sobel operator followed by a tanh activation. The AFNet

adds Euclidean loss for enhancing boundary. The SegFlow uses endpoint error

(EPE) loss to optimize the optical flow branch. In order to prevent learning

high responses at all locations, the WSS applies sparse regularization on the210

generated saliency map (‖S‖1) to reduce background noise during pre-training

phases. To keep more details of the information, the DSS and the OSVOS add

the side-out supervision for each side output of the backbone. The AFNet and

the DHSNet supervise the intermediate maps by the ground truth.

2.3. An overview of the categorization215

In order to better determine the difference between these multiple approaches,

we compare 15 algorithms at a functional level. The details can be found in Fig.

5 and Fig. 6.

3. Experimental evaluation

This section firstly reviews the most popular datasets and metrics in video220

SOD, and secondly assesses the performance of the methods introduced in Sec-

tion 2.
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Figure 5: Algorithms comparison at a functional level.

Figure 6: Examples of the architectures. RCL: recurrent convolutional layers, ASPP: “à trous”

pyramid pooling, PPM: pyramid pooling module.
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3.1. Benchmark datasets and evaluation metrics

Benchmark datasets: the VOS [11] dataset is a recently published large

dataset for SOD in videos, which is based on human eye fixation. These videos225

are grouped into two subsets: VOS-E and VOS-N. Due to the limited number

of large-scale datasets designed for SOD in videos, existing methods usually

use other datasets from highly related domains like the dataset hereafter. The

Freiburg-Berkeley Motion Segmentation (FBMS) dataset [11] is designed for

moving object segmentation. Moving objects attract large attention and thus230

can be regarded as salient objects in videos. As in the methods [12, 22, 18],

we also use the 30 test videos with the provided ground truth. The DAVIS

2016 dataset [27] is a popular video dataset for video foreground segmentation.

It is divided into two splits: the training (30 sequences) part used for training

only and the validation (20 sequences) part for the inference. Though DAVIS235

2016-val dataset is designed for video foreground segmentation, it is also widely

used for SOD in videos, because of their foreground properties (most of the

objects in the video sequences have distinct colors, which can be regarded as

salient objects). DAVIS 2017-val [28] is mainly an extension of DAVIS 2016-val

dataset (10 new video sequences), which also used for inference in this work.240

Similar to [27, 11], we make comparisons of benchmark datasets from aspects

of dataset statistics, salient object categories and video attributes. From Table

2, we can observe that the VOS dataset is the largest dataset, while the FBMS

is with sparsely-sampled annotated frames.

Table 2: Dataset statistics.

VOS VOS-E VOS-N FBMS DAVIS 2016-val DAVIS 2017-val

#Sequence 200 97 103 30 20 30

#Frame 116103 49206 66897 13860 1376 1999

#Ground truth 7467 3236 4231 720 1376 1999

Resolution (in pixel) [408,800] [408,800] [448,800] [350,960] [480,854] [480,854]

Year 2018 2018 2018 2014 2016 2017

Salient object categories are compared to explore the content diversity. In245
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FBMS, the humans, animals, vehicles are evenly distributed. DAVIS 2016-val

and DAVIS 2017-val datasets consist of more objects and actions. For the cre-

ation of VOS dataset, videos are collected by volunteers from video-sharing

websites without giving any instructions on the video contents, which signifi-

cantly increases the object diversities and shape complexities. The area ratio250

distribution of salient objects per dataset is demonstrated in Fig. 7. Small

and medium salient objects are uniformly distributed in all datasets, and large

objects mainly appear in VOS datasets.

Figure 7: (Better viewed in color) Histogram of the area ratio of salient objects per dataset:

the x axis represents the bins regarding average area ratio of salient objects per frame in one

video sequence, and y axis is the percentage of total video sequences.

