

Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors

I. Boualia, A. Debache, R. Boulcina, Thierry Roisnel, F. Berrée, J. Vidal, B. Carboni

▶ To cite this version:

I. Boualia, A. Debache, R. Boulcina, Thierry Roisnel, F. Berrée, et al.. Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors. Tetrahedron Letters, 2020, 61 (17), pp.151805. 10.1016/j.tetlet.2020.151805. hal-02569954

HAL Id: hal-02569954 https://univ-rennes.hal.science/hal-02569954

Submitted on 12 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Graphical Abstract

Synthesis of novel 3-(quinazol-2-yl)-quinolines via $S_N Ar$ and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors

Imen Boualia, Abdelmadjid Debache, Raouf Boulcina,* Thierry Roisnel, Fabienne Berrée, Joelle Vidal,* and Bertrand Carboni

Synthesis of novel 3-(quinazol-2-yl)-quinolines via S_NAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors

Imen Boualia, a,b Abdelmadjid Debache, a Raouf Boulcina, a,c* Thierry Roisnel, b Fabienne Berrée, b Joëlle Vidal, b* and Bertrand Carbonib

- a Laboratoire de Synthèse des Molécules d'Intérêts Biologiques, Université des Frères Mentouri-Constantine, 25000 Constantine, Algérie.
- b Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, F-35000 Rennes, France. E-mail: joelle.vidal@univ-rennes1.fr
- ^c Département des Sciences et Techniques, Faculté de Technologie, Université Mostefa Benboulaïd-Batna 2, 05000 Batna, Algérie. E-mail: r.boulcina@univ-batna2.dz

ABSTRACT

A new series of 3-(quinazol-2-yl)-quinolines was synthesized by S_N Ar reaction from easily prepared 4-chloro-2-(2-chloroquinolin-3-yl)quinazolines and a range of phenols and thiophenol as nucleophiles. The AlCl₃-mediated C–C bond formation was also successfully exploited to introduce aryl and hereroaryl substituents on one or both heterocyclic units. These procedures afford efficient syntheses of polysubstituted 3-(quinazol-2-yl)-quinolines in few steps and high yields. Some of these polysubstituted 3-(quinazol-2-yl)-quinolines inhibit the human 20S proteasome.

The quinoline core is found in many natural products and has a privileged role in drug discovery. For example, camptothecin, topotecan, belotecan or cabozatinib, that inhibit topoisomerase or tyrosine kinases, are currently approved as anticancer treatment. Quinoline scaffold has also been used in the search for inhibitors of other important cancer targets, such as tubulin polymerization, DNA repair and proteasome. In the field of proteasome, quinolines are also widely represented as depicted in Figure 1.3 Such derivatives could overcome some problems encountered

with the pharmacodynamic and pharmacokinetic profiles of the proteasome inhibitors currently approved in cancer therapy (bortezomib, carfilzomib and ixazomib), usually attributed to their peptide structure and the presence of an electrophilic warhead.^{2b} In the wide family of quinolines derivatives, hybrids which combines this scaffold with a quinazoline moiety, another important heterocycle possessing significant biological activities,⁴ are poorly exemplified (Fig. 2).

Fig.1 Structures of proteasome inhibitors bearing a quinoline scaffold (A. inhibitor of the proteasome 19S particle; B. inhibitors of the proteasome 20S core particle).

They were mostly synthesized by palladium-catalyzed carbonylation of 2-aminobenzylamine and 2-bromoquinoline,⁵ Suzuki coupling of the chloroquinazolinone with 2-quinolyl boronic acid,⁶ or DMAP-catalyzed one-pot three-component reaction from 2-formylquinolines, 2-aminobenzophenones and ammonium acetate.⁷

In continuation of our research program centered on the design and synthesis of potentially bioactive molecules 8 and, as part of our studies on non-peptide and non-covalent 20S proteasome inhibitors, 3h,9 we here focus on the preparation of a series of novel hybrid 3-(quinazol-2yl)-quinolines **6-15** via S_NAr and $AlCl_3$ induced (hetero) arylation reactions of **5** and their 20S proteasome inhibition evaluation (Fig. 2).

Fig.2 Targeted 3-(quinazol-2yl)-quinolines 6-15 and their precursor 5.

