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Insects are the largest group of animals. They are capable of surviving in virtually
all environments from arid deserts to the freezing permafrost of polar regions.
This success is due to their great capacity to tolerate a range of environmental
stresses, such as low temperature. Cold/freezing stress affects many physiological
processes in insects, causing changes in main metabolic pathways, cellular dehydration,
loss of neuromuscular function, and imbalance in water and ion homeostasis. The
neuroendocrine system and its related signaling mediators, such as neuropeptides and
biogenic amines, play central roles in the regulation of the various physiological and
behavioral processes of insects and hence can also potentially impact thermal tolerance.
In response to cold stress, various chemical signals are released either via direct
intercellular contact or systemically. These are signals which regulate osmoregulation –
capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP),
diuretic hormones and calcitonin (CAL), substances related to the general response
to various stress factors – tachykinin-related peptides (TRPs) or peptides responsible
for the mobilization of body reserves. All these processes are potentially important in
cold tolerance mechanisms. This review summarizes the current knowledge on the
involvement of the neuroendocrine system in the cold stress response and the possible
contributions of various signaling molecules in this process.
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INTRODUCTION

Insects are the largest group within the arthropod phylum. They are capable of surviving
in virtually every environment from the deserts of Africa through the grasslands of
temperate zones to the freezing permafrosts of Arctic regions (Chown and Nicolson, 2004).
A major factor determining insect species distributions is their cold tolerance and water
availability (Addo-Bediako et al., 2000). During their evolution, insects subjected to low
temperature have developed distinct adaptations to overcome and thrive in suboptimal
thermal conditions (Wharton, 2007; Lee, 2010). To survive in environments where the
temperature drops below freezing, insects have evolved diverse mechanisms, which can be
divided into two main strategies: (i) freeze-tolerance and (ii) freeze-avoidance (Lee, 1991;
Sømme, 1999; Sinclair et al., 2003). In freeze-tolerant species, freezing is limited only to
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extracellular matrix (ECM), as the formation of ice crystals inside
of the cell inevitably leads to death of most animals (Storey
and Storey, 1989; Block, 2003). The second strategy is much
more widespread among arthropod phyla (Block, 1990; Lee and
Costanzo, 1998), and freeze-avoiding insects utilize mechanisms
which raise their ability to stay unfrozen by supercooling
(Sformo et al., 2010). Cold and freezing stress affects a large
number of physiological processes (Teets and Denlinger, 2013),
causing mechanical damage to cells or their DNA (Lubawy
et al., 2019), changes in main metabolic pathways (Chowanski
et al., 2015, 2017b) or cellular dehydration, which results in
increased acidity, toxic metabolic intermediate concentrations
and osmotic stress (Storey and Storey, 2012; Pegg, 2015; Des
Marteaux and Sinclair, 2016; Andersen et al., 2018). In both
of these strategies, cryoprotectants are necessary for survival.
Cryoprotectants like glycerol, trehalose or glucose, which lower
the lowest lethal temperature are synthetized by freeze-avoiding
species. The increase in their concentration results also in a drop
of supercooling point (SCP) (Zachariassen, 1985). The freeze-
tolerant insects in turn utilize these molecules to reduce cellular
dehydration since ice formed in the ECM attracts water out
of cells (Storey and Storey, 1988). Species that cannot tolerate
freezing also remove any particles that can start the ice nucleation
process, such as food, dust or bacteria from gut or ECM. This may
be achieved for example by inhibiting feeding (Olsen and Duman,
1997). The latest findings indicate that water and ion balance
is crucial for withstanding chilling injuries that lead to chill
coma and death (Overgaard and MacMillan, 2017). Therefore,
nerves and muscles are highly susceptible to cold stress (Garcia
and Teets, 2019). However, little is known about the role of the
nervous system in orchestrating these finely tuned processes.

The nervous and endocrine systems, through the process
called neuroendocrine integration, interplay together to regulate
a number of physiological functions and maintain system-wide
homeostasis in regular as well as stressful situations (Hartenstein,
2006; Adamski et al., 2019). A number of physiological processes
are mediated by two main classes of neurosecretory molecules
i.e., neuropeptides and biogenic amines (Hartenstein, 2006;
Chowanski et al., 2016, 2017a). They are produced mainly in the
central nervous system (CNS) and take part in the regulation of
metabolism, ion homeostasis and muscle contractions, including
the heartbeat (Chowanski et al., 2017c). In different insect
species, neuropeptides with homologous structures very often
have similar functions (Bendena, 2010). As these compounds play
central roles in physiological and behavioral processes, directly
affecting the survival of adverse environmental conditions, it
can be expected that in response to cold stress, molecules
responsible for osmoregulation, such as capability peptides
(CAPA), inotocin (ITC), ion transport peptide (ITP), diuretic
hormones (DH31 and DH44), kinins and calcitonin (CAL),
will take part. Substances related to the general response of
insect organism to stressors such as tachykinin-related peptides
(TRPs) and/or peptides responsible for the mobilization of
reserve substances (e.g., glycogen, trehalose, and glucose) such
as adipokinetic hormones (AKHs), insulin-like peptides (ILPs),
or neuropeptide F (NPF) may also take part in the cold
stress response, as they regulate metabolic homeostasis, the

