

# Expression of primary cilia-related genes in developing mouse gonads

R.P. Piprek, D. Podkowa, M. Kloc, Jacek Kubiak

## ▶ To cite this version:

R.P. Piprek, D. Podkowa, M. Kloc, Jacek Kubiak. Expression of primary cilia-related genes in developing mouse gonads. International Journal of Developmental Biology, 2019, 63 (11-12), pp.615-621. 10.1387/ijdb.190049rp. hal-02569583

## HAL Id: hal-02569583 https://univ-rennes.hal.science/hal-02569583

Submitted on 31 Aug 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Expression of primary cilia markers in developing mouse gonads                                                                   |
|----|----------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                  |
| 3  | Rafal P. Piprek <sup>1*</sup> , Dagmara Podkowa <sup>1</sup> , Malgorzata Kloc <sup>2,3,4</sup> , Jacek Z. Kubiak <sup>5,6</sup> |
| 4  |                                                                                                                                  |
| 5  | <sup>1</sup> Department of Comparative Anatomy, Institute of Zoology and Biomedical Research,                                    |
| 6  | Jagiellonian University, Krakow, Poland                                                                                          |
| 7  | <sup>2</sup> The Houston Methodist Research Institute, Houston, TX, USA                                                          |
| 8  | <sup>3</sup> Department of Surgery, The Houston Methodist Hospital, Houston TX, USA                                              |
| 9  | <sup>4</sup> University of Texas, MD Anderson Cancer Center, Houston TX, USA                                                     |
| 10 | <sup>5</sup> Univ Rennes, CNRS, Institute of Genetics and Development of Rennes, UMR 6290, Cell                                  |
| 11 | Cycle Group, Faculty of Medicine, F-35000 Rennes, France                                                                         |
| 12 | <sup>6</sup> Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and                             |
| 13 | Epidemiology (WIHE), Warsaw, Poland                                                                                              |
| 14 |                                                                                                                                  |
| 15 | Running title: Primary cilia markers in developing mouse gonads                                                                  |
| 16 | Key words: gonad development; sex determination; ovary; testis; primary cilia                                                    |
| 17 |                                                                                                                                  |
| 18 | Corresponding author:                                                                                                            |
| 19 | Rafal P. Piprek                                                                                                                  |
| 20 | Department of Comparative Anatomy, Institute of Zoology and Biomedical Research,                                                 |
| 21 | Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland                                                                   |
| 22 | Phone: +48126645059                                                                                                              |
| 23 | E-mail addresses: rafal.piprek@uj.edu.pl; dagmara.podkowa@uj.edu.pl;                                                             |
| 24 | MKloc@houstonmethodist.org; jacek.kubiak@univ-rennes1.fr                                                                         |
| 25 |                                                                                                                                  |

#### 26 Abstract

Mechanisms governing differentiation of the bipotential gonad into the testes or ovaries are complex and still vague. The primary cilium is an organelle involved in cell signaling, which controls development of many organs, but the role of primary cillium in the sex determination and sexual differentiation of gonads is completely unknown. Here we studied the expression of marker genes of primary cilium in fetal mouse gonads, before, during and after sexual differentiation. We studied the expression of 175 genes considered to be the markers of primary cilia using microarray technique. 144 of these genes were ubiquitonously expressed in all studied cell types with no significant differences in expression level. Such high level of expression of markers of primary cilia in developing mouse gonads suggests that the primary cilia and/or primary cilia-related genes are important for development of both somatic and germline component of the gonads. Only 31 genes showed difference in the expression between different cell types, which suggests that they have different functions in the somatic and germ cells. These results justify further studies on the role of primary cilia and the primary cilia-related genes in gonad development. 

#### 51 Introduction

52 The testes and the ovaries develop from the bipotential gonads in the process of sexual differentiation. In the mouse, the gonadal primordia (genital ridges) appear just before 10.5<sup>th</sup> 53 54 day of embryonic life (E10.5) (Hu et al., 2013; Piprek et al., 2016). Between stage E10.5 and 55 E12.5, the sexually undifferentiated gonads start expressing the sex-determining genes (reviewed in Piprek et al., 2016). The fate of the gonad and its ultimate differentiation into the 56 57 testis or ovary depends on male or female sex-determining signalling pathways (reviewed in 58 Piprek, 2009a, 2009b). At stage E13.5, the mouse gonads are already sexually differentiated, 59 and their sex can be easily recognized under the microscope (Nel-Themaat et al., 2009). Developing gonads are composed of three basic cell types: i) supporting cells (Sertoli and 60 61 follicular cells), ii) interstitial/stromal cells, and iii) germ cells (Piprek et al., 2017, 2018). 62 Although a number of genes and signaling pathways (such as PDGF - platelet-derived growth 63 factor pathway, FGF - fibroblast growth factor pathway, WNT - wingless-type MMTV integration site family pathway, and Hedgehog pathway) involved in sex determination and 64 65 sexual differentiation of mouse gonad have been identified (reviewed in Piprek, 2009a, 66 2009b, Piprek 2010), the mechanisms directing bipotential gonad differentiation into the 67 testes or ovaries are very complex, and thus still require further studies. 68 Studies of the last decade identified the primary cilium as a key coordinator of 69 signaling during embryogenesis and organogenesis (Satir *et al.*, 2010). The primary cilium is 70 an immotile organelle present on the surface of large variety of eukaryotic cells. The primary 71 cilium contains peripheral doublets of microtubules and lacks central microtubules (9+0 72 axoneme pattern). The primary cilium disappears during cell division. Recently, it has been 73 shown that the primary cilium possesses various receptors and acts as "a cell's antenna",

which enables the cell to respond to various signaling molecules (reviewed in Wainwright *et* 