To access to our common building blocks 5, intermediates 3a-c were first prepared in high yields by using procedures previously reported in our laboratory. Couplings of the 2-aminobenzamide 1 with appropriate quinoline-3-carboxaldehydes 2 were carried out in the presence of K₂CO₃ in DMF at 80 °C (Scheme 1). On treatment with iodine in DMF at 80 °C, 3a-c exclusively gave the desired oxidized product 4a-c in 76-86% yields. Chlorination was then readily achieved with phosphorus oxychloride giving 5a-c in 70-78% yields.

Scheme 1 Reagents and conditions: (a) K₂CO₃, DMF, 80° C, 3h, **3a** (94%), **3b** (91%) **3c** (90%); (b) I₂, DMF, 80° C, 6h, **4a** (76%), **4b** (84%), **4c** (86%); (c) POCl₃, reflux, 18h, **5a** (76%), **5b** (78%), **5c** (70%).

Based on our previous study related to the synthesis of 4-anilinoquinolino-quinazoline hybrids using S_N Ar reactions with various aromatic amines, 8c we then decided to use phenols as nucleophiles. With 1 equiv. under refluxed acetonitrile in the presence of K_2 CO₃, the corresponding adducts **6a-h** were isolated in high yields (Table 1). A complete conversion occurred within a short time (2 h) with no substitution at the C-2 position of the quinoline. This high regioselectivity at the C-4 position was confirmed by X-ray diffraction of **6b** that reveals a dihedral angle of 50° between the quinazoline and the quinoline subunits. Similarly, the 4-phenylthio derivative **6i** was synthesized from thiophenol and **5a** in 83% isolated yield.

On the other hand, when the reaction of **5a** was performed with two equivalents of phenol under the same conditions, the formation of disubstituted quinazoline derivatives did not occur at all even after 16 h in CH₃CN under reflux. However, modest

yields of **7a-d** (23 to 53%) were obtained by performing the reactions in refluxing DMF within 16 h (Table 2).

Table 1 Synthesis of 2-chloro-3-(4-aryloxyquinazol-2-yl)-quinolines **6**

CI
N
R
ArXH,
$$K_2CO_3$$
MeCN, reflux
2h
CI
N
6a-i

6b

	R	X	Ar	Yield
6a	Me	0	C_6H_5	84%
6b	Me	O	4-Me-C ₆ H ₄	92%
6c	Me	0	3-MeO-C ₆ H ₄	88%
6d	Me	O	1-naphthyl	93%
6e	Me	O	$4-NO_2-C_6H_4$	71%
6f	Me	О	3-pyridyl	63%
6g	OMe	О	4-Me-C ₆ H ₄	89%
6h	Н	O	4-Me-C ₆ H ₄	80%
6i	Me	S	C_6H_5	83%

To extend the range of available compounds, the reactions between compounds **6** and *p*-toluidine, selected as model aniline, were also examined. Aminoquinolines **8a-c** were then prepared in good yields after one hour in refluxed *i*-PrOH in the presence of 1N HCl (Table 3). NMR and mass spectra of **6a-i**, **7a-c** and **8a-c** are in full agreement with the proposed structures. It is worthy to note the downfield shift of the NH signal in the ¹H NMR spectra of compounds **8** which would indicate that NH is located in an aromatic deshielding area of the twisted structure.

 Table 2

 Synthesis of 2-aryloxy-3-(4-aryloxyquinazol-2-yl)-quinolines 7

		7a-d			
Compound	R	Ar	Yield		
7a	Me	phenyl	23%		
7b	Me	4-Me-C ₆ H ₄	52%		
7c	Н	4-Me-C ₆ H ₄	53%		
7 d	OMe	4 -Me- C_6H_4	43%		

We then turned our attention to the formation of a new carbon-carbon bond. Introduction of an aryl or heteroaryl moiety at C-2 of quinoline ring or C-4 of quinazoline was frequently carried out via Ni-catalyzed reaction of quinolone with arylzinc,¹¹

Suzuki coupling with arylboronic acids 11b or reaction of quinoline N-oxide with indole. 12

Table 3 Synthesis of 2-arylamino-3-(4-aryloxyquinazol-2-yl)-quinolines **8**

Compound	Ar	Yield	
8a	C_6H_5	88%	
8b	4 -Me- C_6H_4	62%	
8c	1-naphthyl	72%	

Despite the merit of these protocols, they are not free from limitations in terms of longer reaction time, use of costly catalysts, requirement of stringent conditions or multistep synthesis of starting materials. Over the last few years, the C-C bond forming reactions between heteroaryl chlorides containing a C(Cl)=N moiety and various electron rich arenes or heteroarenes in the presence of AlCl₃ have been reported on several occasions. 13 2-Chloro-3-(4-(het)arylquinazol-2-yl)-quinolines 9ac were effectively obtained under this catalytic conditions in excellent yields from 2,4,6-trimethoxybenzene, indole and pyrrole (Scheme 2). Notably, as previously observed for S_NAr reactions, no 2-substituted quinoline adducts were detected. In view of the mechanism generally proposed for this reaction, 13g this regioselectivity could be explained by the favored complexation of AlCl₃ to the quinazoline nitrogen. However, the use of an excess of 2,4,6-trimethoxybenzene with 5b as substrate, for 15h instead of 3h, afforded the desired bi-substituted derivative 10.

