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Abstract. We study the stability analysis of the time-implicit central differencing scheme for the linear
damped wave equation with boundary. In [23], Xin and Xu prove that the initial-boundary value problem
(IBVP) for this model is well-posed, uniformly with respect to the stiffness of the damping, under the
so-called stiff Kreiss condition (SKC) on the boundary condition. We show here that the (SKC) is also
a sufficient condition to guarantee the uniform stability of the discrete IBVP for the relaxation system
independently of the stiffness of the source term, of the space step and of the time step. The boundary is
approximated using discrete transparent boundary conditions and the stiff stability is proved using energy
estimates and the Z− transform.
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1. Introduction

1.1. Context and motivation. Hyperbolic systems of partial differential equations with relaxation
terms [2] are important in many physical situations, such as kinetics theories [6], gases not in thermody-
namic equilibrium [21], phase transitions with small transition time [17], water waves [20, 22], reactive
flows [8], river flows traffics flows and more general waves [22]. The study of the zero relaxation limit
for such systems has caught much interest, both from a theoretical and numerical point of view, after the
works of Liu [18], Chen, Levermore and Liu [7], Hanouzet and Natalini [13], Yong [24, 26]. The major
issue in the theory of the relaxation approximations to equilibrium system of conservation laws is the
appearance of stiff boundary layers in the presence of physical or numerical boundary conditions due to
the additional characteristic speeds introduced in the relaxation systems. In this article, we are concerned
the development of grid algorithms for solving initial boundary value problem, which involves the question
of formulating boundary conditions to get a stable scheme. Due to the presence of boundary layers and to
the possible interaction of the boundary and initial layers, numerical schemes have to be properly designed
so as to provide accurate approximations and consistent behaviors. One of the simplest linear hyperbolic
systems with relaxation is linear damped wave equation in one space dimension

(1.1)

{
∂tu

ε(x, t) + ∂xv
ε(x, t) = 0,

∂tv
ε(x, t) + a∂xu

ε(x, t) = −ε−1vε(x, t),

where a > 0 and the relaxation time ε > 0 may be introduced to characterize the stiffness of the relaxation.
When ε goes to zero, the model may be simplified. We expect indeed that for any position x and time t,
the solution (uε, vε)(x, t) tends to some (u(x), 0), which is the solution of the corresponding equilibrium
system [7, 23].

In order to determine a unique solution to the problem (1.1) in the quarter plane x > 0, t > 0, the
values of the solution at initial time are prescribed

uε(x, 0) = u0(x), vε(x, 0) = v0(x).(1.2)

In some cases, the suitable boundary condition comes from physical considerations. At a solid wall that
bounds the flow of a fluid, for example, one sets the normal component of the fluid velocity equal to zero
(if the effects of viscosity are considered, the tangential component must also vanish). In other situations,
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the choice of boundary conditions is not so obvious. This is the case when considering artificial boundaries,
which do not correspond to a well-identifies physical phenomenon. In general, not any boundary condition
is suitable for a given hyperbolic problem. In the case of the problem (1.1), which is a particular case of
the Jin-Xin relaxation model in one space dimension [14], the solution at the boundary is imposed

Buu
ε(0, t) +Bvv

ε(0, t) = b(t),(1.3)

where Bu and Bv are constants. For simplicity, we also assume the initial data f(x) =
(
u0, v0

)
(x) and

the boundary data b(t) to be compatible at the space-time corner x = 0, t = 0, i.e.

f(0) = f ′(0) = 0, b(0) = b′(0) = 0.