75 *al.*, 2014). Recently, the markers of primary cilia, i.e. the genes important for primary cilium

formation and function, have been identified and characterized (Ishikawa et al., 2012). The 76 fact that primary cilium participates in receiving signals from PDGF, FGF, WNT and 77 Hedgehog pathways suggests that this organelle may be important for gonad development. 78 79 The expression of many primary cilia marker genes in developing mouse gonads suggests that 80 primary cilia or primary cilia-related mRNAs and proteins are present in three studied cell types and may play a role in differentiation of these cells and in sexual differentiation of 81 82 gonads. Very little is known about the presence of primary cilia in the gonads. Wainwright 83 and colleagues (2014) showed that the primary cilia are present in the somatic and germ cells 84 of fetal mouse gonads between stage E10.5 and E13.5 (Wainwright et al., 2014). However, from stage E13.5 onward only interstitial (Leydig and peritubular myoid) cells retain primary 85 86 cilia, and no primary cilia are present in the Sertoli or germ cells (Wainwright et al., 2014). 87 Also in the adult human testis, the primary cilia are only present in the Leydig and peritubular 88 myoid cells (Nygaard et al., 2015). In contrast, in pig developing testes, the primary cilia were 89 detected in Sertoli cells and interstitial cells, but not in the germ cells (Ou et al., 2014). 90 However, there are no studies on the role of primary cilium in sex determination and sexual 91 differentiation of gonads. Here we studied the expression of primary cilium markers in 92 supporting cells, interstitial/stromal cells and germ cells isolated from developing mouse 93 gonads at three developmental stages: E11.0 (sex determination period), E12.2 (the onset of 94 sexual differentiation), E13.8 (sexually differentiated gonads).

95

### 96 Results and Discussion

97 In 2012, Ishikawa and collaborators identified 195 primary cilia marker genes
98 expressed in mouse kidney cells (Ishikawa *et al.*, 2012). Here, we detected the expression of
99 175 of these genes in developing mouse gonads (Table 1,2,3,4). 144 of these genes were
100 ubiquitonously expressed in all studied cell types at E11.0, E12.2 and E13.8 with no

significant differences in expression level (Table 1), and only 31 genes showed difference in
the expression between cell types. Twenty five of these genes had different level of
expression between the somatic cells and the germ cells. Among these genes, 12 genes had
higher expression (Table 2), and 13 genes had lower expression in the germ cells (Table 3)
comparing to the somatic cells. Only 6 genes showed differences in the expression level
between supporting and interstitial/stromal cells (Table 4).

107 Among genetic markers of primary cilia ubiquitously expressed in developing mouse 108 gonads with no significant differences between cell types (fold change <1.5) were (144 genes) 109 for exaple: ADP-ribosylation factors (Arf), ADP ribosylation factor like GTPase 13B 110 (Arl13b), calumenin (Calu), chaperonin containing t-complex polypeptides (Cct), calponin 3 111 (Cnn3), exportin 2 (Cse11), cullin2 (Cul2), dynactin 2 (Dctn2), dynamin 1-like protein 112 (Dnm11), dynamin 2 (Dnm2), cytoplasmic dyneins (Dync), eukaryotic translation initiation 113 factors (Eif), intraflagellar transport proteins (Ift), importin 7 (Ipo7), kinesin family members 114 (Kif), nucleolin (Ncl), nardilysin (Nrd1), prostaglandin E synthase 3 (Ptges3), Ras-related 115 proteins (Rab), septins (Sept), and exportin 9 (Xpo7); Table 1. A function of ADP ribosylation 116 factor like GTPase 13B (Arl13b) is restricted to the primary cilia. This GTPase is localized in 117 the cilia and plays a role in cilia formation and their maintenance (Higginbotham et al., 2012). 118 Another genes restricted to the primary cilia are intraflagellar transport proteins Ift20, Ift88, 119 and *Ift172*. They are responsible for cilium biogenesis. The ubiquitous expression of these 120 genes in all cell types of developing mouse gonad suggests that all these cells possibly posses 121 primary cilia, at certain point of development. Indeed, the majority of above genes are known 122 to play other, more broader than cilia-related functions in a cell. This again indicates that the 123 functions of these genes in the developing gonad may be broader and not limited to the 124 primary cilia.