circadian clock and feeding (Gäde, 2004, 2009; Fadda et al., 2019).
However, not only neuropeptides can be key players. Current
knowledge shows that biogenic amines such as octopamine (OA),
dopamine (DA), and serotonin (5-HT) are involved in the stress
response (Gruntenko et al., 2004, 2016). The levels of the above-
mentioned biogenic amines have been found to change in various
insect species under unfavorable conditions, including high- or
low-temperature stress (Hirashima et al., 2000; Chentsova et al.,
2002). Hence, this paper summarizes the existing knowledge on
the role of the neuroendocrine system in response to cold stress
and research perspectives in this area.

BIOGENIC AMINES

Biogenic amines play a crucial role in the regulation of basic
life processes (Farooqui, 2012; Sinakevitch et al., 2018). They act
not only as neurotransmitters and neuromodulators in nervous
tissues but also, depending on the situation, they can be released
into body fluids and act as neurohormones (Sinakevitch et al.,
2018). Biogenic amines bind to G-Protein coupled receptors
(GPCRs) and, depending on the receptor type and target tissue,
stimulate different types of secondary messengers, mainly cAMP
or Ca2+ (Farooqui, 2012).

The main biogenic amines identified in insects are octopamine
(OA), serotonin (5-HT), dopamine (DA), histamine (HA), and
tyramine (TA) (Blenau and Baumann, 2001). Current knowledge
about the role of biogenic amines in insects suggests a wide
spectrum of actions. They participate in the regulation of many
behaviors, such as locomotion, feeding or social interactions
(Blenau and Baumann, 2001; Armstrong and Robertson, 2006;
Pflüger and Duch, 2011). Biogenic amines also evoke systemic
responses to different environmental factors, including stressful
conditions or pathogen infection (Gruntenko et al., 2004; Adamo,
2008). For instance, research has shown that OA and DA
are released into insect hemolymph in the first minutes after
exposure to stress, which evokes a cascade of reactions leading
to the re-attainment of homeostasis (Hirashima and Eto, 1993;
Chentsova et al., 2002; Gruntenko et al., 2004). Interestingly,
the release of these biogenic amines during stress conditions
appears non-specific to stressor type. For example, heat, vibration
and starvation trigger the same response (Orchard et al., 1981;
Hirashima et al., 2000; Gruntenko et al., 2004). Likewise,
winter conditions such as low temperatures and a short-day
photoperiod induce changes in the concentrations of biogenic
amines, which allow insects to survive unfavorable conditions
and/or prepare them for prolonged stress conditions (Isabel et al.,
2001; Armstrong and Robertson, 2006). However, the changes in
biogenic amine concentrations and their cause may be different
in the case of the response of insects to rapid exposure to cold
and during the acclimation process before winter.

One of the most important effects of biogenic amine release
to the insect hemolymph is the mobilization of energy (Lorenz
and Gäde, 2009). The mobilization of energy prepares insects
to higher metabolic activity related to the stress response and
is useful during the recovery period (Farooqui, 2012). The
mobilization of energy under the control of biogenic amines

Frontiers in Physiology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 376

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00376 April 21, 2020 Time: 14:37 # 3

Lubawy et al. Neuroendocrine System in Cold Stress

is the result of the stimulation of glycogen conversion into
trehalose, glucose and trehalose oxidation and the release of
lipids from fat body (Gruntenko et al., 2004). This action
of biogenic amines may be very important through the
prism of response to short-term and prolonged cold. Elevated
levels of biogenic amines also intensify the process of energy
mobilization by stimulating the release of other hormones,
especially neuropeptides, which participate in the regulation of
insect metabolism. The cooperation between biogenic amines
and neuropeptides may evoke a reaction cascade that is
crucial for the response of insects to environmental stressors,
including cold. Pannabecker and Orchard (1986) showed that
OA stimulates the release of AKHs. AKHs are neuropeptides
that are considered the main insect stress hormones because,
similar to OA, they enhance available energy by inducing lipolysis
and suppressing life processes that have relatively low priority
during stress conditions (Gäde, 2009; Ibrahim et al., 2018).
The close interplay between these two hormones highlights
the fact that receptors for AKHs were also found in dorsal
unpaired median neurons (DUMs), which are among the main
components of the insect octopaminergic system (Wicher et al.,
2006; Wicher, 2007). Another example of close relations between
biogenic amines and neuropeptides is the fact that the activity
of neurosecretory cells producing ILPs is mediated by the
serotonin receptor 5-HT1A and octopamine receptor OAMB
(Luo et al., 2012). The detailed relationship between biogenic
amines and ILPs is described in the Neuropeptides section
(subsection Metabolism).