It is easy to see that the hyperbolic structure is related to the Riemann invariants
√
auε± vε and to the

characteristic velocities ±
√
a. Therefore, the boundary condition (1.3) has to satisfy the Uniform Kreiss

Condition (UKC)

Bu +
√
aBv 6= 0.(1.4)

Only under this assumption, the incoming flow
√
au+ v at the boundary x = 0 can be deduced from the

outgoing flow
√
auε − vε and the data b(t). Therefore, the initial boundary value problem (IBVP) (1.1)-

(1.3) is well-posed for each fixed ε (see [2, 23, 24]).
In [23], Xin and Xu study the asymptotic equivalence of a general linear system of one-dimensional

conservation laws and the corresponding relaxation model proposed by Jin and Xin [14] in the limit of
a small relaxation rate ε. The main issue is to extend and precise this asymptotic equivalence in the
presence of physical boundaries. Within the same problematic, Yong in [24] proposed a Generalized
Kreiss Condition (GKC) for general multi-dimensional linear constant coefficient relaxation systems, or
one-dimensional nonlinear systems, with non-characteristic boundaries. This condition enables uniform
stability estimates and a reduced boundary condition for the corresponding equilibrium system. For
the special Jin-Xin system (1.1) with boundary condition (1.3) but with stiff source terms of the form
ε−1(λuε−vε) for some λ ∈ R, Xin and Xu identify and rigorously justify a necessary and sufficient condition
(which they call the Stiff Kreiss Condition, or SKC in short) on the boundary condition to guarantee the
uniform well-posedness of the IBVP, independently of the relaxation parameter. In addition to the work
in [26], their study also covers the characteristic case and provides optimal asymptotic expansions for the
limit process, handling with boundary and/or initial layers. In the case of our system (1.1), the parameter
λ = 0 so that the boundary is characteristic for limit equation, and the SKC simply reduces to

Bv = 0, or
Bu
Bv

/∈
[
−
√
a, 0
]
.

It is classical to notice that, by linearity, the IBVP (1.1)-(1.3) can be broken up into two simpler
problems, one with homogeneous initial condition

(1.5)


∂tU(x, t) +A∂xU(x, t) = ε−1SU(x, t), x > 0, t > 0,

U(x, 0) = 0, x > 0,

BU(0, t) = b(t), t > 0,

and the other with homogeneous boundary condition

(1.6)


∂tU(x, t) +A∂xU(x, t) = ε−1SU(x, t), x > 0, t > 0,

U(x, 0) = f(x), x > 0,

BU(0, t) = 0, t > 0,

where

U(x, t) =

(
u(x, t)
v(x, t)

)
, A =

(
0 1
a 0

)
, S =

(
0 0
0 −1

)
, B =

(
Bu Bv

)
.

The main difficult part of the proof of stability under the SKC appears with the study of (1.6). This is
due to the complex interactions between the initial data, the boundary condition and the stiff relaxation
term. By means of the energy method, Xin and Xu [23] show that the time evolution of the energy
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‖U(t)‖L2(R+,R2) decreases if the boundary condition (1.3) satisfies BuBv > 0, which is only the subclass
of the SKC, so that this analysis is not satisfactory. Actually, under the SKC, they also find explicitly the
solution U(x, t) of the IBVP (1.6) by using the Laplace transform. The solution is decomposed into two
parts, by assembling the solution for the case of the Cauchy problem without boundary and another one
for the case of the IBVP but with homogeneous initial condition [23, Section 5]. It means that the issue
of stiff well-posedness of the IBVP (1.1)-(1.3) is solved if we can prove the Cauchy problem and the IBVP
with homogeneous initial condition, that is to say (1.5), themselves are stiffly well-posed.

The motivation of the present study is to analyze the counterpart of the above results for the fully
discrete difference approximation of the IBVP (1.1)-(1.3). Because of the propagation of waves of the
problem (1.1) with the characteristic velocities ±

√
a, one of the waves at the boundary x = 0 is coming

into the computation domain while the other one is going out of it. Thus, the way of formulating boundary
conditions for the relaxation systems so as to guarantee the uniform stability and to minimize the artificial
boundary layer is a crucial issue to the success of the schemes. In [5], the boundary is approximated
using a summation-by-parts method. Using energy estimates and Laplace transforms, the semi-discrete
approximation of the IBVP (1.1)-(1.3) is proved to be stiffly stable if the boundary condition (1.3) satisfies
BuBv > 0, which is only the subclass of the SKC. In this article, we consider the discrete transparent
boundary technique to construct a stiffly stable boundary condition. The technique and its analysis has
been proposed by Arnold and Ehrhardt in [1]. Besse, Noble and co-authors apply the tools to dispersive
problems [3, 4, 16]. We also refer the reader to [11] for non-reflecting methods in the context of wave prob-
lems. The recent work of Coulombel [9] proposes a systematic study of transparent boundary conditions
for evolution problems. Our aim here is to prove that the SKC derived in [23] is a sufficient condition for
the stiff stability of the proposed fully discrete of the IBVP (1.1)-(1.3).