| 125 | Among primary cilia genes expressed at significantly higher level (fold change $\geq 1.5$ )                             |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 126 | in the germ cells than in somatic cells were (12 genes): arsenical pump-driving ATPase                                  |
| 127 | (Asna1), protein diaphanous homolog 1 (Diap1), insulin-degrading enzyme (Ide), protein                                  |
| 128 | phosphatase 2 regulatory subunit A beta ( <i>Ppp2r1b</i> ), peroxiredoxin 4 ( <i>Prdx4</i> ), 60S ribosomal             |
| 129 | protein L12 ( <i>Rpl12</i> ), 60S acidic ribosomal protein P2 ( <i>Rplp2</i> ), ribosomal protein S12 ( <i>Rps12</i> ), |
| 130 | testis specific gene A14 ( <i>Tsga14</i> ), tubulin alpha-4A chain ( <i>Tuba4a</i> ), and exportin 5 ( <i>Xpo5</i> );   |
| 131 | Table 2. The Solute carrier family 2 member 1 ( <i>Slc2a1</i> ) was the only gene showing                               |
| 132 | significant difference in the expression level between XX and XY germ cells, with the higher                            |
| 133 | expression in the XY germ cells (Table 2), which suggests that this gene product may be                                 |
| 134 | involved in differentiation of spermatogonia.                                                                           |
| 135 | Among primary cilia genes expressed at significantly lower level (fold change $\geq 1.5$ ) in                           |
| 136 | the germ cells than in somatic cells were (13 genes): ADP-ribosylation factor-like protein 3                            |
| 137 | (Arl3), Calcium/calmodulin-dependent protein kinase type II delta (Camk2d), calpain-2                                   |
| 138 | catalytic subunit (Capn2), Erbb2 interacting protein (Erbb2ip), GNAS (guanine nucleotide                                |
| 139 | binding protein, alpha stimulating) complex locus (Gnas), isocitrate dehydrogenase 1 (Idh1),                            |
| 140 | peroxiredoxin 3 (Prdx3), protein tyrosine phosphatase non-receptor type 13 (Ptpn13), protein                            |
| 141 | transport protein Sec23A (Sec23a), septin 9 (Spet9), triosephosphate isomerase 1 (Tpi1),                                |
| 142 | tetratricopeptide repeat protein 30B ( <i>Ttc30b</i> ), and tubulin beta-2A chain ( <i>Tubb2a</i> ); Table 3.           |
| 143 | Among marker genes showing significant differences in the expression level (fold                                        |
| 144 | change $\geq$ 1.5) between different type or sex of somatic cells were (6 genes): Ran GTPase-                           |
| 145 | activating protein 1 (Rangap1), protein transport protein Sec23B (Sec23b), syntrophin basic 2                           |
| 146 | (Sntb2), transmembrane protein 2 (Tmem2), and tubulin beta-3 chain (Tubb3). These genes                                 |
| 147 | showed higher expression in XY than in XX supporting cells (Table 4). This suggests that                                |
| 148 | these genes may be involved in sex determination and/or sexual differentiation of supporting                            |
| 149 | cells. Another tubulin gene- tubulin beta-6 chain (Tubb6) had higher level of expression in the                         |

interstitial/stromal cells than in the supporting cells (Table 4), which suggests its importancefor differentiation of the interstitial/stromal cells.

152 As mentioned above, the primary cilia were previously detected in the somatic cells of 153 developing mouse, pig, and human gonads but they were absent in the germ cells 154 (Wainwright et al., 2014; Nygaard et al., 2015; Ou et al., 2014). Presented here global 155 analysis of expression showed the expression of primary cilia markers in both somatic and 156 germ cells during the sex determination and sexual differentiation period of the gonad. 157 Further studies are necessary to establish if the germ cells in fetal mouse gonad possess 158 primary cilia at certain stage(s) and if there are any differences in the function of primary cilia 159 or primary cilia-related genes in different cell lines in differentiating gonads. Differences in 160 the expression of primary cilia markers between somatic and germ cells suggest that, indeed, 161 there is a difference in the function of primary cilia or primary cilia-related genes between 162 somatic and germ cells. Wainwright and colleagues (2014) showed that mice with mutation in Ift144 (intraflagellar transport gene 144) gene had abnormally large gonads and more testis 163 164 cords than control gonad (Wainwright et al., 2014). This indicate that indeed the primary cilia 165 marker gene is involved in gonad development. The transcriptome analysis presented in this 166 study creates a valuable data base, which will be crucial in further studies of the role of 167 primary cilia or their related genes in the development and/or differentiation of the gonads. 168

169 Materials and Methods

170 The study had been approved by the 1st Local Commission for Ethics in Experiments171 on Animals. Five transgenic mouse lines were used to isolate the supporting,

172 interstitial/stromal and germ cells as previously described (Piprek *et al.*, 2017). All individuals
173 were genotyped to define sex and the presence of transgene as previously described (Piprek *et al.*, 2017). Gonads from mouse fetuses were pooled accordingly to the sex and developmental

| 175 | stage. The gonads were incubated in 250 $\mu l$ 0.25% Trypsin–EDTA (Sigma, #T4049) at 37°C      |
|-----|-------------------------------------------------------------------------------------------------|
| 176 | for 5–10 minutes (Piprek et al., 2017). After tissue dissociation, the enzyme solution was      |
| 177 | replaced with PBS. Cells were centrifuged, after which the cell pellet was resuspended in PBS   |
| 178 | with Hoechst dye and incubated for 15 min. Fluorescence-activated cell sorting (FACS) was       |
| 179 | used to segregate three cell types isolated from the gonads (Piprek et al., 2017). Total RNA    |
| 180 | was isolated from each cell type and analyzed using microarray technique as previously          |
| 181 | described (Piprek et al., 2017). Raw data were analyzed as previously described (Piprek et al., |
| 182 | 2017), and normalized data are available in Gene Expression Omnibus (accession number           |
| 183 | GSE94806).                                                                                      |
| 184 |                                                                                                 |
| 185 | Acknowledgements                                                                                |
| 186 | The study was conducted within the project financed by the National Science Centre              |
| 187 | assigned on the basis of the decision number DEC-2013/11/D/NZ3/00184.                           |
| 188 |                                                                                                 |
| 189 | References                                                                                      |
| 190 | HIGGINBOTHAM H, EOM TY, MARIANI LE, BACHLEDA A, HIRT J, GUKASSYAN                               |
| 191 | V, CUSACK CL, LAI C, CASPARY T, ANTON ES (2012). Arl13b in primary cilia                        |
| 192 | regulates the migration and placement of interneurons in the developing cerebral cortex. Dev    |
| 193 | <i>Cell</i> 23: 925–38.                                                                         |
| 194 |                                                                                                 |
| 195 | HU YC, OKUMURA LM, PAGE DC (2013). Gata4 is required for formation of the genital               |
| 196 | ridge in mice. PLoS Genet 9(7): e1003629.                                                       |
| 197 |                                                                                                 |
| 198 | ISHIKAWA H, THOMPSON J, YATES JR 3RD, MARSHALL WF (2012). Proteomic                             |
| 199 | analysis of mammalian primary cilia. Curr Biol 22: 414–9.                                       |
|     |                                                                                                 |