Cold acclimation allows the maintenance of metabolic
homeostasis and insect survival under prolonged stress
(Lalouette et al., 2007; Colinet et al., 2012; Enriquez and Colinet,
2019). Generally, acclimation is associated with changes in insect
metabolites, including sugars, polyols, free amino acids (FAAs),
proteins and also biogenic amines (Isabel et al., 2001; Lalouette
et al., 2007; Colinet et al., 2012). A study by Isabel et al. (2001)
clearly showed that the concentration of DA in diapausing
Pieris brassicae pupae was higher than that in non-diapausing
individuals. Moreover, the DA level progressively increases
during diapause. In the case of the 5-HT level, in the initial
phase of the pupal stage, Isabel et al. (2001) did not observe
any changes between diapausing and non-diapausing pupae.
However, the 5-HT concentration in diapausing pupae was
stable, while in non-diapausing individuals, it dropped during
this developmental stage. High concentrations of DA likely
lead to the arrest of insect development. High 5-HT levels
could participate in the inhibition of pupal metabolism, which
may be crucial for survival during insect overwintering at this
developmental stage. Interestingly, the results of Isabel et al.
(2001) suggest that in the case of P. brassicae, the accumulation
of biogenic amines is the result of changes in the photoperiod
but not exposure to lower temperature. On the other hand,
research conducted on the beetle Alphitobius diaperinus indicates
the influence of cold exposure on increasing concentrations
of tyrosine (Tyr), a precursor of many hormones, including
OA and DA, in insect hemolymph (Lalouette et al., 2007).
A strict correlation between biogenic amines and Tyr was also
shown in a study performed by Rauschenbach et al. (1995), who

demonstrated that during an increase in DA concentration,
a simultaneous decrease in Tyr was observed in Drosophila.
Moreover, research conducted on Drosophila virilis showed
that cold acclimation led to the upregulation of genes encoding
serotonin receptor 7 and the serotonin transporter, which may
also suggest that 5-HT is likely important in regulation of
response to prolonged thermal stress (Vesala et al., 2012).

Current research addressing the role of biogenic amines in
response to short-term and prolonged cold suggests that these
hormones are not only important in the regulation of insect
metabolism but also participate in neuroprotection. Generally,
insects enter coma at critical high and low temperatures
(Rodgers et al., 2010; Armstrong et al., 2012; Srithiphaphirom
et al., 2019). This physiological state partly results from
the progressive loss of ion homeostasis. The alteration of
ion equilibrium provokes the depolarization of membranes,
altering the action potentials of muscles and neuron cells,
leading to a loss of neuromuscular functions and coma
(Overgaard and MacMillan, 2017). The alteration of ion
concentrations across membranes is associated with a decrease
in Na+/K+-ATPase activity at low temperature (McMullen
and Storey, 2008). Interestingly, after temperature acclimation
in three cockroach species, Periplaneta americana, Leucophaea
maderae, and Blaberus craniifer, their nervous tissues were
excitable at temperatures lower than previously determined
temperatures, which induced a chill coma in non-acclimated
individuals (Anderson and Mutchmor, 1968). Similar results
were observed in Drosophila species. The pre-exposure of flies
to low temperatures decreases the value of the critical thermal
minimum (CTmin), the temperature at which individuals lose
responsiveness (Overgaard et al., 2011; Andersen et al., 2018).
Interestingly, in Locusta migratoria after the application of
OA decreasing of CTmin was observed (Srithiphaphirom et al.,
2019). These data suggest that OA may play some role(s) in
modulating the responsiveness of the nervous system under
thermal stress. The OA mode of action is most likely associated
with the indirect modulation of Na+/K+-ATPase activity and
compensation for the negative effect of low temperatures on
this pump (Srithiphaphirom et al., 2019). The activation of the
OA receptor (i.e., OAR3) leads to the stimulation of cAMP
production and activation of cAMP-dependent protein kinase A
(PKA), which may regulate K+ channels and Na+/K+-ATPase
pumps (Feschenko et al., 2000; Armstrong and Robertson, 2006;
Srithiphaphirom et al., 2019).