1.2. Description of the numerical scheme. Let ∆t > 0 being the time step. The space step ∆x > 0
will always be chosen so that the parameter λxt = ∆x∆t−1 is kept fixed. Letting now Unj = (unj , v

n
j )T

denotes the approximation of the exact solution to (1.1)-(1.3) at the grid point (xj , t
n) = (j∆x, n∆t), for

any (j, n) ∈ N × N (where we omit the explicit dependence on ε). We focus in this paper on the fully
discrete approximation of the IBVP (1.1)-(1.3) obtained by the central differencing scheme in space and
the implicit scheme in time.

A first step towards the fully discrete approximation of the IBVP (1.1)-(1.3) is the following system

(1.7)


Un+1
j − Unj

∆t
+

1

2∆x

(
Un+1
j+1 − U

n+1
j−1

)
=

1

ε
SUn+1

j , j ≥ 1, n ≥ 0,

U0
j = fj , j ≥ 0,

BUn0 = bn, n ≥ 0,

where the approximations of the initial condition fj and of the boundary data bn are defined for example
by setting fj = f(j∆x) for j ≥ 0 and bn = b(n∆t) for n ≥ 0.

Let us emphasize that the numerical scheme (1.7) still needs one more scalar equation at the boundary
point j = 0 so as to be fully defined, due to the fact that the matrix B has rank one only. This is actually
a discrete feature only, since in the continuous case this single equation is exactly complemented by the
only incoming characteristic (at least under UKC). An additional relation to define Un+1

0 is thus needed.
We want to use the central scheme at the boundary point j = 0, so that the modification of the ghost
value Un+1

−1 can also be interpreted as the use of an extra boundary condition. From a mathematical point
of view, the problem is set, in both cases, as follows: given an initial data compactly supported, one can
construct boundary condition at j = 0 with the objective to approximate the exact solution of the whole
space problem {j ∈ Z}, restricted to {j ∈ N}. If the approximate solution on {j ∈ N} coincides with the
exact solution, one refers to these boundary conditions as transparent boundary conditions. Of course,
these boundary condition should lead to a well-posed initial boundary value problem. It means that we
use the discrete transparent boundary condition at j = 0 that determines a ghost value Un+1

−1 through the
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identity

Un+1
−1 =

n+1∑
k=0

Cn+1−kU
k
0 ,

where the coefficients Ck will be precised explicitly in the forthcoming Definition 2.4. The extra boundary
condition determines Un+1

−1 as a linear function of Uk0 for past step times only: 0 ≤ k ≤ n+ 1. We propose
the following numerical approximation at the boundary:

1

∆t
Γ
(
Un+1

0 − Un0
)

+
1

2∆x
ΓA

(
Un+1

1 −
n+1∑
k=0

Cn+1−kU
k
0

)
=

1

ε
ΓSUn+1

0

with the matrix Γ = (−aBv Bu). Under the SKC, this choice for the matrix Γ will be useful to construct
the numerical solution (Unj )j∈N in the Propositions 2.3 and 3.1.

To summarize, we study all along the paper the following fully discrete approximation of the IBVP (1.1)-
(1.3):

(1.8)



Un+1
j − Unj

∆t
+

1

2∆x
A
(
Un+1
j+1 − U

n+1
j−1

)
=

1

ε
SUn+1

j , j ≥ 1, n ≥ 0,

U0
j = fj , j ≥ 0,

BUn0 = bn, n ≥ 0,

1

∆t
Γ
(
Un+1

0 − Un0
)

+
1

2∆x
ΓA

(
Un+1

1 −
n+1∑
k=0

Cn+1−kU
k
0

)
=

1

ε
ΓSUn+1

0 , n ≥ 0.