Video attributes, representing specific situations, are important to influence

the video salient object detection. The VOS-E dataset contains obvious salient255

objects with slow camera motion, while the VOS-N dataset presents multiple

complex scenes, highly dynamic objects and motion blur. The FBMS mainly

provides challenges cases such as fast motion and occlusion. DAVIS 2016-val

and DAVIS 2017-val datasets provide multiple balanced video attributes such

as appearance change, camera-shake, background cluster, out-of-view [27], de-260

formation [27], etc.

Evaluation metrics: for salient object detection, various metrics are used

to measure the similarity between the generated saliency map S and the ground

truth G.

• Precision, Recall, Fβ : an adaptive threshold T is used for binarizing S to

a mask M :

Precision =
|M ⋂

G|
|M | ,Recall =

|M ⋂
G|

|G| , Fβ =
(1 + β2)× (Precision× Recall)

(β2 × Precision + Recall)
(4)
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Fβ comprehensively considers both Precision and Recall and is computed

as the weighted harmonic mean of Precision and Recall. β2 is set to

0.3 (commonly used to weight precision more than recall as proposed by

Achanta et al. [29]). F2 (β=2) which weights recall more than precision,

and F1 (β=1) that weights recall and precision equally are also used. The

threshold T is set to be the minimum value between Tα’ and Tα in our

experiments as in NRF.

T ′α = max(S(i)) 1 ≤ i ≤ h1× w1, Tα =
2

h1× w1
h1×w1∑

i=1

S(i) (5)

where h1 is the frame height, w1 is the frame width. A higher Fβ means265

a better performance.

• P-R curve [8]: S is converted to a binary mask M via a threshold that

varies from 0 to 255. For each threshold, a pair of (Precision, Recall) values

are computed which are used for plotting P-R curve. The curve closest to

the upper right corner (1.0, 1.0) corresponds to the best performance.270

• Mean Absolute Error (MAE): computed as the average absolute difference

between all pixels in S and G. It considers the true negative saliency

assignment, i.e., the pixel correctly masked as non-salient [8]. A smaller

MAE value means a higher similarity and a better performance.

MAE =
1

h1× w1
h1×w1∑

i=1

|G(i)− S(i)| (6)

For video SOD evaluation, the metrics values are firstly computed over each

video, and secondly computed the mean values over all videos in each dataset.

3.2. Experimental comparison and results analysis

In this part, large-scale datasets (including FBMS, VOS-E, VOS-N, VOS,

DAVIS 2016-val and DAVIS-2017-val) are used. Metrics (including MAE, Re-275

call, Precision, Fβ , F1, F2 and P-R curve) are used to evaluate saliency methods

(SCOMd, SFCN, SFCNs, DHSNet, NLDF, WSS, DSS, SPD and SCNN) and
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metrics (including MAE, Recall, Precision, Fβ , F1 and F2) are used to evaluate

segmentation methods (LMP, LVO, SegFlow, NRF and OSVOS).

For methods SCOMd and SCNN, without published source codes, the results280

(only for FBMS and DAVIS 2016-val datasets) are those reported by the authors.

For other methods, applied to all datasets, the results are generated using the

provided source codes. When the authors give their results, we just report these

results even if they provide their code. For network inputs of the methods LMP

and LVO, the computer flow vector is generated by the method proposed by285

Tripathi et al. [30].

3.2.1. Performance on the VOS-E dataset

Fig. 8 shows the performance on the VOS-E dataset. The methods DHSNet,

NLDF, NRF, SFCN, SFCNs, WSS, DSS and SPD, based on backbone networks,

all get high Precision, high Recall and high Fβ scores. The DHSNet and the290

SPD also get the best P-R curve, and the NRF and the SPD get the best MAE

value. Most of these methods only detect the salient object from spatial domain,

which shows that spatial saliency detection has a good performance for SOD on

video dataset with slow camera motions.