Many studies have been conducted on the neuroprotective
role of biogenic amines in maintaining the muscle activity
of different crustaceans under stress conditions, including low
temperature (Stephens, 1985, 1990; Hamilton et al., 2007).
Generally, an increase in the OA and 5-HT concentration in
the hemolymph associated with exposure to cold causes an
increase in excitatory postsynaptic potential (EPSP) amplitude
in lobster and crayfish muscles. The effect of the application
of biogenic amines is very often temperature dependent; for
example, 5-HT induces changes in EPSP only at temperatures
lower than optimal. This phenomenon may help neuromuscular
junctions remain functional at low temperatures (Hamilton
et al., 2007; Zhu and Cooper, 2018). Based on these results,
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similar dependencies may also be observed in insects. This
supposition is partially confirmed by the results of Zhu et al.
(2016) in a study on the D. melanogaster heart. The authors
demonstrated a strong excitatory effect of biogenic amines
on the larval heart during cold exposure but only in the
case of 5-HT. Interestingly, at room temperature, all of the
tested biogenic amines (OA, DA, and 5-HT) evoke positive
chronotropic effects on the Drosophila heart. Moreover, high
concentrations (10 µM) of OA and DA at a low temperature
led to a decrease in heart rate frequency or heart cessation.
This negative chronotropic effect was not observed in the cases
of OA and DA at low concentrations (1 µM). However, the
strict physiological role of this OA and DA action is not fully
understood. However, as suggested by Zhu et al. (2016), different
modes of action of OA at different temperatures may be related
to the activation of different subunits of the G protein-coupled
receptor. The Gαq subunit, whose activation evokes a positive
chronotropic effect, is most likely suppressed, but Gαi-coupled
receptors are activated, which may lead to the opposite effect
of OA on insect heart during cold stress (Zhu et al., 2016).
Generally, biogenic amines may be needed to maintain heart
functioning during chronic exposure to cold. This is essential
for circulating nutrients/cryoprotectants and immune function,
which undoubtedly influence insect survival during exposure to
cold (Zhu et al., 2016).

All insects have preferred temperature (Tpref) that maximize
their metabolic activities and fitness (Crickenberger et al.,
2019). Hence, they actively choose to occur in certain
microenvironments to remain close to these temperatures (Dillon
et al., 2009). In addition, in many situations, insects can
avoid stressful conditions by moving into protected buffer
microhabitats (Dillon et al., 2006). Recent research has shown
that biogenic amines, especially DA and HA, participate in
the regulation of Tpref in insects (Figure 1) (Hong et al.,
2006; Bang et al., 2011; Tomchik, 2013). Bang et al. (2011)
demonstrated that dopaminergic neurons located in mushroom
bodies participate in the regulation of Tpref in D. melanogaster.
The targeted inactivation of these neurons caused a loss of
cold avoidance by flies. Moreover, mutation in the DA receptor
gene led to a decrease in Tpref in Drosophila flies (Bang et al.,
2011). Similar results were observed in DA transporter-defective
mutants. Interestingly, in these mutants, a higher metabolic ratio
was observed, which may suggest that differences in Tpref may
be associated with disturbance to the equilibrium of heat gain
and heat loss (Ueno et al., 2012). Additionally, the mutation of
genes involved in HA signaling gave similar effects as previously
mentioned for mutations in the DA system. Since HA participates
in visual reception, these results indicate a putative relationship
between temperature perception and the circadian clock, which
may be crucial for the acclimation process (Hong et al., 2006).

Despite the regulatory actions of biogenic amines during
the direct response to cold, these compounds protect
against other environmental stressors, such as starvation
(Krashes et al., 2009; Yang et al., 2015; Damrau et al.,
2017). Moreover, biogenic amines inhibit energetically costly
processes, such as reproduction, by stimulating JH degradation
(Chentsova et al., 2002; Gruntenko et al., 2016). Starvation and

FIGURE 1 | Schematic representation of the response of insect
neuroendocrine system to cold stress. The role of certain compound can be
multiple and tightly regulated by a number of feedback loops which actions
add up to the effect of regulating these finely tuned processes. ILPs, Insulin
like peptides; BA, Biogenic amines; JH, Juvenile hormone; NPFs,
Neuropeptides F; AKH, Adipokinetic hormone; CAPA, capability peptide; MTs,
Malpighian tubules; FB, Fat body; CTmin, critical thermal minimum; Tpref ,
preferred temperature; (+), increase; (−), decrease.

reproductive arrest are processes that are particularly relevant to
the cold tolerance of insects.