1.3. Main result. Dealing with the continuous IBVP (1.1)-(1.3), the UKC (1.4) is not enough and a
more stringent restriction has to be imposed. Our aim is to prove that the SKC derived in [23] is then
a sufficient condition for the stiff stability of the fully discrete IBVP (1.8), in other words the uniform
stability with respect to the stiffness of the relaxation term.

Theorem 1.1 (Main result). Assume that (Bu, Bv) ∈ R2 satisfies the SKC

Bv = 0 or
Bu
Bv

/∈
[
−
√
a, 0
]
.(1.9)

Let λxt ≤ 3
√
a/8 be a positive number. For any T > 0, there exists a constant CT > 0 such that for all

∆t > 0 and ∆x = λxt∆t, any (fj)j∈N ∈ `2(N,R2) and (bn)n∈N ∈ `2(N,R), the solution (Unj )j∈N to the
scheme (1.8) satisfies

N∑
n=0

∑
j≥0

∆x∆t|Unj |2 +
N∑
n=0

∆t|Un0 |2 ≤ CT

∑
j≥0

∆x|fj |2 +
N∑
n=0

∆t|bn|2
 ,(1.10)

where N := T/∆t and CT is independent of ε ∈ (0,+∞).

In [23], Xin and Xu considered the IBVP for the Jin-Xin relaxation model [14] and derived the SKC (1.9)
to characterize its stiff well-posedness. They show in particular that the IBVP (1.1)-(1.3) is well-posed if
and only if (1.9) holds. In the discrete IBVP (1.8), it seems that the SKC is also sufficient to derive uniform
stability estimates. Besides, by linearity, the numerical scheme of the IBVP (1.8) can be broken up into two
simpler problems, one with homogeneous initial condition (fj)j∈N ≡ 0 and the other with homogeneous
boundary bn ≡ 0, for any n ∈ N. The proof of Theorem 1.1 is based on two main ingredients, by assembling
a result for the case of the following Cauchy problem

(1.11)


(
U Ij

)n+1
−
(
U Ij

)n
∆t

+
1

2∆x
A

((
U Ij+1

)n+1 −
(
U Ij−1

)n+1
)

=
1

ε
S
(
U Ij
)n+1

, j ∈ Z, n ≥ 0,(
U Ij
)0

= fj , j ∈ Z.
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and another one for the problem (1.8) with homogeneous initial data. We state hereafter these two
statements.

Proposition 1.2 (Cauchy problem). For any T > 0, there exists CT > 0 such that for all ∆t > 0, any
(fj)j∈N ∈ `2(N,R2), the solution (U Ij )nj∈Z to (1.11) satisfies∑

j∈Z
∆x|(U Ij )n|2 ≤ CT

∑
j∈Z

∆x|fj |2, n ∈ N,(1.12)

where CT is independent of ε ∈ (0,+∞) and ∆x = λxt∆t.

Proposition 1.3 (Homogeneous initial condition). Assume that the SKC (1.9) is satisfied. Then, there
exists a constant C > 0 such that for any γ > 0 and any positive constant λxt ≤ 3

√
a/8, the following

property holds. For any ∆t > 0 together with ∆x = λxt∆t, and any boundary data (bn)n∈N ∈ `2(N,R), the
solution (Unj )j∈N to (1.8) with (fj)j∈N ≡ 0 satisfies

γ

γ∆t+ 1

∑
n≥0

∑
j≥0

e−2γn∆t∆t∆x|Unj |2 +
∑
n≥0

e−2γn∆t∆t|Un0 |2 ≤ C
∑
n≥0

e−2γn∆t∆t|bn|2,(1.13)

where C is independent of ε ∈ (0,+∞).