| 0 | n | n |
|---|---|---|
| L | υ | υ |

| 201 | NEL-THEMAAT L, VADAKKAN TJ, WANG Y, DICKINSON ME, AKIYAMA H,                                    |
|-----|-------------------------------------------------------------------------------------------------|
| 202 | BEHRINGER RR (2009). Morphometric analysis of testis cord formation in Sox9-EGFP                |
| 203 | mice. <i>Dev Dyn</i> 238: 1100–10.                                                              |
| 204 |                                                                                                 |
| 205 | NYGAARD MB, ALMSTRUP K, LINDBAEK L, CHRISTENSEN ST, SVINGEN T (2015).                           |
| 206 | Cell context-specific expression of primary cilia in the human testis and ciliary coordination  |
| 207 | of Hedgehog signalling in mouse Leydig cells. Sci Rep 5: 10364.                                 |
| 208 |                                                                                                 |
| 209 | OU Y, DORES C, RODRIGUEZ SOSA JR, VAN DER HOORN F, DOBRINSKI I (2014).                          |
| 210 | Primary cilia in the developing pig testis. Cell Tissue Res 358: 597-605.                       |
| 211 |                                                                                                 |
| 212 | PIPREK RP (2009a). Genetic mechanisms underlying male sex determination in mammals. $J$         |
| 213 | Appl Genet 50: 347–360.                                                                         |
| 214 |                                                                                                 |
| 215 | PIPREK RP (2009b). Molecular mechanisms underlying female sex determination—                    |
| 216 | antagonism between female and male pathway. Folia Biol 57: 105–113.                             |
| 217 |                                                                                                 |
| 218 | PIPREK RP (2010). Molecular machinery of gonadal differentiation in mammals. Int J Dev          |
| 219 | <i>Biol</i> 54: 779–786.                                                                        |
| 220 |                                                                                                 |
| 221 | PIPREK RP, KLOC M, KUBIAK JZ (2016). Early development of the gonads: origin and                |
| 222 | differentiation of the somatic cells of the genital ridges. Results Probl Cell Differ 58: 1-22. |
| 223 |                                                                                                 |

| 224 | PIPREK RP, KOLASA M, PODKOWA D, KLOC M, KUBIAK JZ (2017). Cell adhesion                       |
|-----|-----------------------------------------------------------------------------------------------|
| 225 | molecules expression pattern indicates that somatic cells arbitrate gonadal sex of            |
| 226 | differentiating bipotential fetal mouse gonad. Mech Dev 147: 17-27.                           |
| 227 |                                                                                               |
| 228 | PIPREK RP, KOLASA M, PODKOWA D, KLOC M, KUBIAK JZ (2018). Transcriptional                     |
| 229 | profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad  |
| 230 | development. Mech Dev 149: 9–19.                                                              |
| 231 |                                                                                               |
| 232 | SATIR P, PEDERSEN LB, CHRISTENSEN ST (2010). The primary cilium at a glance. $J$              |
| 233 | <i>Cell Sci</i> 123: 499–503.                                                                 |
| 234 |                                                                                               |
| 235 | WAINWRIGHT EN, SVINGEN T, NG ET, WICKING C, KOOPMAN P (2014). Primary                         |
| 236 | cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. |
| 237 | <i>Dev Biol</i> 395: 342–54.                                                                  |
| 238 |                                                                                               |
| 239 |                                                                                               |
| 240 |                                                                                               |
| 241 |                                                                                               |
| 242 |                                                                                               |
| 243 |                                                                                               |
| 244 |                                                                                               |
| 245 |                                                                                               |
| 246 |                                                                                               |
| 247 |                                                                                               |
| 248 |                                                                                               |

Table 1. Primary cilia markers expressed ubiquitously expressed in developing mouse gonads with no significant differences between cell types (fold change <1.5) between E11.0 and E13.8 [symbols: 'vestigial level of expression (1-6); + high level of expression (7-8); ++ strong expression (9-10); +++ very strong expression (11-12)].