(a)

(b) (c)

Figure 8: (Better viewed in color) Performances on the VOS-E dataset: (a) Fβ↑, Precision↑,
Recall↑, (b) MAE↓, (c) P-R curve. ↑ means the higher the better and ↓ means the lower the

better.
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3.2.2. Performance on the FBMS dataset295

Fig. 9 presents the performances on FBMS dataset. The SPD gets best

(a)

(b) (c)

Figure 9: (Better viewed in color) Performances on the FBMS dataset: (a) Fβ↑, Precision↑,
Recall↑, (b) MAE↓, (c) P-R curve.

scores on all metrics, which further verifies the effectiveness of the SPD. The

SCNN gets high Recall score, and the SCOMd gets high Precision score, and the

LVO gets high Fβ score, and the SegFlow gets low MAE value. They not only

detect the salient object from spatial domain, but also from temporal domain300

or fused spatio-temporal domain, which indicates that the temporal detection

plays a significant role for SOD on video dataset with highly dynamic foreground

objects.

3.2.3. Performance on the VOS-N and VOS dataset

Fig. 10 and Fig. 11 show the performances on the VOS-N and the VOS305

datasets respectively.

Salient objects in these two datasets are obtained according to the saliency

fixation, which is similar with that in image SOD datasets. That may explain

why the methods (e.g. DHSNet, NRF, NLDF, SFCN, SFCNs, SPD and WSS)

trained from image SOD datasets get better Recall scores than others.310

3.2.4. Performance on the DAVIS 2016-val and DAVIS 2017-val dataset

Fig. 12 shows the performances on the DAVIS 2016-val dataset. Fig. 13

shows the performances on the DAVIS 2017-val dataset.
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(a)

(b) (c)

Figure 10: (Better viewed in color) Performances on the VOS-N dataset: (a) Fβ↑, Precision↑,
Recall↑, (b) MAE↓, (c) P-R curve.

(a)

(b) (c)

Figure 11: (Better viewed in color) Performances on the VOS dataset: (a) Fβ↑, Precision↑,
Recall↑, (b) MAE↓, (c) P-R curve.

(a)

(b) (c)

Figure 12: (Better viewed in color) Performances on the DAVIS-2016-val dataset: (a) Fβ↑,
Precision↑, Recall↑, (b) MAE↓, (c) P-R curve.
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(a)

(b) (c)

Figure 13: (Better viewed in color) Performances on the DAVIS-2017-val dataset: (a) Fβ↑,
Precision↑, Recall↑, (b) MAE↓, (c) P-R curve

The methods that detect saliency from two domains (e.g. the LVO, the NRF,

the SegFlow) perform better than those only from one domain (e.g. the LMP,315

the OSVOS, the WSS), which shows that saliency from two domains is more

efficient for SOD on complex videos datasets. Weakly supervised methods (e.g.

the SCNN and the WSS) get a little lower recall and Fβ values. The methods

(e.g. the LVO and the SegFlow) are trained from object segmentation datasets

only, which shows the effectiveness of using the training datasets from closely320

related domains. All methods achieve high Recall scores, which shows that

salient objects in these datasets are easy to be detected. Besides, if we compare

the SFCNs with the SFCN, we can find that they use the same deep-learning

network but with different training datasets. The input of the former one is each

frame with provided ground truth, while the input of the later one is the video325

sequence and the detection results from the SFCNs. Thus, the SFCN refines

the output of the SFCNs, by learning more deep features from the temporal

domain. If we compare the LMP and the LVO, we can find that the LVO uses

the same saliency detection from temporal domain as the LMP but with extra

deep spatial saliency information, and deep fused spatio-temporal features. It330

helps the LVO to achieve a much better performance than the LMP, which also

further prove that saliency detection from two domains is significant for SOD

in videos.
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3.2.5. Global performance on various datasets

In order to catch the global view of the performance of a method on various335

datasets, the following Fig. 14 (a) shows the comparative results of the methods

for MAE metric on 6 datasets. As can be seen on this figure, methods perform

worse on dataset FBMS.