To isolate the effects of a possible boundary layer and avoid the complicated interaction of boundary
and initial layers, in Section 2, we consider the IBVP (1.8) with homogeneous initial data and nonzero
boundary data bn, for any n ≥ 0. The numerical solution (Unj )j∈N is constructed in Section 2.2 thanks to
the Z−transform [15, 19]. Furthermore, we follow the discrete transparent boundary condition at j = 0
as proposed in [1, 4, 16] to find the explicit formula of the sequence (Cm)m≥0. By using the Plancherel’s
theorem, under the SKC, the Proposition 1.3 is proved in Section 2.3. In order to illustrate the relevance
of the SKC (1.9), we present in Section 2.4 some numerical results, for various values of the parameters
(Bu, Bv) and show that the numerical solution at the boundary x = 0 increases quickly if the SKC (1.9)
does not hold. Besides, by the decrease of the error ‖U(., tn)−Un‖2`2(N,R2), we can observe the convergence
of the discrete solution Unj to the exact one U(xj , t

n). After that, we observe the behavior of the energy
terms ‖U‖`2(N×[0,T ),R2) and ‖U‖`2({0}×[0,T ),R2) corresponding to whether or not the SKC (1.9) is valid. The
nonzero initial data case is much more difficult with the sufficiency proof. This is due to the complicated
interactions between the initial data, the boundary condition and the stiff relaxation term. Under the SKC,
the numerical solution is again described by means of the Z−transform in Section 3.1. It is decomposed
into three parts, by assembling the solution for the case of Cauchy problem (1.11), a numerical error term
(U IIj )nj∈N and the solution for the case IBVP (1.8) with homogeneous initial data. Since the coefficients
for computing the boundary value Un+1

−1 are defined for homogeneous initial data, this numerical error
(U IIj )nj∈N is due to the interaction between the Cauchy problem and the IBVP with zero initial data. For
the Cauchy problem, the Proposition 1.2 is studied in Section 3.2 by means of the discrete energy method.
By an application of the Plancherel’s theorem for Z-transform, the numerical error term (U IIj )nj∈N will
be estimated in Section 3.3. In Section 3.4, we get the expected result of the Theorem 1.1 in the case
IBVP with nonzero initial condition. In Section 3.5, we also look at the behavior of the numerical solution
(Unj )j∈Z and the energy terms ‖U‖`2(N×[0,T ),R2) and ‖U‖`2({0}×[0,T ),R2) corresponding to whether or not
the SKC (1.9) is valid. It seems that the SKC (1.9) is also necessary condition to guarantee the uniform
stability of the IBVP (1.8) independent of the effect of the relaxation source term and the boundary
dissipation.

2. Stiff stability of the IBVP with homogeneous initial condition

In this section, we consider the discrete IBVP (1.8) with nonzero boundary condition (bn)n∈N ∈ `2(N,R)
and homogeneous Cauchy data (fj)j∈N ≡ 0. Assuming that the SKC is satisfied, the numerical solution
(Unj )j∈N is obtained by using the Z-transform [15, 19]. Thanks to the Plancherel’s theorem, we then are
able to get the expected result of the Proposition 1.3.
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2.1. Notations and preliminary results. Before we enter the important proofs, let us introduce some
notations and preliminary results. All along the paper, the complex values z and ξ are related through
the formula

ξ =
(
1− z−1

)
∆t−1, z = Reiθ, with R > 1, θ ∈ (−π, π].

Then, ξ obeys the inequalities (
1−R−1

)
∆t−1 ≤ Re ξ ≤ 2∆t−1.(2.1)

Besides, one also introduces the following matrix, already concerned with the continuous case [23]:

M(εξ) = A−1(S − εξI) =
1

a

(
0 −(1 + εξ)
−aεξ 0

)
,

We recall that the eigenvalues and eigenvectors of M(εξ) can be easily found to be respectively

µ±(εξ) = ±
√
εξ(1 + εξ)

a
, r±(εξ) =

 1
aµ∓(εξ)

1 + εξ

 .

In the above formula and all along the paper, the complex square root is defined with the branch cut along
the negative real axis. Applying Lemma A.1 with the property Re ξ > 0 and ε > 0, we can prove

Re (µ−(εξ)) ≤ −εRe ξ√
a

< 0,(2.2)

while, as a consequence,

Re (µ+(εξ)) ≥ εRe ξ√
a

> 0.