Scheme 2 Reagents and conditions: (a) (Het)ArH, AlCl₃, DCE, 80 °C, 3h, **9a** (83%), **9b** (71%), **9c** (91%); (b) 1,3,5-trimethoxybenzene, AlCl₃, DCE, 80 °C, 15h, **10** (61%)

Finally, because morpholines are privileged substituents abundantly used as in drugs and medicinal chemistry, ¹⁴ we applied the above-described methodologies to the synthesis of new derivatives presenting a morpholino substituent on the quinazoline or (and) quinoline parts. For example, in the presence

of two equivalents of morpholine, the conversion of **5b** to **11** was completed in methylene chloride at 45°C within 2h. With morpholine as solvent, at 80 °C for 1h, **12b** and **12c** were obtained in 88 and 84% yields, respectively (Scheme 3). Under the same conditions, were synthesized **13-15** with 2,4,6-trimethoxyphenyl, indolyl and pyrrolyl moieties at the 4-position of quinazolines.

13: Ar = 2,4,6-trimethoxyphenyl **14**: Het = indol-3-yl

14: Het = indol-3-yl **15**: Het = pyrrol-3-yl

Scheme 3 Reagents and conditions: (a) morpholine (2 equiv), CH₂Cl₂, 45° C, 2h, 11 (91%); (b) morpholine (solvent), 80°C, 1h, **12b** (R = Me, 88%), **12c** (R = OMe, 84%); (c) (Het)ArH, AlCl₃, 80°C, (CH₂Cl)₂, 3h, then morpholine (2 equiv), CH₂Cl₂, 45° C, 2h, **13** (Ar = 2,4,6-trimethoxyphenyl, 92%), **14** (Het = indol-3-yl 78%), **15** (Het = pyrrol-3-yl, 79%).

Having in hands a small library of 3-(quinazol-2-yl)-quinolines 6-15, we evaluated their biological activities as inhibitors of the purified human constitutive 20S proteasome. The ability to inhibit the three proteolytic activities, ChT-L, T-L and PA, was measured by fluorescence. Owing to their weak (7c, 9a, 9b, 9c, 13) or moderate fluorescence (7d) at the working wavelengths, these compounds were excluded from the screening.

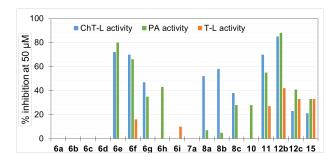

Ten compounds over 18 inhibited fairly (20%) to strongly (90%) the ChT-L or the PA activities at 50 μM (Fig.3 A.). The T-L activity was fairly inhibited by 4 products. Compounds that gave more than 70% inhibition were further characterized by their effect-dose response (Fig. S1 in supplementary material) to determine concentrations giving 50% inhibition (IC₅₀, table 4). As for the quinoline 20S proteasome inhibitors saquinavir,^{3b} 5-AHQ^{3f} and III^{3j} (Fig. 1), the best compound 6e inhibits both ChT-L and PA activities, with a similar potency for PA and a lower one for ChT-L.

Table 4
IC₅₀ (uM) values for inhibition of human constitutive CP (pH 8, 37 °C)

	6e	6f	11	12b	chloroquine
ChT-L activity	35.4 ± 0.6	19 ± 1	44 ± 1	41 ± 1	6.3 ± 0.4
PA activity	13.2 ± 0.6	66%ª	55% a	34.2 ± 0.8	22.5 ± 0.6