| Gene symbol | Gene name                                           | Support | ing cells | Interstitial/s | stromal cells | Germ | n cells |
|-------------|-----------------------------------------------------|---------|-----------|----------------|---------------|------|---------|
| -           |                                                     | XX      | XY        | XX             | XY            | XX   | XY      |
| Abce1       | ATP-binding cassette sub-family E member 1          | +++     | +++       | +++            | +++           | +++  | +++     |
| Acaca       | Acetyl-Coenzyme A carboxylase alpha                 | +       | +         | +              | +             | +    | +       |
| Adpgk       | ADP-dependent glucokinase                           | +       | +         | +              | +             | +    | +       |
| Aldh18a1    | Aldehyde dehydrogenase 18 family, member A1         |         |           |                |               |      |         |
| Anp32e      | Acidic leucine-rich phosphoprotein 32 member E      | +++     | +++       | +++            | +++           | +++  | +++     |
| Ap2b1       | AP-2 complex subunit beta-1                         | ++      | ++        | ++             | ++            | ++   | ++      |
| Arf4        | ADP-ribosylation factor 4                           | +++     | +++       | +++            | +++           | +++  | +++     |
| Arf6        | ADP-ribosylation factor 6                           | +++     | +++       | +++            | +++           | +++  | +++     |
| Arfgef1     | ADP-ribosylation factor guanine nucleotide factor 1 | +++     | +++       | +++            | +++           | +++  | +++     |
| Arhgap5     | Rho GTPase activating protein 5                     | ++      | ++        | ++             | ++            | ++   | ++      |
| Arl13b      | ADP-ribosylation factor-like protein 13B            | ++      | ++        | ++             | ++            | ++   | ++      |
| Arpc3       | Actin-related protein 2/3 complex subunit 3         | ++      | ++        | ++             | ++            | ++   | ++      |
| Azi1        | 5-azacytidine-induced protein 1                     |         |           |                |               |      |         |
| B230208H17  | Putative GTP-binding protein Parf                   | ++      | ++        | ++             | ++            | ++   | ++      |
| Btf3        | Basic transcription factor 3                        | ++      | ++        | ++             | ++            | ++   | ++      |
| Calu        | Calumenin                                           | +++     | +++       | +++            | +++           | +++  | +++     |
| Ccdc47      | Coiled-coil domain-containing protein 47            | +++     | +++       | +++            | +++           | +++  | +++     |
| Cct4        | Chaperonin containing t-complex 1, subunit 4        | ++      | ++        | ++             | ++            | ++   | ++      |
| Cct5        | Chaperonin containing t-complex 1, subunit 5        | +++     | +++       | +++            | +++           | +++  | +++     |
| Cct6a       | Chaperonin containing t-complex 1, subunit 6a       | +++     | +++       | +++            | +++           | +++  | +++     |
| Cct8        | Chaperonin containing t-complex 1, subunit 8        | +++     | +++       | +++            | +++           | +++  | +++     |
| Chmp4b      | Charged multivesicular body protein 4b              | ++      | ++        | ++             | ++            | ++   | ++      |
| Cluap1      | Clusterin-associated protein 1                      | ++      | ++        | ++             | ++            | ++   | ++      |
| Cnn3        | Calponin 3                                          | ++      | ++        | ++             | ++            | ++   | ++      |
| Спр         | 2',3'-cyclic nucleotide 3' phosphodiesterase        | •       |           | •              |               | •    | •       |
| Cog4        | Conserved oligomeric Golgi complex subunit 4        | +       | +         | +              | +             | +    | +       |

| Copb2      | Coatomer subunit beta                                | +++ | +++ | +++ | +++ | +++ | +++ |
|------------|------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Cse1l      | Exportin 2                                           | +++ | +++ | +++ | +++ | +++ | +++ |
| Cul2       | Cullin 2                                             | +   | +   | +   | +   | +   | +   |
| D630037F22 | Broad-minded                                         | +   | +   | +   | +   | +   | +   |
| Daam1      | Disheveled-associated activator of morphogenesis 1   | ++  | ++  | ++  | ++  | ++  | ++  |
| Dcdc2a     | Doublecortin domain-containing protein 2a            |     | •   | ·   |     | •   |     |
| Dctn2      | Dynactin 2                                           | ++  | ++  | ++  | ++  | ++  | ++  |
| Dhx30      | DEAH box polypeptide 30                              | +   | +   | +   | +   | +   | +   |
| Dnm1l      | Dynamin-1-like protein                               | ++  | ++  | ++  | ++  | ++  | ++  |
| Dnm2       | Dynamin 2                                            | ++  | ++  | ++  | ++  | ++  | ++  |
| Drg1       | Developmentally-regulated GTP-binding protein 1      | +++ | +++ | +++ | +++ | +++ | +++ |
| Drg2       | Developmentally-regulated GTP-binding protein 2      | +   | +   | +   | +   | +   | +   |
| Dync1h1    | Cytoplasmic dynein 1 heavy chain 1                   | ++  | ++  | ++  | ++  | ++  | ++  |
| Dync1li1   | Cytoplasmic dynein 1 light intermediate chain 1      | ++  | ++  | ++  | ++  | ++  | ++  |
| Dync2h1    | Cytoplasmic dynein 2 heavy chain 1                   | +   | +   | +   | +   | +   | +   |
| Dync2li1   | Cytoplasmic dynein 2 light intermediate chain 1      | +   | +   | +   | +   | +   | +   |
| Edc4       | Enhancer of mRNA-decapping protein 4                 |     |     |     | •   | •   |     |
| Eef1d      | Eukaryotic translation elongation factor 1 delta     | ++  | ++  | ++  | ++  | ++  | ++  |
| Efcab7     | EF-hand calcium-binding domain-containing protein 7  | ++  | ++  | ++  | ++  | ++  | ++  |
| Eif2s2     | Eukaryotic translation initiation factor 2 subunit 2 | ++  | ++  | ++  | ++  | ++  | ++  |
| Eif3b      | Eif3b protein                                        | +++ | +++ | +++ | +++ | +++ | +++ |
| Eif3l      | Eukaryotic translation initiation factor 3 subunit L | +++ | +++ | +++ | +++ | +++ | +++ |
| Eif4g1     | Eukaryotic translation initiation factor 4, gamma 1  | ++  | ++  | ++  | ++  | ++  | ++  |
| Eif4h      | Eukaryotic translation initiation factor 4H          | +++ | +++ | +++ | +++ | +++ | +++ |
| Eif5b      | Eukaryotic translation initiation factor 5B          | +++ | +++ | +++ | +++ | +++ | +++ |
| Epb4.1l2   | Erythrocyte protein band 4.1-like 2                  | +++ | +++ | +++ | +++ | +++ | +++ |
| Eps15l1    | Epidermal growth factor receptor substrate 15-like 1 | +   | +   | +   | +   | +   | +   |
| Etfb       | Electron transfer flavoprotein subunit beta          | +++ | +++ | +++ | +++ | +++ | +++ |
| Fam114a2   | Family with sequence similarity 114, member A2       | ++  | ++  | ++  | ++  | ++  | ++  |
| Fam49b     | Family with sequence similarity 49, member B         | ++  | ++  | ++  | ++  | ++  | ++  |
| Flii       | Flightless 1 homolog                                 | +   | +   | +   | +   | +   | +   |
| G3bp1      | Ras GTPase-activating protein-binding protein 1      | ++  | ++  | ++  | ++  | ++  | ++  |
|            |                                                      |     |     |     |     |     |     |