Let us introduce

κ±(εξ) = µ±(εξ)λxε +

√
(µ+(εξ)λxε)

2 + 1,(2.3)

with the notation λxε = ∆x/ε. According to Lemma A.2 together with the properties Re (µ−(εξ)) < 0 for
ε > 0 and Re ξ > 0, we can prove |κ−(εξ)| < 1. Besides, since µ−(εξ) = −µ+(εξ), we get κ+(εξ)κ−(εξ) = 1.
As a consequence, for any ε > 0 and Re ξ > 0, one has the separation property |κ+(εξ)| > 1.

We further define the following spectral projections

Φ+(εξ) =
1

2g(εξ)

(
1

−g(εξ)

)(
g(εξ) −1

)
,

Φ−(εξ) =
1

2g(εξ)

(
1

g(εξ)

)(
g(εξ) 1

)
,

(2.4)

where we set

g(εξ) =
aµ+(εξ)

1 + εξ
.(2.5)

We also set Φ(εξ) the 2 × 2 matrix whose columns are composed by the components of the eigenvectors
of the matrix M(εξ). We recall these matrices thus satisfy the following usefull identities

Φ+(εξ) = Φ(εξ)

(
0 0
0 1

)
Φ−1(εξ) and Φ−(εξ) = Φ(εξ)

(
1 0
0 0

)
Φ−1(εξ)(2.6)

and

Φ2
+(εξ) = Φ+(εξ), Φ2

−(εξ) = Φ−(εξ), Φ+(εξ)Φ−(εξ) = Φ−(εξ)Φ+(εξ) = 0.(2.7)

In order later on to construct and estimate the numerical solution (Unj )j∈N by the Z−transform, the
following lemmas are usefull:

Lemma 2.1. [From [23]] Consider C+ = {ζ ∈ C, Re ζ ≥ 0} the closed complex right half-plane. Under
the SKC (1.9), the quantity g(ζ) is uniformly bounded in C+ and the quantity Bu + g(ζ)Bv is uniformly
bounded away from 0 in C+.
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We omit the proof that the reader can find in the work by Xin and Xu [23].

Lemma 2.2. Let us consider the 4× 4 matrix

M1(εξ) =

(
2λxεM(εξ) I

I 0

)
.(2.8)

Then, the k-th power of M1(εξ) reads also

Mk
1 (εξ) = − 1

κ+(εξ) + κ−(εξ)

(
κ̂k+1(εξ)Ψ̂k(εξ) κ̂k(εξ)Ψ̂k+1(εξ)

κ̂k(εξ)Ψ̂k+1(εξ) κ̂k−1(εξ)Ψ̂k(εξ)

)
,(2.9)

where

κ̂k(εξ) = (−1)kκk+(εξ)− κk−(εξ),

Ψ̂k(εξ) = Φ−(εξ) + (−1)kΦ+(εξ).
(2.10)

Proof. In this algebraic proof, we skip the dependence on εξ. Since the columns of the matrix Φ are
composed by the components of the eigenvectors of the matrix M , the considered matrix Mk

1 can be
reformulated simply as

Mk
1 = Φ̂Mk

2 Φ̂−1,(2.11)

where

Φ̂ =

(
Φ 0
0 Φ

)
, M2 =

(
D1 I
I 0

)
, D1 = 2λxεdiag (µ−, µ+) .

Let Ψ is the 4×4 matrix whose columns are composed by the components of the eigenvectors of the matrix
M2

Ψ =


−κ+ κ− 0 0

0 0 −κ− κ+

1 1 0 0
0 0 1 1


so that Mk

2 = ΨDk
2Ψ−1 with D2 = diag (−κ+, κ−,−κ−, κ+). Therefore, the formula Mk

1 in (2.11) reads

Mk
1 = Φ̂ΨDk

2Ψ−1Φ̂−1.(2.12)

By using the properties Φ± in (2.6) and (2.12), one obtains

Mk
1 = − 1

κ+ + κ−

(
κ̂k+1Ψ̂k κ̂kΨ̂k+1

κ̂kΨ̂k+1 κ̂k−1Ψ̂k

)
with κ̂k and Ψ̂k are the same as in (2.10). �

2.2. Solution by Z−transform. Firstly, we apply the Z−transform with respect to time index n ∈ N,
which is discrete analogue of the Laplace transform in time t ∈ R+. This method enables the representation
and estimations of the numerical solution (Unj )j∈N. The definition reads as follows (see [15, 19] for more
details)

Ûj(z) = Z{Unj }(z) =
∑
n≥0

Unj z
−n, |z| > 1.

