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Abstract 21 

An advanced artificial intelligence system defeated the best human players in StarCraft II, a 22 

popular real-time strategy game. In a virtual ecosystem, players compete for habitats and 23 

resources, unintentionally reproducing many ecological phenomena. We propose to repurpose 24 

this A.I. to test ecological hypotheses that have been intractable using traditional approaches.   25 

 26 

Video games: a new playground for science and artificial intelligence  27 

Transforming data into predictive understanding is one of the fundamental challenges facing 28 

ecology. Artificial intelligence (A.I.) and machine learning techniques have been widely used 29 

to interpret complex data streams, but their application in ecology remains very limited 30 

compared to other research disciplines and industries (e.g. economics, genetics, and 31 

engineering [1]). One domain where artificial intelligence plays a dominant role is the video 32 

game industry, which has provided strong support for the development of a new generation of 33 

A.I. systems, using artificial neural networks and cutting-edge techniques of machine 34 

learning. Here, we report on a recent breakthrough, concerning a popular real-time strategy 35 

game (StarCraft II, [2]). In this game, which unintentionally reproduces central ecological 36 

dynamics, an advanced A.I. called AlphaStar trained itself to play the game using multi-agent 37 

reinforcement learning. Using unexpected tactics, it beat soundly some of the world’s best 38 

human players in matchups in late 2019. We propose to retool this system: feeding AlphaStar 39 

with real socioecological scenarios, it could address persistent and novel issues in the real 40 

world, including predicting emergent properties and non-linearities in succession, identifying 41 

risk and factors for ecological collapse, and understanding ecological strategies under 42 

changing environments. This would build on work by programmers and researchers who are 43 
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already collaborating to create realistic or "serious" games [3] that advance research via 44 

gamification [4,5] and facilitate education [6]. 45 

A complex and unpredictable virtual environment reproducing ecological dynamics  46 

StarCraft II is one of the most popular video game franchises and largest games in e-sports. 47 

Two or more players confront each other on a game map with the goal of eliminating the 48 

opponent, similar to the traditional board games of Chess and Go [7,8]. However, StarCraft II 49 

integrates several dimensions that simulate real-world complexity much more closely than 50 

traditional games. Real-time matches occur in a high-resolution, heterogeneous landscape 51 

with an uneven distribution of resources and terrain, leading to around 1026 possible actions 52 

every step of the game [2]. Within this virtual ecosystem, players collect resources to create 53 

up to ~20 different game pieces, called units. In turn, these units collect resources, provide 54 

defense, or attack competitors. Additionally, there is an artificial fog (called the "fog of war"), 55 

that constrains the visible portion of the landscape to the area immediately around the player’s 56 

units. Like in reality, StarCraft II is a world where individuals struggle for survival with 57 

incomplete information about resource location and threats of competition or predation (see 58 

Kriegspiel [9] for previous applications of A.I. in imperfect-information games). 59 

In addition to the generally realistic characteristics inherent to most real-time strategy games, 60 

StarCraft II unintentionally integrates a large range of ecological dynamics and mechanisms. 61 

First of all, players must choose one of the three "races" (Terran, Protoss, and Zerg), which 62 

have different life strategies that align strongly with the three main ecological plant strategies 63 

laid out by Grime: competitors, stress tolerators, and ruderals (Figure 1). Each player 64 

continuously makes trade-offs between colonization of new habitats versus rapid conflict with 65 

the opponent, depending on the stoichiometry of available resources and level of external 66 

threat. Early in the game, when resource acquisition is very limited and few possible units are 67 
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available, players often produce cheap and numerous units (r strategy). As the match 68 

progresses, players generally produce more expensive but powerful units (K strategy) that 69 

have specialized and complementary roles, increasing the biodiversity in the virtual 70 

ecosystem. Furthermore, interactions among players result in shifts towards units with 71 

functionally different traits, while the degree of performance and specialization of the traits 72 

themselves can be enhanced, intensifying the arms race throughout the course of the game. 73 

Overall, the growth is highly modular and plastic, and many choices are viable only when 74 

combined with other decisions and considerations (strong phenotypic integration). Growth 75 

and cognition operate within a network of units, similar to natural organisms like clonal plants 76 

or superorganisms (social animals, e.g. ants or termites). Last, each player has a maximum 77 

number of units simultaneously allowed on the map, enforcing an artificial carrying capacity 78 

and associated density dependent strategies.  79 

The unexpected ecological mastery of AlphaStar 80 

On October 30th, 2019, Vinyals et al. [2] revealed that their A.I. system, named AlphaStar, 81 

promptly defeated many professional players and outperformed around 99.8% of officially 82 

ranked human players. Before the confrontations, AlphaStar agents (simulated players) had 83 

been trained with data from millions of StarCraft II matches played against each other — the 84 

equivalent of 200 years of continuous gaming per agent. During this spin-up process, the 85 

algorithm selected and crossed the most successful agents, exerting selective pressure on the 86 

variation generated by the machine learning. In their isolation from human influence, many 87 

agents developed very aggressive strategies, entirely free of human gaming culture such as 88 

tacit or unconscious alliances between players to ensure long-term participation. For example, 89 

in confrontations in which both players have the same race, agents used apparently 90 