^a % inhibition at 50 μM

We also investigated the mechanism of inhibition by compound 6e (Fig. S2 and Fig. S3 in supplementary material).15 A competitive inhibition of the ChT-L activity was observed.¹⁵ This indicates that inhibitor 6e binds exclusively to the free enzyme with an inhibition constant Ki = $19 \pm 1 \mu M$. Such a competitive inhibition mechanism has been reported mainly for the ChT-L activity of non-covalent peptide derivatives 16 and also for the PA activity of tamoxifen derivatives.¹⁷ The PA activity was inhibited non-competitively.¹⁵ Inhibitor **6e** binds with an equal affinity to the enzyme alone or the enzyme in complex with the substrate ($K_i = K'_i = 13.2 \pm 0.6 \mu M$). Non-competitive inhibition of 20S proteasome has been observed for the PA activity of quinoline 5-AHQ (Fig.1),^{3f} and for the ChT-L activity oxadiazoles,9a derivatives¹⁷ tamoxifen derivatives. 16a,18

Fig.3 Effect of 3-(quinazol-2-yl)-quinolines **6-15** on human constitutive CP (pH 8, 37 °C). Compared inhibitions of the ChT-L, PA and T-L activities by compounds **6-15** at 50 μ M.

The many crystallographic structures of inhibitors in complex with 20S proteasome have provided a deep understanding of the binding channel and specificity pockets that can be targeted by competitive inhibitors. ¹⁹ However a non-competitive modulation of 20S proteasome suggests that binding to other sites could occur while blocking 20S proteasome activities. As yet, the only direct evidences (NMR^{3e} or X-ray²⁰) for such a mechanism involving non-peptide derivatives have been brought using quinoline derivatives (respectively chloroquine or I).

We described in this paper an efficient synthesis of polysubstituted 3-(quinazol-2-yl)-quinoline derivatives **6-15** in few steps and high yields. Chemical diversity was introduced by selective mono or double S_N Ar of a range of phenols, thiophenol, amines or anilines with the easily prepared di-chloro derivatives **5**. Aryl or heteroaryl carbon nucleophiles allowed the AlCl₃ mediated and controlled creation of one or two C-C bonds.

Several 3-(quinazol-2-yl)-quinoline derivatives inhibited the ChT-L and PA activities of the human constitutive 20S proteasome. The best compound 6e inhibited these activities by different mechanisms, with moderate affinities (Ki = 13-19 μ M).

Acknowledgments

This work was supported by the University of Rennes 1 and the Centre National de la Recherche Scientifique (CNRS). IB gratefully acknowledges le Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (Algeria) and The Algerian-French scholarship program PROFAS B+.