Fig. 14 (b-f) shows the comparative results of the methods for Precision,

Recall, Fβ , F2 and F1 metrics on different datasets. In each figure, the radar340

chart contains various closed curves, where each curve shows the performance

of a method on the datasets. The area of the closed curve can reflect the

performance of the method on the whole datasets. The larger the area the better

the performance. Table 3 shows the detailed areas of these curves (corresponding

to the methods) in Fig. 14 (b-f) respectively.

Table 3: Area of each method in the Fig 14 (b-f). (The best score is in bold)
Metric↑ DHSNet LMP LVO NLDF NRF OSVOS SFCN SFCNs SegFlow WSS DSS SPD

Precision 1.3505 0.5650 1.3388 1.2562 1.4768 1.0244 1.1332 1.0282 1.4354 1.0685 1.1595 1.5021

Recall 1.8987 1.2482 1.3665 1.7740 1.8966 1.2212 1.7656 1.8061 1.2142 1.6278 1.3974 1.8075

Fβ 1.4477 0.6519 1.3356 1.3436 1.5561 1.0447 1.2384 1.1471 1.3690 1.1635 1.2104 1.5989

F1 1.5803 0.7899 1.3412 1.4657 1.6564 1.0862 1.3868 1.3205 1.3052 1.2951 1.2590 1.7063

F2 1.7573 1.0184 1.3516 1.6341 1.7997 1.1563 1.5938 1.5775 1.2463 1.4790 1.3285 1.8441

345

Fig. 14 (b), (d), (e) and (f) show that methods achieve highest Precision, Fβ ,

F1 and F2 scores on VOS-E dataset, which is reasonable since VOS-E dataset

contains slow camera motion. Fig. 14 (c) presents that methods achieve lowest

Recall scores on FBMS dataset. We can learn that the deep-learning technique

provides a poorly ability to detect moving salient objects from dynamic back-350

ground. From Table 3, one can observe that the DHSNet gets good Recall score

and the SPD obtains good Precision, Fβ , F1 and F2 scores, while the LMP per-

forms not very well. We can firstly find that the end-to-end trained networks,

the DHSNet and the SPD, are efficient to learn and detect the salient object.

We secondly observe that though temporal saliency is significant, saliency in-355

formation only detected from the temporal domain is not enough.
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(a) MAE ↓ (b) Precision ↑

(c) Recall ↑ (d) Fβ ↑

(e) F1 ↑ (f) F2 ↑

Figure 14: (Better viewed in color) Global performance on various datasets.
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3.2.6. Least and most difficult scenes

To achieve a more in-depth analysis, it would be interesting to explore least

and most difficult scenes for the compared methods.

Least difficult scenes: Fig. 15 presents the video sequences in which all360

compared algorithms achieve similar high accuracies according to two metrics

(MAE < 0.5 and Fβ > 0.5). The metric threshold is chosen to 0.5 for the sake

of the balance between a high accuracy and a considerable quantity of video

sequences. The compared algorithms find similar solutions for saliency accu-

racy on these sequences. The background are mainly simple and static, and the365

camera motion is slow. Salient objects are almost belonging to the humans, ani-

mals and vehicles categories, which mostly appear in the training sets. Whereas,

some tricky video attributes, e.g., background cluster, deformation, fast motion,

out-of-view, are more or less found.

Figure 15: (Better viewed in color) Examples of video sequences (with detailed name) that

all compared algorithms achieve similar high accuracies.

Most difficult scenes: Fig. 16 summaries the number of failure video370

sequences of each method, which are selected using two metrics (MAE > 0.5

or Fβ < 0.5). For the failure sequences, we seek for the breakdown factors of

each method on aspects of “false positives (FP)” vs “false negative (FN)”, as is

shown in Fig 17. The same saliency threshold (in Eq (5)) is adopted. The LMP,
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the LVO and the SegFlow wrongly predict more non-salient pixels to be salient.375

The DHSNet and the NRF detect the main body of the salient object, and miss

the smallest part of the salient object. The DHSNet and the SPD, keeping the

small number of FP and FN pixels, perform better than others.