counterproductive strategies, such as over-saturating their resource collection capacity or 91 

having a homogeneous army composition. This unconventional approach was so effective that 92 
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these games almost always finished in a few minutes (compared to tens of minutes for a game 93 

among humans). The overall domination of AlphaStar over its human competitors in these 94 

situations demonstrated that these counterintuitive behaviors better balanced the ecological 95 

trade-offs necessary in a context of strong intraspecific competition (i.e. symmetric 96 

competition). In this configuration, better performance in resource collection and a strategy of 97 

quantity (competitive hierarchy) not quality (limiting similarity) were the most likely to allow 98 

domination.  99 

Using AlphaStar to address ecological and evolutionary problems 100 

Given the amount of time and resources invested in its development, and despite some 101 

limitations of the game (e.g. very little resource recycling, no biotic pressure other than that of 102 

the competitor), AlphaStar is arguably more sophisticated, flexible and robust than any 103 

existing ecological model. AlphaStar could be readily repurposed to address fundamental 104 

questions in ecology and evolution. Preliminarily, we could study the current games of 105 

AlphaStar as a competition model between two individuals (Box 1). We could then make 106 

agents directly learn from maps corresponding to realistic configurations of biodiversity and 107 

resource distribution. The frequency and the trajectory among games of agents' various 108 

ecological strategies could reveal their evolutionary trajectory, which would allow assessment 109 

of deterministic and contingent development pathways in different starting conditions. We 110 

could also manipulate environmental conditions during games and observe the response of 111 

agents with given ecological strategies (i.e. ecological response), for instance in terms of trait 112 

syndromes or chances of success.  113 

Some could understandably ask, what could we learn from this exercise that is not simply an 114 

artefact of the game parameters? First of all, we think that AlphaStar should be modified by 115 

limiting the number of the actions it can make per minute (i.e. "micromanaging"), to allow 116 
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testing substantive, ecological processes rather than just differences in processing power. 117 

Then, from a plant perspective, we could study the effects of ecological strategies and their 118 

response to changing environments, including predicting nonlinearities in succession, niche 119 

shifts and trade-off modifications caused by direct disturbance, resource change or biological 120 

invasions. From an animal perspective, we could study the role of personality in ecological 121 

functioning [10], the ecology of fear (i.e. the impact of the risk of competition [11]) and the 122 

evolution of ecological culture ([12], e.g. emergence and drift of ecological approaches). 123 

From a human perspective, AlphaStar could shed light on cultural relations: if many humans 124 

from different cultures play against AlphaStar, it would generate a rich dataset relevant to 125 

how individual, cultural, and artificial personality can impede or solve complex and crucial 126 

ecological problems such as ecological collapse, environmental change, and tolerance of 127 

immediate and eventual risk. The data, code, and architecture of AlphaStar's neural network 128 

and StarCraft II itself are freely available. Relationships among gamers, ecologists, and 129 

programmers would allow co-construction and testing of many more hypotheses than we list 130 

above, possibly generating new insights into many stubborn challenges of ecology and 131 

evolutionary biology. 132 
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Figures 142 

 143 

Figure 1. Ecology of the three races of StarCraft II through the prism of Grime's CSR 144 

triangle. At the top, a competitive species (e.g. bracken, ferns) represents Protoss, which 145 

produce slow and expensive units that need to be locally aggregated but are very competitive. 146 

At the left, a stress-tolerant species (e.g. cactus) reflects the strategy of Terrans, which can 147 

resist intense stresses by collecting and conserving resources more efficiently under opponent 148 

pressure, and use several, strong defensive units and strategies. At the right, a ruderal species 149 

(common nettle, Urtica dioica) represents the strategy of Zergs, which colonize space rapidly, 150 

regrow rapidly and have low cost, aggressive units with generally short lifespans. (a) These 151 

ecological strategies mean that each race expresses distinctive growth curve. (b) Each race 152 

also has emergent properties such as more or less resilience and resistance.  153 
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                                                                                                                                                      155 

Box 1. The basical ecological model in StarCraft II 

The classic confrontation type in StarCraft II, as played by AlphaStar, consists of two players 
confronting each other in a particular environment with limited resources  ̶  see the "mini-
map" (Figure I). This represents an ecological competition between two individuals, which 
can be intra or interspecific, depending on whether the players choose the same race. The map 
shows the entire environment, but the players' vision is limited to the lighter, circular zones 
around their respective units and buildings. Resources are the light blue shapes, and the dark 
blue and red shapes are the buildings and units of both players (Protoss in blue, Terran in red). 
The progress and outcome of competition can be monitored through this mini-map, which 
shows colonization and exploitation of new resource patches, environment exploration, and 
often, ecological collapse. This map could be used to monitor more realistic ecological 
models. For instance, several players could compete against each other in a larger and entirely 
unpredictable environment, which would enable the study of ecological processes at the scale 
of populations and communities. We could also set up scenarios in which we artificially 
modify environmental conditions during the game, and then evaluate the consequences on 
ecosystem functioning and biodiversity dynamics. Note that quantification of several 
ecological processes like trait changes or trade-off modification are easily feasible with the 
game parameters. 

 

Figure I. Mini-map of a standard game of StarCraft II. 
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