Supplementary Material

Supplementary data to this article can be found online at

References and notes

- [1] (a) Solomon, V. R.; Lee, H. Curr. Med. Chem. 2011, 18, 1488-1508:
 - (b) Musiol, R. Expert Opin. Drug Discov. 2017, 12, 583-597.
- [2] (a) Manasanch, E. E.; Orlowski, R. Z. Nat. Rev. Clin. Oncol. 2017, 14, 417;
 - (b) Park, J. E.; Miller, Z.; Jun, Y.; Lee, W.; Kim, K. B. *Translational Research* **2018**, *198*, 1-16.
- [3] (a) Perez, C.; Li, J.; Parlati, F.; Rouffet, M.; Ma, Y.; Mackinnon, A. L.; Chou, T.-F.; Deshaies, R. J.; Cohen, S. M. J. Med. Chem. 2017, 60, 1343-1361;
 - (b) Pajonk, F.; Himmelsbach, J.; Riess, K.; Sommer, A.; McBride, W. H. *Cancer Res.* **2002**, *62*, 5230-5235;
 - (c) Mao, X.; Li, X.; Sprangers, R.; Wang, X.; Venugopal, A.; Wood, T.; Zhang, Y.; Kuntz, D. A.; Coe, E.; Trudel, S.; Rose, D.; Batey, R. A.; Kay, L. E.; Schimmer, A. D. *Leukemia* **2009**, *23*, 585-590;
 - (d) Zhai, S.; Yang, L.; Cui, Q. C.; Sun, Y.; Dou, Q. P.; Yan, B. *JBIC*, *J. Biol. Inorg. Chem.* **2010**, *15*, 259-269;
 - (e) Ruschak, A. M.; Kay, L. E. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*, E3454-E3462, SE3454/1-SE3454/31;
 - (f) Li, X.; Wood, T. E.; Sprangers, R.; Jansen, G.; Franke, N. E.; Mao, X.; Wang, X.; Zhang, Y.; Verbrugge, S. E.; Adomat, H.; Li, Z. H.; Trudel, S.; Chen, C.; Religa, T. L.; Jamal, N.; Messner, H.; Cloos, J.; Rose, D. R.; Navon, A.; Guns, E.; Batey, R. A.; Kay, L. E.; Schimmer, A. D. *J. Natl. Cancer Inst.* **2010**, *102*, 1069-1082;
 - (g) Pundir, S.; Vu, H.-Y.; Solomon, V. R.; McClure, R.; Lee, H. Cancer Research 2015, 75, 4164-4175;
 - (h) Basse, N.; Montes, M.; Marechal, X.; Qin, L.; Bouvier-Durand, M.; Genin, E.; Vidal, J.; Villoutreix, B. O.; Reboud-Ravaux, M. *J. Med. Chem.* **2010**, *53*, 509-513;
 - (i) Di Giovanni, C.; Ettari, R.; Sarno, S.; Rotondo, A.; Bitto, A.; Squadrito, F.; Altavilla, D.; Schirmeister, T.; Novellino, E.; Grasso, S.; Zappala, M.; Lavecchia, A. Eur. J. Med. Chem. 2016, 121, 578-591;
 - (j) McDaniel, T. J.; Lansdell, T. A.; Dissanayake, A. A.; Azevedo, L. M.; Claes, J.; Odom, A. L.; Tepe, J. J. *Bioorg. Med. Chem.* **2016**, *24*, 2441-2450.
- [4] Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V. R.; Sulthana, M. T.; Narendhar, B. Eur. J. Med. Chem. 2018, 151, 628-685.
- [5] Chen, J.; Natte, K.; Neumann, H.; Wu, X.-F. RSC Adv. **2014**, *4*, 56502-56505.
- [6] Sutherland, H. S.; Hwang, I. Y.; Marshall, E. S.; Lindsay, B. S.; Denny, W. A.; Gilchrist, C.; Joseph, W. R.; Greenhalgh, D.; Richardson, E.; Kestell, P.; Ding, A.; Baguley, B. C. *Invest New Drugs* 2012, 30, 2035-45.
- [7] Derabli, C.; Boulcina, R.; Kirsch, G.; Carboni, B.; Debache, A. Tetrahedron Lett. 2014, 55, 200-204.
- [8] (a) Mahdjoub, S.; Boulcina, R.; Yildirim, M.; Lakehal, S.; Boulebd, H.; Debache, A. Synth. Commun. 2018, 48, 2366-2381;
 - (b) Derabli, C.; Boualia, I.; Abdelwahab, A. B.; Boulcina, R.; Bensouici, C.; Kirsch, G.; Debache, A. *Bioorg. Med. Chem. Lett.* **2018**, *28*, 2481-2484;
 - (c) Derabli, C.; Boulcina, R.; Kirsch, G.; Debache, A. *Tetrahedron* **2017**, *73*, 351-358.
- [9] (a) Maréchal, X.; Genin, E.; Qin, L.; Sperandio, O.; Montes, M.; Basse, N.; Richy, N.; Miteva, M. A.; Reboud-Ravaux, M.; Vidal, J.; Villoutreix, B. O. Curr. Med. Chem. 2013, 20, 2351-2362;
 - (b) Villoutreix, B. O.; Khatib, A. M.; Cheng, Y.; Miteva, M. A.; Marechal, X.; Vidal, J.; Reboud-Ravaux, M. *Oncotarget* **2017**, *8*, 10437-10449.
- [10] CCDC 1871916 contains the crystallographic data for compounds **6b**.These data can be obtained free of charge

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data request/cif.