Figure 16: (Better viewed in color) The number of failure video sequences of each method in

four datasets (MAE > 0.5 or Fβ < 0.5).

Figure 17: (Better viewed in color) The average number of pixels belong to “False positives

(FP)” or “false negative (FN)” per frame.

3.2.7. Speed performance

For different models, the training time (obtained from the published paper380

or provided by authors) is listed in Table 4.
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A PC with a NVIDIA 1080 GPU is used for testing the speed of the methods

on the DAVIS-2016-val dataset. For different models (except SCOMd and SCNN

with unpublished codes), the average run-time is listed in Table 4. We can

observe that the DSS has the least computation costs, which is similar to that385

of the OSVOS, the SFCN, the DHSNet and the NLDF. Methods SegFlow, NRF,

LMP and LVO are much more time-consuming.

Table 4: Training time in hours, average run time in seconds (per frame) of the compared

models. (The best run time score is in bold, “-” indicates that the time is not available.)
Methods DHSNet LMP LVO NLDF NRF OSVOS SFCN SegFlow WSS SCNN DSS SPD

Train (h) 17.7 <24 <24 9 15 16 40 >30 >30 12 8 9

Test(s)↓ 0.069 0.2 0.42 0.091 0.297 0.072 0.072 0.174 0.067 - 0.056 0.092

3.3. Ablation study

To better analyse and understand algorithms, we try to retrain advantageous

and representative networks in Section 3.3.1. Ablation experiments related to390

domain shifts influences are performed in Section 3.3.2.

3.3.1. Retrain advantageous and representative networks

The representative networks, i.e., the OSVOS, the DSS and the SPD, are

selected. The training codes are provided by the authors and these networks are

with various architectures. The OSVOS fuses each side output of the backbone395

network together through upsampling; the DSS adds multiple short connections

from deeper side outputs to the shallower ones; and the SPD adds short con-

nections from the encoder features to the mirror decoder features, and refines

the high-level semantic features by adding pyramid pooling module (PPM).

We try to retrain these networks onto the same training set, and break apart400

these algorithms in terms of crucial variants, such as data augmentation, short

connections, loss function, etc. We evaluate the retrained models onto the same

test set to conclude the effectiveness of components used in training.

We adopt the DAVIS 2016-train dataset for training salient object detection

and the DAVIS 2016-val for performance evaluation. All networks are imple-405

24

                  



mented using PyTorch. VGGNet is chosen to be the backbone and experiments

are trained for 50 epochs under the default hyper-parameter settings.

As is shown in Table 5, we conduct different variants, and the corresponding

results are summarized.

Table 5: Comparisons of the performance under different settings. CE: cross entropy, BCE:

balanced cross entropy, HF: horizontal-flipping, R: resizing, SC: short connections, SS: side

output supervision, PPM: pyramid pooling module. (“x” indicates that the method is not

based on corresponding technique, “
:::

” indicates that the score is better than that of the

baseline OSVOS1, DSS1 or SPD1).