| Gart   | Phosphoribosylglycinamide formyltransferase    | ++  | ++  | ++  | ++  | ++  | ++  |
|--------|------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Gbf1   | Golgi-specific brefeldin A-resistance factor 1 | ++  | ++  | ++  | ++  | ++  | ++  |
| Gtl3   | Gene trap locus 3                              | ++  | ++  | ++  | ++  | ++  | ++  |
| Hars   | Putative uncharacterized protein               | ++  | ++  | ++  | ++  | ++  | ++  |
| Hspa1a | Heat shock protein 1A                          | +++ | +++ | +++ | +++ | +++ | +++ |
| Hspa4  | Heat shock 70 kDa protein 4                    | +++ | +++ | +++ | +++ | +++ | +++ |
| Hspb1  | Heat shock protein beta-1                      |     | •   |     | ·   | •   |     |
| Hspb11 | Putative uncharacterized protein               | ++  | ++  | ++  | ++  | ++  | ++  |
| Hsph1  | Heat shock protein 105 kDa                     | +++ | +++ | +++ | +++ | +++ | +++ |
| lft122 | Intraflagellar transport protein 122 homolog   | •   | •   |     | •   | •   |     |
| lft140 | intraflagellar transport 140                   | +   | +   | +   | +   | +   | +   |
| lft172 | Intraflagellar transport protein 172 homolog   | +   | +   | +   | +   | +   | +   |
| lft20  | Intraflagellar transport protein 20 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft52  | Intraflagellar transport protein 52 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft57  | Intraflagellar transport protein 57 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft74  | Intraflagellar transport protein 74 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft80  | Intraflagellar transport protein 80 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft81  | Intraflagellar transport protein 81 homolog    | ++  | ++  | ++  | ++  | ++  | ++  |
| lft88  | Putative uncharacterized protein               | ++  | ++  | ++  | ++  | ++  | ++  |
| Inpp5e | Inositol polyphosphate-5-phosphatase E         | •   | •   |     | •   |     | •   |
| Invs   | Inversin                                       | +   | +   | +   | +   | +   | +   |
| Ipo5   | Importin 5                                     | ++  | ++  | ++  | ++  | ++  | ++  |
| lpo7   | Importin 7                                     | ++  | ++  | ++  | ++  | ++  | ++  |
| Kif3a  | Kinesin family member 3A                       | ++  | ++  | ++  | ++  | ++  | ++  |
| Kif3b  | Kinesin family member 3B                       | +   | +   | +   | +   | +   | +   |
| Kifap3 | Kinesin-associated protein 3                   | +   | +   | +   | +   | +   | +   |
| Lamb1  | Laminin B1                                     | ++  | ++  | ++  | ++  | ++  | ++  |
| Lca5   | Leber congenital amaurosis 5                   | +   | +   | +   | +   | +   | +   |
| Lrrc40 | Leucine-rich repeat-containing protein 40      | ++  | ++  | ++  | ++  | ++  | ++  |
| Lrrc59 | Leucine-rich repeat-containing protein 59      | +   | +   | +   | +   | +   | +   |
| Macf1  | Microtubule-actin cross-linking factor 1       | ++  | ++  | ++  | ++  | ++  | ++  |
| Mcm4   | DNA replication licensing factor MCM4          | ++  | ++  | ++  | ++  | ++  | ++  |
|        |                                                |     |     |     |     |     |     |