- [11] (a) Tobisu, M.; Hyodo, I.; Chatani, N. *J. Am. Chem. Soc.* **2009**, *131*, 12070-12071;
 - (b) Fleckenstein, C. A.; Plenio, H. Chem. Eur. J. 2008, 14, 4267-4279.
- [12] Hoemann, M. Z.; Kumaravel, G.; Xie, R. L.; Rossi, R. F.; Meyer, S.; Sidhu, A.; Cuny, G. D.; Hauske, J. R. Bioorg; Med. Chem. Lett. 2000, 10, 2675-2678.
- [13] (a) Pal, M.; Batchu, V. R.; Parasuraman, K.; Yeleswarapu, K. R. J. Org. Chem. 2003, 68, 6806-6809;
 - (b) Pal, M.; Batchu, V. R.; Dager, I.; Swamy, N. K.; Padakanti, S. *J. Org. Chem.* **2005**, *70*, 2376-2379;
 - (c) Kodimuthali, A.; T. C, N.; Prasunamba, P. L.; Pal, M. *Tetrahedron Lett.* **2009**, *50*, 354-358;
 - (d) Kodimuthali, A.; Chary, B. C.; Prasunamba, P. L.; Pal, M. *Tetrahedron Lett.* **2009**, *50*, 1618-1621;
 - (e) Kumar, K. S.; Chamakuri, S.; Vishweshwar, P.; Iqbal, J.; Pal, M. *Tetrahedron Lett.* **2010**, *51*, 3269-3273;
 - (f) Rajasekhar, M.; Rao, K. U. M.; Sundar, C. S.; Reddy, N. B.; Kumar Nayak, S. K.; Reddy, C. S. *Chem. Pharm. Bull* **2012**, *60*, 854;
 - (g) Sunke, R.; Nallapati, S. B.; Kumar, J. S.; Shiva Kumar, K.; Pal, M. Org. Biomol. Chem. 2017, 15, 4042-4057.
- [14] (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845-5859;
 - (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T. *J. Med. Chem.* **2014**, *57*, 10257-10274;
 - (c) Ritchie, T. J.; Macdonald, S. J. F.; Peace, S.; Pickett, S. D.; Luscombe, C. N. *MedChemComm* **2012**, *3*, 1062-1069.
- [15] Bisswanger, H.; Wiley-VCH Verlag GmbH & Co: Weinheim, 2008.
- [16] (a) Desvergne, A.; Genin, E.; Maréchal, X.; Gallastegui, N.; Dufau, L.; Richy, N.; Groll, M.; Vidal, J.; Reboud-Ravaux, M. J. Med. Chem. 2013, 56, 3367-3378;
 - (b) Maréchal, X.; Pujol, A.; Richy, N.; Genin, E.; Basse, N.; Reboud-Ravaux, M.; Vidal, J. Eur. J. Med. Chem. **2012**, *52*, 322-7;
 - (c) Koguchi, Y.; Kohno, J.; Nishio, M.; Takahashi, K.; Okuda, T.; Ohnuki, T.; Komatsubara, S. *J. Antibiot.* **2000**, *53*, 105-9.
- [17] Hasegawa, M.; Yasuda, Y.; Tanaka, M.; Nakata, K.; Umeda, E.; Wang, Y.; Watanabe, C.; Uetake, S.; Kunoh, T.; Shionyu, M.; Sasaki, R.; Shiina, I.; Mizukami, T. Eur. J. Med. Chem. 2014, 71, 290-305.
- [18] (a) Myung, J.; Kim, K. B.; Lindsten, K.; Dantuma, N. P.; Crews, C. M. Mol. Cell 2001, 7, 411-420;
 - (b) Santos, R. d. L. A.; Bai, L.; Singh, P. K.; Murakami, N.; Fan, H.; Zhan, W.; Zhu, Y.; Jiang, X.; Zhang, K.; Assker, J. P.; Nathan, C. F.; Li, H.; Azzi, J.; Lin, G. *Nat. Commun.* **2017**, *8*, 1692;
 - (c) Karpowicz, P.; Osmulski, P. A.; Witkowska, J.; Sikorska, E.; Gizynska, M.; Belczyk-Ciesielska, A.; Gaczynska, M. E.; Jankowska, E. *PLoS One* **2015**, *10*, e0143038.

[19] Borissenko, L.; Groll, M. Chem. Rev. 2007, 107, 687-717.

R = H, Me, OMe

[20] Beck, P.; Reboud-Ravaux, M.; Groll, M. Angew. Chem. Int. Ed. 2015, 54, 11275-11278.

Graphical Abstract

Highlights:

- A new series of polysubstituted 3-(quinazol-2-yl)-quinolines have been synthesized by SNAr reaction.
- Various amines, phenols and thiophenol have been used as reactants.
- AlCl₃ has mediated C–C bond forming reactions.
- The methodology can be viewed as a useful alternative to the Suzuki reactions.
- Some of the synthesized 3-(quinazol-2-yl)-quinolines inhibit the human 20S proteasome.

Declaration of interests

☑ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Synthesis of novel 3-(quinazol-2-yl)-quinolines via $S_N Ar$ and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors

Imen Boualia, Abdelmadjid Debache, Raouf Boulcina,* Thierry Roisnel, Fabienne Berrée, Joelle Vidal,* and Bertrand Carboni

R¹ = OAr, SPh, HetAr, morpholino R² = Cl, OAr, NHTol, HetAr, morpholino **26** examples 20S constitutive proteasome inhibitor
ChT-L activity K_i = 19 μM
PA activity K_i = 13 μM