Model Pretrain
Loss

Deformation
Augmentation Metrics

CE BCE HF R Precision↑ Recall↑ MAE↓
1 X x X x x x 0.664 0.771 0.119

2 X x X x X x 0.653
::::
0.785

:::
0.115

OSVOS 3 X x X x x X 0.663 0.655
:::
0.103

4 x x X x x x 0.484 0.614 0.136

1 X X x x x x 0.517 0.808 0.061

2 X X x x X x 0.466 0.645 0.074

3 X X x x x X
::::
0.631

::::
0.839

:::
0.050

DSS 4 x X x x x x 0.304 0.439 0.083

5 X x X x x x 0.492 0.790 0.068

6 X X x -SC x x 0.425
::::
0.871 0.101

7 X X x -SS x x 0.467 0.560 0.206

1 X X x x x x 0.644 0.813 0.054

2 X X x x X x 0.460
::::
0.842 0.076

3 X X x x x X 0.571 0.551 0.081

SPD 4 x X x x x x 0.581 0.708 0.062

5 X x X x x x
::::
0.688

::::
0.832

:::
0.042

6 X X x -SC x x
::::
0.695 0.799

:::
0.046

7 X X x -SC -PPM x x 0.620 0.782 0.063

8 X X x -PPM x x 0.478 0.722 0.086

• We retrain the three networks from scratch without loading pretrained410

weights from ImageNet. It can be observed from Table 5 that the per-

formance of the retrained networks (OSVOS4, DSS4 and SPD4) with ran-

dom initialized weights are worse than that of the baselines (OSVOS1, the

DSS1 and the SPD1), which explains that initializing the VGG network

with pretrained weights from the classification task could help to achieve415

performance gains for salient object detection. Whereas, the performance
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might become competitive if more and clean samples are used for training

from scratch [31].

• We apply data augmentation techniques on-the-fly to the retraining, which

might prevent over-fitting the training sets. Experimental results with420

horizontal-flipping or resizing show that, the DSS3 increases the accuracy,

while the accuracy of the DSS2 and the SPD3 decrease.

• We explore the two frequently-used loss in video SOD - cross entropy

(CE) and balanced cross entropy (BCE) in ablation experiments. For the

OSVOS, we find it fails to work with the CE, which might be caused by425

the imbalance between salient object and non salient region. Using BCE,

the DSS5 are worse on all metrics.

• For the DSS, without deep supervision for each side of the output, DSS7

experiences a dramatic drop, only obtaining MAE of 0.206. Without short

connections DSS6 decreases the accuracy. However, the SPD6 is still with430

high accuracy without short connections. The results of the SPD7 and

the SPD8 illustrate that pyramid pooling module contributes most signif-

icantly to the performance.

3.3.2. Domain shifts influences

The performance of deep learning-based methods may degrade if the char-435

acteristics of the images in the target domain vary from that in the source

domain, e.g. the contrast, brightness, etc. It is non-trivial to learn whether

deep models are invariant to different domains. Thus, we investigate the in-

fluences of the domain shifts on different variants of models by simulating the

characteristic/environmental changes in the test images.440

The experimental domain shifts are implemented by adding the Gaussian

noises and perturbing the contrast and brightness onto the test images. For

Gaussian noise, the standard deviation of the noise is progressively increased

by 0.02, ranging from 0.0 to 0.16; for brightness, we randomly increase the hue

value by 0, 5, 10, 15; for contrast, we randomly set the enhancement value to445
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0, 30, 60, 90. We conduct experiments on different variants of the OSVOS, the

DSS and the SPD, and the experimental results are summarized below.

Fβ performance

F1 performance

F2 performance

Figure 18: The influences of Gaussian noise. The Fβ , F1, F2 performance of each model over

different standard deviation of the noise which are increased from 0.0 to 0.16.

• For Gaussian noise (as in Fig. 18), the performances of all ablation models

degrade with the increased standard deviation of the noise. Compared

with the OSVOS and the DSS, the quality of saliency maps estimated450

by the SPD observe smaller drops in general. With data augmentation

techniques, the performance of the OSVOS3 and the DSS3 descend a bit

slower and less than that of the baselines (OSVOS1 and DSS1). When

the standard deviation of the noise is large, the DSS5 using the balanced

cross entropy (BCE) performs better than that of using cross entropy (CE)455
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Figure 19: The influences of random perturbation of brightness and contrast.

loss (DSS1). Compared with (DSS1 and SPD1), the models without side-

output supervision (DSS7) or without Pyramid pooling module (SPD8)

stay less robust against noise.