| Mtap1s | Microtubule-associated protein 1S                      | +   | +   | +   | +   | +   | +   |
|--------|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|
| Ncl    | Nucleolin                                              | +++ | +++ | +++ | +++ | +++ | +++ |
| Nek8   | Serine/threonine-protein kinase Nek8                   |     |     |     |     |     |     |
| Nme7   | Nucleoside diphosphate kinase 7                        | ++  | ++  | ++  | ++  | ++  | ++  |
| Nphp3  | Nephronophthisis 3                                     |     |     |     |     |     |     |
| Nrd1   | Nardilysin                                             | +++ | +++ | +++ | +++ | +++ | +++ |
| Nudcd1 | NudC domain-containing protein 1                       | ++  | ++  | ++  | ++  | ++  | ++  |
| Ogdh   | Oxoglutarate dehydrogenase                             | ++  | ++  | ++  | ++  | ++  | ++  |
| Osbpl3 | Oxysterol binding protein-like 3                       |     |     |     | •   |     |     |
| Pa2g4  | Proliferation-associated protein 2G4                   | +++ | +++ | +++ | +++ | +++ | +++ |
| Pak2   | Serine/threonine-protein kinase PAK 2                  | ++  | ++  | ++  | ++  | ++  | ++  |
| Pdia3  | Protein disulfide-isomerase A3                         | +++ | +++ | +++ | +++ | +++ | +++ |
| Pin1   | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | •   |     |     |     |     |     |
| Ррр2са | Protein phosphatase 2, catalytic subunit alpha         | +++ | +++ | +++ | +++ | +++ | +++ |
| Prmt5  | Protein arginine N-methyltransferase 5                 | ++  | ++  | ++  | ++  | ++  | ++  |
| Prom1  | Prominin 1                                             |     | •   |     |     |     |     |
| Psmb5  | Proteasome subunit beta type-5                         | +++ | +++ | +++ | +++ | +++ | +++ |
| Psmc1  | 26S protease regulatory subunit 4                      | +++ | +++ | +++ | +++ | +++ | +++ |
| Psmd5  | 26S proteasome non-ATPase regulatory subunit 5         | ++  | ++  | ++  | ++  | ++  | ++  |
| Ptges3 | Prostaglandin E synthase 3                             | +++ | +++ | +++ | +++ | +++ | +++ |
| Rab10  | Ras-related protein Rab10                              | +++ | +++ | +++ | +++ | +++ | +++ |
| Rab23  | Ras-related protein Rab23                              | ++  | ++  | ++  | ++  | ++  | ++  |
| Rab8a  | Ras-related protein Rab-8A                             | ++  | ++  | ++  | ++  | ++  | ++  |
| Rabl5  | Rab-like protein 5                                     | +   | +   | +   | +   | +   | +   |
| Ran    | RAN, member RAS oncogene family                        | +++ | +++ | +++ | +++ | +++ | +++ |
| Ranbp1 | Ran-specific GTPase-activating protein                 | +++ | +++ | +++ | +++ | +++ | +++ |
| Rpl4   | 60S ribosomal protein L4                               | +++ | +++ | +++ | +++ | +++ | +++ |
| Rps14  | 40S ribosomal protein S14                              | +++ | +++ | +++ | +++ | +++ | +++ |
| Rpsa   | 40S ribosomal protein SA                               | +   | +   | +   | +   | +   | +   |
| Ruvbl2 | RuvB-like 2                                            | ++  | ++  | ++  | ++  | ++  | ++  |
| Sars   | Seryl-aminoacyl-tRNA synthetase                        | ++  | ++  | ++  | ++  | ++  | ++  |
| Sec24b | Sec24 related gene family, member B                    | ++  | ++  | ++  | ++  | ++  | ++  |

| Sept2                                                                    | Septin 2                                      | +++ | +++ | +++ | +++ | +++ | +++ |  |
|--------------------------------------------------------------------------|-----------------------------------------------|-----|-----|-----|-----|-----|-----|--|
| Sept7                                                                    | Septin 7                                      | +++ | +++ | +++ | +++ | +++ | +++ |  |
| Serbp1                                                                   | Serpine1 mRNA binding protein 1               | +++ | +++ | +++ | +++ | +++ | +++ |  |
| Stk10                                                                    | Serine/threonine-protein kinase 10            | •   | •   | •   | ·   | ·   | •   |  |
| Surf4                                                                    | Surfeit locus protein 4                       | ++  | ++  | ++  | ++  | ++  | ++  |  |
| Syncrip                                                                  | Synaptotagmin binding RNA interacting protein | +++ | +++ | +++ | +++ | +++ | +++ |  |
| Tpd52                                                                    | Tumor protein D52                             |     | •   |     | ·   |     | •   |  |
| Traf3ip1                                                                 | TRAF3-interacting protein 1                   | +   | +   | +   | +   | +   | +   |  |
| Ttc21b                                                                   | Tetratricopeptide repeat domain 21B           | +   | +   | +   | +   | +   | +   |  |
| Ttc26                                                                    | Tetratricopeptide repeat protein 26           |     | ·   |     | •   |     | •   |  |
| Tubb2b                                                                   | Tubulin beta-2B chain                         | +   | +   | +   | +   | +   | +   |  |
| Tubb5                                                                    | Tubulin beta-5 chain                          | +++ | +++ | +++ | +++ | +++ | +++ |  |
| Ube4b                                                                    | Ubiquitin conjugation factor E4 B             | ++  | ++  | ++  | ++  | ++  | ++  |  |
| Usp14                                                                    | Ubiquitin carboxyl-terminal hydrolase 14      | +++ | +++ | +++ | +++ | +++ | +++ |  |
| Wdr11                                                                    | WD repeat domain 11                           | ++  | ++  | ++  | ++  | ++  | ++  |  |
| Wdr19                                                                    | WD repeat domain 19                           | +   | +   | +   | +   | +   | +   |  |
| Wdr34                                                                    | WD repeat domain 34                           | +   | +   | +   | +   | +   | +   |  |
| Wdr35                                                                    | WD repeat domain 35                           | +   | +   | +   | +   | +   | +   |  |
| Wdr60                                                                    | WD repeat-containing protein 60               | +   | +   | +   | +   | +   | +   |  |
| Хро7                                                                     | Exportin 7                                    | ++  | ++  | ++  | ++  | ++  | ++  |  |
| 1500003003                                                               | Uncharacterized protein                       | +   | +   | +   | +   | +   | +   |  |
| 1500003003 Uncharacterized protein + + + + + + + + + + + + + + + + + + + |                                               |     |     |     |     |     |     |  |
|                                                                          |                                               |     |     |     |     |     |     |  |