Since we assume (U0
j )j∈N ≡ 0, observe that the Z−transform of the time-shifted numerical solution reads∑

n≥0

Un+1
j z−n = zÛj(z)− zU0

j = zÛj(z).
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Therefore, the IBVP (1.8) with zero initial data becomes
Ûj+1(z)− Ûj−1(z) = 2λxεM(εξ)Ûj(z), j ≥ 1,(2.13a)

BÛ0(z) = b̂(z),(2.13b)

ΓA
(
Û1(z)− z−1Υ(Û0(z))− 2λxεM(εξ)Û0(z)

)
= 0,(2.13c)

where Υ(Û0(z)) is the Z−transform of the sequence
{∑n+1

k=0 Cn+1−kU
k
0

}
n≥0

and b̂ stands for the Z-

transform of the scalar boundary data: b̂(z) = Z{bn}(z) =
∑

n≥0 b
nz−n.

Secondly, we look at the solution (Ûj)j∈N(z) to (2.13a)-(2.13c). This is the object of the following
proposition:

Proposition 2.3. Assume that the SKC (1.9) is satisfied. Assume that Γ and Υ in the boundary condi-
tion (2.13c) are defined by

Γ =
(
−aBv Bu

)
, Υ(Û0(z)) = κ+(εξ)zÛ0(z).(2.14)

Then the solution (Ûj)j∈N(z) ∈ `2(N,C2) to (2.13a)-(2.13c) takes the form

Ûj(z) =
b̂(z)

Bu + g(εξ)Bv
κj−(εξ)r−(εξ).(2.15)

Proof. Before we prove the above result, let us notice that we omit the explicit dependence in εξ. Firstly,
we look at the solution (Ûj)j∈N(z) to (2.13a) and consider the two-dimensional problem (2.13a) under the
following one-step recurrence form

Wj+1(z) = M1Wj(z),(2.16)

where M1 is given by (2.8) and

Wj(z) =

(
Ûj(z)

Ûj−1(z)

)
.(2.17)

The solution (Wj)j∈N(z) to (2.16) is simply Wj(z) = M j
1W0(z). Together with the the explicit formula of

M j
1 in Lemma 2.2, the solution (Ûj)j∈N(z) to (2.13a) is therefore given by

Ûj(z) = − 1

κ+ + κ−
×
(
κ̂j+1Ψ̂jÛ0(z) + κ̂jΨ̂j+1Û−1(z)

)
.

By using the definition of κ̂k and Ψ̂k in (2.10), the above formula is now equivalent to

Ûj(z) =−
(−1)jκj+
κ+ + κ−

×
[
Φ−

(
− κ+Û0(z) + Û−1(z)

)
+ (−1)j+1Φ+

(
κ+Û0(z) + Û−1(z)

)]
+

κj−
κ+ + κ−

×
[
κ−

(
Φ− + (−1)jΦ+

)
Û0(z) +

(
Φ− + (−1)j+1Φ+

)
Û−1(z)

]
.

(2.18)

Since we expect (Ûj)j∈N(z) ∈ `2(N,C2), we need a natural boundary condition at x = +∞. Besides,
one gets |κ+| > 1 and |κ−| < 1. Thus, the natural boundary condition takes the form

(2.19)

Φ−

(
−κ+Û0(z) + Û−1(z)

)
= 0,

Φ+

(
κ+Û0(z) + Û−1(z)

)
= 0.

By the definition of Φ± in (2.4), the system (2.19) is equivalent to(g, 1)
(
−κ+Û0(z) + Û−1(z)

)
= 0,

(g,−1)
(
κ+Û0(z) + Û−1(z)

)
= 0.
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Then, we have

Û−1(z) =
κ+

g
×
(

0 1
g2 0

)
Û0(z).

Furthermore, we can see that

Φ− − Φ+ =
1

g

(
0 1
g2 0

)
.