• Fig. 19 demonstrates the sensitivity of each model to the various choices

of brightness and contrast. In the figure, for each model, three pairs of460

vertical lines are provided to illustrate the Fβ , F1 and F2 scores over mul-

tiple input images. For each pair, the y-axis value of the dot is the mean

score, the length of the color line shows the doubled standard deviation,

and the top end of the black line is the differences between the maximun

and mean metric value, while the bottom end is that between the mamin-465

imum and mean metric value. In general, compared with the OSVOS and

the SPD, the quality saliency maps estimated by the DSS are more sta-

ble with smaller standard deviation. For the random perturbation, these
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models are rarely affected by brightness, but relatively unrobust against

the contrast effect. Retraining networks from scratch without loading pre-470

trained weights from ImageNet, the OSVOS4 and the DSS4 suffer the most

with lowest mean metric values. The SPD8 is more sensitive due to the

removed pooling in feature hierarchy.

3.4. Promising future works

Deep-learning based video SOD approaches have greatly improved the accu-475

racy and efficiency for this field. However, there are still some interesting but

challenging works to be considered regarding:

-weakly-supervised networks: weakly-supervised models that do not rely

on large pixel-wise labels attract much attention in recent years. However,

its accuracy is still far from satisfactory. To address theses issues, it may be480

possible to obtain large amounts of weakly labeled datasets and design weakly

supervised triplet ranking loss as in [32]. Mining pseudo ground truth [33]

may also be considered and developed to enhance the performance of weakly-

supervised video SOD.

-visual attention: attention mechanism introduced in machine translation is485

recently evolved in closely related vision and video processing tasks, e.g., atten-

tion weighted CNN features in video captioning [34], spatial attention, temporal

attention and channel-wise attention in visual tracking [35], attentive feedback

modules and the attention guidance in image SOD [25, 26], which considerably

enhance the accuracy by boosting the representative power of CNNs. It is valu-490

able to put efforts into visual attention mechanism for video SOD to achieve

more promising accuracy.

-spatial-temporal saliency learning: existing video SOD methods predomi-

nantly rely on spatial features. Other methods that take into consideration tem-

poral features usually use the optical flow information. [36, 37] explore recurrent495

module and long-short term module, and [38] uses 3D filters. However, the ex-

ploration of networks to learn spatio-temporal representations remains limited.

Inspired by recent advances in related video tasks, e.g., dense connections for
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spatio-temporal interaction in action recognition [39] and space-time memory

block in video object segmentation [40], we possibly consider these techniques500

to avoid the latent dependency issues in video SOD. Learning spatial-temporal

features in an end-to-end manner is important for further accuracy improve-

ment.

-knowledge from traditional methods: some deep-learning based SOD mod-

els derive their good performance or gains from well-established knowledge of505

traditional methods. [41, 42] put forward the extraction of contrast information,

which is similarly encoded as a contrast layer by [16]. [2] proposes to fuse local

and global features for improvements, which is similar to the fusion or guidance

modules in recent image SOD networks [43, 44] and the video SOD network [45].

Therefore, it is interesting to explore other knowledge from traditional methods510

and reformulate them into CNNs to learn more representative features.

4. Conclusion

To the best of our knowledge, this is the first overview of deep learning

techniques for video SOD. The classification of the state-of-the-art methods

is done regarding the involved tasks and the domain of used features, which515

presents a clear viewpoint of recent development. Deep networks of representa-

tive existing methods are introduced and compared in detail. They are surveyed

from three points of view: architectures, training details and results. A com-

parative summary of methods is presented and their performances on various

datasets are discussed. The pros and cons of each method are also pointed out.520

The various experiments conducted show that the methods DHSNet and SPD

produce effective/genetic features with state-of-the-art performance on various

tested databases. The representative approaches are selected and broken apart

to verify the performance of their components independently. Consequently, our

thorough analysis of the methodologies and experiments is presented for readers525

to quickly grasp these representative state-of-the-art methods.

Finally, some promising future directions are discussed, in which we suggest
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to consider the improvement of weakly-supervised networks for overcoming the

drawbacks of fully labeled training sets; the new visual attention-driven mod-

els, the explorations of temporal saliency features and spatio-temporal saliency530

features, and the knowledge from traditional methods for improving accuracy.

In general, this survey is expected to pave a way to study the existing deep-

learning based video SOD methods and provide promising research directions

for future exploration in video SOD.
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