NEUROPEPTIDES

Diuresis
Below a certain low temperature, insects generally enter into chill
coma, a state associated with neuromuscular paralysis (Mellanby,
1939; MacMillan and Sinclair, 2011b; Findsen et al., 2014).
During this state, insects lose ion and water homeostasis and
regain it during a process called chill coma recovery (CCR)
(MacMillan et al., 2012). In insects, Malpighian tubules (MTs)
and the gut are mainly responsible for the regulation of ion
homeostasis. This process may vary quite noticeably between
different insects, depending, for example on diet (O’Donnell,
2008). Typically, the MTs are responsible for production of
the primary urine, which is more or less isosmotic with the
hemolymph. Ions K+ and Cl− (and Na+ in blood feeding insects)
flow from hemolymph to the lumen due to the coupling of the
V-ATPase and H+-cation exchangers. This allows to maintain a
water gradient mediated by aquaporins, and movement of waste
products by specific transporters into the lumen of the MTs
(Ramsay, 1954; O’Donnell, 2009; Spring et al., 2009). The main
neuropeptides contributing to the functioning of MTs are CAPAs,
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which stimulate or inhibit secretion depending on the insect
species and life stage (Davies et al., 2013; Halberg et al., 2015);
kinins, which, in addition to stimulating secretion in MTs, also
control the activity of gut muscles (Coast et al., 1990; Dow, 2009);
and diuretic hormones (DH31 and DH44) (Te Brugge et al., 2011;
Cannell et al., 2016). In insects, hormones causing a reduction in
diuresis have been identified, including ITP (Audsley et al., 1992;
Gáliková et al., 2018), neuroparsins, glycoproteins GPA2/GPB5
which possibly act as Cl− transport stimulating hormone (CTSH)
(Paluzzi, 2012; Paluzzi et al., 2014; Rocco and Paluzzi, 2016),
CCHamide which affect both MTs and midgut (Capriotti et al.,
2019) and antidiuretic factors a and b (ADFa and ADFb)
(Eigenheer et al., 2002, 2003; Massaro et al., 2004). As cold
and desiccation both may result in a reduction in hemolymph
volume and an increase in osmolarity and are closely linked at
the molecular level (Sinclair et al., 2007, 2013; Rajpurohit et al.,
2013), these two stressors should always be considered together.
Terhzaz et al. (2015) showed that in drosophilids, the non-lethal
exposure to low temperature significantly increases the mRNA
levels of capa. The increase in capa expression was dependent on
the duration of stress and came back to the levels before stress,
after 4 h of recovery. During recovery, CAPA neuropeptides are
released from neuroendocrine cells, improving (reducing) CCR
(Terhzaz et al., 2015). On the other hand, recently published
study by Li et al. (2020) showed significant decrease in capa
expression level after 4 h of cold stress (4◦C) and no changes after
1 h, in Bemisia tabaci. Together with the changes in neuropeptide
precursor level, decrease in expression level of CAPA receptor
was also observed (Li et al., 2020). The Terhzez’s group also
showed that during recovery from cold stress, the mRNA level of
leucokinins increases in Drosophila suzukii (Terhzaz et al., 2018).
Similar effect was also observed in B. tabaci. After prolonged cold
stress (4◦C for 4 h) a tendency to an increase in LK expression
was noted (Li et al., 2020). These peptides also affect the function
of MTs in Aedes aegypti, depolarizing them and increasing fluid
secretion (Veenstra et al., 1997). This in turn shows that kinins
may also take part in the response to cold stress (Terhzaz et al.,
2018). Alford et al. (2019a) tested the effects of biostable analogs
of kinin, CAPA, and PK in D. suzukii and D. melanogaster.
They studied five CAPA/PK and three kinin analogs ex vivo to
elucidate their roles in the modulation of fluid secretion through
the MTs and in vivo to evaluate impacts of these neuropeptides
on starvation, desiccation and cold stress tolerance. Out of all the
tested peptides, the kinin analogs increased the fluid secretion
in the MTs of both flies, whereas none of the other analogs
affected this process. Although they did not affect the secretion of
fluids, CAPA/PK analogs could be important regulators of stress
response under desiccation conditions. Indeed, the injection of
CAPA/PKs analogs increased survival under desiccation stress
(Alford et al., 2019a). At low temperatures, injections of these
analogs caused the protective effect, but only in D. melanogaster
males and not in females of this species or in both sexes of
D. suzukii (Alford et al., 2019a). In another study this group
showed that 9 out of 10 tested analogs increased the mortality
of cold stressed aphid Myzus persicae (Alford et al., 2019b).
It has to be noted that in aphids MTs are not present due
to evolutionary loss of these organs, and the osmoregulatory

function of these organs was taken over by the gut (Jing et al.,
2015). MacMillan et al. (2018) also showed that CAPA was
connected to the cold tolerance of D. melanogaster, although the
effects were dose-dependent (Figure 1). When administered at
very low, femtomolar concentrations, CAPA was anti-diuretic
and reduced tubule K+ clearance rates and chill tolerance by
significantly increasing the CCR time. However, at high doses,
it facilitated K+ clearance from the hemolymph and increased
chill tolerance by reducing the CCR time and increasing survival
(MacMillan et al., 2018).