Table 2. Primary cilia markers expressed at higher level in the germ cells comparing to the gonadal somatic cells (fold change  $\geq 1.5$ ) between E11.0 and E13.8 [symbols: vestigial level of expression (1-6); + high level of expression (7-8); ++ strong expression (9-10); +++ very strong expression (11-12)].

| Gene symbol | Gene name                                         | Support | ing cells | Interstitial/s | stromal cells | Gern | n cells |
|-------------|---------------------------------------------------|---------|-----------|----------------|---------------|------|---------|
|             |                                                   | XX      | XY        | XX             | XY            | XX   | XY      |
| Asna1       | Arsenical pump-driving ATPase                     | +       | +         | +              | +             | ++   | ++      |
| Diap1       | Protein diaphanous homolog 1                      | +       | +         | +              | +             | ++   | ++      |
| Ide         | Insulin-degrading enzyme                          | +       | +         | +              | +             | +++  | +++     |
| Ppp2r1b     | Protein phosphatase 2, regulatory subunit A, beta | ++      | ++        | ++             | ++            | +++  | +++     |
| Prdx4       | Peroxiredoxin 4                                   | ++      | ++        | ++             | ++            | +++  | +++     |
| Rpl12       | 60S ribosomal protein L12                         | •       |           | •              | •             | +    | +       |
| Rplp2       | 60S acidic ribosomal protein P2                   | ++      | ++        | ++             | ++            | +++  | +++     |
| Rps12       | Ribosomal protein S12                             | +       | +         | +              | +             | +++  | +++     |
| Slc2a1      | Solute carrier family 2, member 1                 | +       | +         | +              | +             | ++   | +++     |
| Tsga14      | Testis specific gene A14                          | ·       | •         | •              | •             | ++   | ++      |
| Tuba4a      | Tubulin alpha-4A chain                            |         |           |                |               | ++   | ++      |
| Хро5        | Exportin 5                                        | ++      | ++        | ++             | ++            | +++  | +++     |

Table 3. Primary cilia markers expressed at lower level in the germ cells comparing to the gonadal somatic cells (fold change  $\geq 1.5$ ) between E11.0 and E13.8 [symbols: vestigial level of expression (1-6); + high level of expression (7-8); ++ strong expression (9-10); +++ very strong expression (11-12)].

| Gene symbol | Gene name                                             | Supporting cells |     | Interstitial/stromal cells |     | Germ cells |    |
|-------------|-------------------------------------------------------|------------------|-----|----------------------------|-----|------------|----|
| _           |                                                       | XX               | XY  | XX                         | XY  | XX         | XY |
| Arl3        | ADP-ribosylation factor-like protein 3                | ++               | ++  | ++                         | ++  | +          | +  |
| Camk2d      | Calcium/calmodulin-dependent protein kinase II, delta | ++               | ++  | ++                         | ++  | •          | •  |
| Capn2       | Calpain-2 catalytic subunit                           | ++               | ++  | ++                         | ++  | •          |    |
| Erbb2ip     | Erbb2 interacting protein                             | +++              | +++ | +++                        | +++ | ++         | ++ |
| Gnas        | GNAS (guanine nucleotide binding protein)             | ++               | ++  | ++                         | ++  | +          | +  |
| ldh1        | Isocitrate dehydrogenase 1                            | +++              | +++ | +++                        | +++ | ++         | ++ |
| Prdx3       | Peroxiredoxin 3                                       | ++               | ++  | ++                         | ++  | +          | +  |
| Ptpn13      | Protein tyrosine phosphatase, non-receptor type 13    | ++               | ++  | ++                         | ++  | +          | +  |
| Sec23a      | Protein transport protein Sec23A                      | ++               | ++  | ++                         | ++  | +          | +  |
| Sept9       | Septin 9                                              | ++               | ++  | ++                         | ++  | +          | +  |
| Tpi1        | Triosephosphate isomerase                             | ++               | ++  | ++                         | ++  | +          | +  |
| Ttc30b      | Tetratricopeptide repeat protein 30B                  | ++               | ++  | ++                         | ++  | +          | +  |
| Tubb2a      | Tubulin beta-2A chain                                 | +++              | +++ | +++                        | +++ | +          | +  |

Table 4. Primary cilia markers showing significant differences in the expression level (fold change  $\geq 1.5$ ) between different type or sex of somatic cells between E11.0 and E13.8 [symbols: vestigial level of expression (1-6); + high level of expression (7-8); ++ strong expression (9-10); +++ very strong expression (11-12)].

| Gene symbol | Gene name                        | Supporting cells |    | Interstitial/stromal cells |    | Germ cells |    |
|-------------|----------------------------------|------------------|----|----------------------------|----|------------|----|
|             |                                  | XX               | XY | XX                         | XY | XX         | XY |
| Rangap1     | Ran GTPase-activating protein 1  | +                | ++ | +                          | +  | +          | +  |
| Sec23b      | Protein transport protein Sec23B | +                | ++ | +                          | +  | +          | +  |
| Sntb2       | Syntrophin, basic 2              | +                | ++ | +                          | +  | +          | +  |
| Tmem2       | Transmembrane protein 2          | +                | ++ | +                          | +  | +          | +  |
| Tubb3       | Tubulin beta-3 chain             | •                | ++ |                            | •  | •          |    |
| Tubb6       | Tubulin beta-6 chain             | •                | •  | ++                         | ++ | •          |    |