As mentioned before, DH31 and DH44 represent another
potential candidates for the investigation of the role of the
neuroendocrine system in the cold stress response. However,
the number of studies on this topic is limited. Although the
results found by Terhzaz et al. (2018) showed no change in the
mRNA level of DH31 and DH44 after cold stress, one should
consider the possibility that results solely obtained from a single
strain of Drosophila spp. may not be representative of the whole
family/genus, as there is significant genetic variability in stress
response among various populations of Drosophilidae (Schiffer
et al., 2013). Especially since it has been shown that DH44 play
a significant role in desiccation (Cannell et al., 2016) which
regulatory pathways cross-talk with cold stress pathways (Sinclair
et al., 2013). This indicates that the regulation of diuresis and
ion homeostasis by the nervous system and its association with
cold stress resistance is a complicated process. During cold
stress, the regulation of ion and water homeostasis is extremely
important, as the loss of balance in both causes neuromuscular
disfunction and initiates chill coma (Macmillan and Sinclair,
2011a; MacMillan et al., 2012). Therefore, future research should
focus on linking changes in the levels of individual diuretic and
anti-diuretic peptides with changes in water and ion homeostasis
and the administration of synthetic analogs to determine whether
they affect the ability to survive cold stress.

Metabolism
At low temperature, the changes in the composition of body
fluids controlled by diuresis (Neufeld and Leader, 1998; Williams
and Lee, 2011) are accompanied by major metabolic changes –
mainly related to carbohydrate metabolism, which is under
neuroendocrine control. This is related to the production and
storage of substances that are used to tolerate stress and survive
low temperatures (Terhzaz et al., 2018). These substances are
(a) ice nucleating agent (INA) proteins and lipoproteins in
the hemolymph or cells, which induce freezing in a controlled
way; (b) anti-freeze proteins (AFPs), which adsorb to the
surface of small ice crystals, inhibiting its growth; and c)
compatible solutes/cryoprotectants (CPAs) such as polyols and
sugars (Fuller, 2004). Glycerol is the most widely occurring CPA
in insects, although other polyhydric alcohols and some sugars
such as trehalose have similar cryoprotective functions. These
compounds, by adding to the pool of solute molecules, affect
the osmotic pressure of the hemolymph and help to regulate cell
volume during extracellular ice formation, and they also stabilize
proteins. They are produced mainly from glycogen stored in
the fat body and, in many insects, begin to accumulate at the
beginning of the overwintering period (Doucet et al., 2009).
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Among the different neurohormones, two highly conserved
neural signaling systems have been found that are crucial for
different aspects of insect metabolism and food response and are
particularly involved in resistance to low temperatures (Lingo
et al., 2007). These are ILPs and their receptor and NPFs, an
analog of mammalian neuropeptide Y (NPY) (Lingo et al., 2007).

The tuning of insulin signaling during stress is one of the most
important response of the neuroendocrine system to unfavorable
conditions (Luo et al., 2012). In insects, different numbers of
ILPs have been found in various species. One such peptide was
found in the locusts Locusta migratoria and Schistocerca gregaria,
whereas 38 in the silkmoth Bombyx mori (Nässel and Vanden
Broeck, 2016). The classification of insect ILPs as insulin-like is
mainly based on similarities in the amino acid sequences of the
mature peptides to those of insulins in mammals. The number
and positions of cysteine residues (Nässel and Vanden Broeck,
2016) and the arrangement of the precursor with the B, C, and
A chains, which can be processed into dimeric peptides or with
the maintenance of C peptides as in the insulin-like growth factor
(IGF) are crucial in this assignment. Most of the research on the
exact mechanisms of ILPs release and modes of action have been
performed only on the model insect Drosophila melanogaster. It
was shown that ILPs release from brain insulin producing cells
(IPCs) in adult flies is triggered by a sugar meal through the direct
activation of these cells via autonomous glucose-sensing capacity
(Park et al., 2014). Thus, the mechanisms of glucose-induced ILPs
release resemble those in pancreatic beta cells of mammals and
include an ATP-sensitive potassium channel (KATP), a glucose
transporter (GluT1) and voltage-sensitive calcium channels.
However, different neurotransmitters, neuropeptides and peptide
hormones have been implicated in acting on IPCs to modify
the expression of ILPs. These are GABA, 5-HT, OA, sNPF, TRP,
corazonin, allatostatin A, CCHamide, AKHs, adiponectin, and
limnostatin (Nässel and Vanden Broeck, 2016). Thus, in insects,
the synthesis and release of multiple ILPs is under complex
control. The system is tightly regulated and probably, as shown
below fragile to unfavorable conditions such as low temperature
(Li et al., 2020). This whole precisely regulated system in insects is
responsible for the regulation of a number of functions, including
reproduction and development, growth, metabolic homeostasis,
longevity and stress response (Rauschenbach et al., 2008).

In the endocrine stress response, ILPs have been shown to
play a crucial role together with biogenic amines (5-HT, OA,
and DA), 20-hydroxyecdysone and juvenile hormone (JH) –
hormone in adult insects, levels of which act and change
similarly under stress (Gruntenko and Rauschenbach, 2018). The
insulin/IGF signaling system (IIS) has been shown to respond
to various stress signals such as starvation and oxidative stress.
Recently, it was also suggested to play a role in temperature
stress. Its participation is crucial in the regulation of the JH,
OA, and DA levels, and it controls catecholamine metabolism
indirectly via JH. Possibly one of the pathway in which the
IIS is involved in the control of stress resistance is mediated
through JH/DA signaling (Gruntenko and Rauschenbach, 2018).
Moreover, different studies suggest the existence of a feedback
loop in the interplay of JH and the IIS (Yamamoto et al.,
2013). JH serves as a positive regulator of the IIS, whereas IIS

negatively regulate the JH level – feedback loop (Gruntenko and
Rauschenbach, 2018). Recent studies have shown that JH and
DA regulate carbohydrates at the circulating carbohydrate level,
mainly trehalose (used as a cryoprotectant) (Figure 1). It was
shown that increases in JH and DA decrease the levels of trehalose
and glucose under normal conditions but after stress exposure
bring them to values close to normal. Thus, the roles of DA
and JH in the neuroendocrine stress reaction in D. melanogaster
are related to normalizing it after stress (Karpova et al., 2019).
As ILPs have been shown to regulate JH and DA levels, they
indirectly regulate carbohydrate levels. Moreover, Luo et al.
(2012) demonstrated that IPCs in the Drosophila brain may be
inactivated by serotonergic signaling via serotonin receptor 5-
HT1A. On the other hand, OA stimulates the activity of IPCs
by binding to OAMB receptors, which results in an increase
in cAMP and the activation of cAMP-dependent PKA (Crocker
et al., 2010). Despite the knowledge about the action of biogenic
amines on IPCs, we still do not know the physiological role of
the antagonistic action of OA and 5-HT. As Luo et al. (2012)
suggested, this action of OA and 5-HT may be associated with
the tuning of insulin signaling during stress conditions.

A second signaling system that is widely known for the
regulation of metabolism in insects and is connected with stress
response is NPF signaling. These neurohormones were first
identified in invertebrates (the tapeworm Moniezia expansa)
based on pancreatic polypeptide antiserum (Maule et al., 1991).
The first analysis showed that they are similar to mammalian
NPY. In insects, an additional group of short peptides (8–
10 amino acids) with similar C-terminal sequences was also
discovered and named short neuropeptides F (sNPF). Recent
phylogenetic analysis revealed that they are evolutionarily
distinct from one another and that only long (36 amino acid)
neuropeptides F are related to NPY (Fadda et al., 2019).

In insects, NPF have been involved in the regulation
of different biological processes, including growth and
reproduction, nociception, the circadian clock, learning, feeding
and metabolism, and they act mainly as neuromodulators
or neurohormones (Fadda et al., 2019). The most extensive
studies of NPF functions in insects have been conducted in
D. melanogaster. First studies of NPF physiological function
were performed on their role in feeding regulation. This was
based on two evidences. Firstly, earlier studies showed that NPF
signaling in model nematode C. elegans is involved in foraging
behavior and secondly NPF and its receptor (NPFR1) are similar
in structure to mammalian NPY and NPY receptor (NPYR) in
whom they have been known to regulate feeding (Nässel and
Wegener, 2011). In studies conducted on D. melanogaster it was
shown that NPFR is connected with transient receptor potential
channel (TRP) – painless (pain) when respond to noxius stimuli
or various stress conditions (Rosenzweig et al., 2008; Xu et al.,
2008). This TRP channels are crucial for the response of flies
to temperature, mechanosensory stimuli or noxious chemicals
(Tracey et al., 2003). The receptor is activated by fructose so
it can trigger behavior which is related to food aversion. It
was shown that it is inactivated by NPF during feeding when
larva reside in environment very rich in sugar (Nässel and
Wegener, 2011). Thus, NPF signaling is crucial for metabolism
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and food acquisition. During exposure to low temperature
(11◦C for 120 min), the overexpression of the NPF receptor in
D. melanogaster was sufficient to trigger cold-resistant feeding
activity normally associated with fasted larvae (Lingo et al.,
2007). This is evidence that during exposure to low temperature,
NPF signaling may be responsible for food acquisition to store
carbohydrates, which will work as cryoprotectants.

Among the 32 NPF families in insects, there are many
neurohormones that might also be responsible for the regulation
of metabolism during various unfavorable conditions, including
cold. These neurohormones may include tachykinins and/or
AKHs. However, the number of studies on the neuropeptidergic
regulation of metabolic adaptations to low temperature is rather
limited. AKHs have been shown to regulate, together with JH, the
ice nucleator level (mainly lipoprotein) in the hemolymph of the
stag beetle Ceruchus piceus (Xu et al., 1990) (Figure 1). Two hours
after injection of AKH the level of ice nucleator increased and this
increase appeared to be the result of the release of lipoproteins
from the fat body (Xu et al., 1990). This is probable especially
when we consider that the major function of AKH in insects is
to regulate the lipids, carbohydrates and amino acid metabolism
(Gäde, 2009). This might be especially important during cold.
Xu et al. (1990) showed also that in lipoprotein release JH is
also involved. This hormone decreased the ice nucleator activity
but increased its level (Xu et al., 1990). However, the released
lipoprotein pool was inactive in Ceruchus piceus beetle. This is
in line with all the other mechanisms described above showing
the crucial role of JH in the endocrine stress response.

Very recently the first detailed study about neuroendocrine
stress response has been released. It describes changes in

TABLE 1 | Changes in mRNA level of insect neuropeptides after short (≤1 h) and
prolonged (≥4 h) cold exposure.

Neuropeptide Short cold stress Prolonged cold stress

Adipokinetic hormone n.e. ↑

Allatostatin A (FGL/AST) ↑ ↓

Allatostatin CCC ↑ ↑

Capability peptide ↑ ↓/↑**

CCHamide ↓ n.e.

CNMamide ↓ ↑

Corazonine ↓ n.e.

Eclosion hormone n.e. ↓

Insulie-like peptide n.e. ↑

Ion transport peptide n.e./↑ ↓

Kinin n.e. n.e./↑*

Myosuppressin n.e. ↓

Orcokinin n.e. ↑/↓

Proctolin n.e. ↓

RYamide ↑ ↓

Prepared based on the Li et al. (2020), Terhzaz et al. (2015), and Terhzaz et al.
(2018). *The effect was observable during recovery time after cold stress in D.
melanogaster and no effect was observed in B. tabaci during cold stress. **Li et al.
(2020) showed decrease in capa level in B. tabaci after 4 h of cold stress, whereas
Terhzaz et al. (2015) a significant increase in D. melanogaster after 6 and 24 h
of cold stress, the arrows represent an increase (↑) and a decrease (↓) in gene
expression. n.e., no effect observed.

neuropeptide and neuropeptide receptors expression in Bemisia
tabaci (Li et al., 2020). The authors showed that when
insects were exposed to low temperature (4◦C) for 1 and
4 h the expression level of several neuropeptides genes and
neuropeptides receptor genes have been changed – for details
see Table 1. These include neurohormones known for diuresis
regulation, metabolic peptides and peptides which regulate
reproduction and development. Remarkably peptides so far
known only for myotropic properties such as proctolin or
myosupressin were also changed.

CONCLUSION AND PERSPECTIVES

In this review, we summarize the current knowledge about the
neuroendocrine stress response to low temperature. Remarkably,
despite the recent advance in insect neuroendocrinology, very
little is known about the neurohormonal regulation of this
process. Of course, some universal mechanisms typical of
physiological adaptations to various unfavorable conditions are
known, and only a few studies focus on cold stress.

To date, it has been shown that three major groups of
compounds are involved in the response to temperature stress:
biogenic amines (5-HT, OA, DA), gonadotropins (JH, 20E)
and neuropeptides (ILPs, CAPA, kinins). The adjustments
during exposure to low temperature include changes in
overall metabolism, mainly the production and storage of
cryoprotectants and loss of ion and water homeostasis due to a
switch in MT and/or gut physiology. These two processes seem
to be independent. First, the central role might be played by IPCs
in the brain, that release ILPs which regulate DA metabolism
via JH. This model was proven at least for high-temperature
stress (Gruntenko and Rauschenbach, 2018). It should also be
evaluated for low-temperature stress. IPCs are also under strict
neuroendocrine control from other neuropeptides, such as sNPF,
TRPs, corazonin, and AKH. Taken together, the single reports
on the influence of neuropeptides on different physiological
processes under stress conditions, indicate that the involvement
of these peptides in neuroendocrine cold stress response should
be evaluated. The roles of certain peptides could be multiple,
such as the regulation of ILPs release and the regulation of the
functioning of other processes, for instance, in the fat body.

On the other hand, large scale analysis of neuropeptidome
showed that neuroendocrine response to cold might be complex
and involve several neuropeptides, at least on mRNA level. So
far only Drosophila has been studied, so further analysis should
be performed in non-model species including bigger insects such
as cockroach Gromphadorhina coquereliana or beetles Tenebrio
molitor and Nicrophorus vespilloides. These responses might be
also species specific.

Second, the exact role of biogenic amines under cold stress
should also be studied. In the response to heat stress, they
were shown to be intermediary in the interplay between JH
and 20E, and DA metabolism is regulated by ILPs indirectly by
JH. However, the other properties of catecholamines indicate
that they might play pleiotropic roles in the cold response,
also regulating the level of neuropeptides. Finally, the exact
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signaling mechanism of fluid secretion during exposure to
low temperature and the involvement of all neurohormones
in this process should be evaluated in detail. To date, CAPA
neuropeptides and kinins have been shown to be involved.
However, no neuroendocrine-controlling mechanism has been
proposed thus far.
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