Thus,

Û−1(z) = κ+(Φ− − Φ+)Û0(z).(2.20)

Plugging (2.20) into (2.18), we have

Ûj(z) =
κj−

κ+ + κ−

[
κ−

(
Φ− + (−1)jΦ+

)
+ κ+

(
Φ− + (−1)j+1Φ+

)(
Φ− − Φ+

)]
Û0(z).

Under the properties of Φ± in (2.7), the above formula becomes

Ûj(z) = κj−

(
Φ− + (−1)jΦ+

)
Û0(z).(2.21)

Secondly, we look at the boundary condition (2.13b) and (2.13c). Under the choice Υ(Û0(z)) in (2.14),
the boundary condition (2.13c) becomes

ΓA

(
Û1(z)− (κ+I + 2λxεM) Û0(z)

)
= 0.(2.22)

Indeed, we can compute separately
κ+I + 2λxεM = κ−Φ− + (κ+ + 2λxεµ+) Φ+,

Û1(z) = κ− (Φ− − Φ+) Û0(z).
(2.23)

Substituting (2.23) into (2.22), one obtains

ΓAΦ+Û0(z) = 0.(2.24)

Under the choice Γ in (2.14), we have

ΓAΦ+ =
a

2g
× (Bu + gBv)× (g,−1).

Thus,

(Bu + gBv)× (g,−1)Û0(z) = 0.(2.25)

From the Lemma 2.1, the equation (2.25) is equivalent under the SKC to

(g,−1)Û0(z) = 0.(2.26)

Together with the boundary condition (2.13b), the value of Û0(z) has to satisfy(
Bu Bv
g −1

)
Û0(z) = b̂(z)

(
1
0

)
.

Then, again under the SKC, we have

Û0(z) =
b̂(z)

Bu + g(εξ)Bv
r−(εξ).(2.27)

Plugging the value of Û0(z) in (2.27) into (2.21), the solution (Ûj)j∈N(z) to (2.13a)-(2.13c) is given by

Ûj(z) =
b̂(z)

Bu + gBv
κj−

(
Φ− + (−1)jΦ+

)
r−(εξ).
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Since Φ+r− = 0 and Φ−r− = r−, the solution (Ûj)j∈N(z) finally is

Ûj(z) =
b̂(z)

Bu + gBv
κj−r−.

This ends the proof of Proposition 2.3. �

With (Ûj)j∈N(z) found in (2.15), the numerical solution (Unj )j∈N to the IBVP (1.8) with nonzero
boundary condition (bn)n∈N ∈ `2(N,R) and homogeneous Cauchy data (fj)j∈N ≡ 0 can be obtained
by inverting the Z-transform [15, 19]

Unj =
1

2π

∫ π

−π
Ûj

(
Reiθ

)
Rneinθdθ, R > 1.

Let us remark that an important assumption of Proposition 2.3 is Υ(Û0(z)) = κ+(εξ)zÛ0(z). We now
follow the discrete transparent boundary as proposed in [1, 4, 16] to find the explicit formula for the
sequence (Cm)m≥0.

Definition 2.4. Let ε > 0, R > 1, θ ∈ (−π, π] and then κ+(εξ) be given by (2.3). The value of (Cm)m≥0

is defined as follows:

Cm =
1

π

∫ π

0
Re
(
κ+(εξ)Rmeimθ

)
dθ.(2.28)

Let us mention at this step that the values Cm above are designed in the case of homogeneous initial
data and are kept unchanged in the case of nonzero initial data in forthcoming Section 3. Thanks to the
convolution property and inverting Z−transform, we now show that the definition of (Cm)m≥0 in (2.28) is
the suitable choice to get the required identity Υ(Û0(z)) = κ+(εξ)zÛ0(z) in Proposition 2.3. This is the
object of the next lemma:

Lemma 2.5. Let (Cm)m≥0 be defined from Definition 2.4, then

Υ(Û0(z)) = Z

{
n+1∑
k=0

Cn+1−kU
k
0

}
(z) = κ+(εξ)zÛ0(z).

Proof. Since µ+(εξ) = µ+(εξ), one obtains κ+(εξ) = κ+(εξ). Then,

Re
(
κ+(εξ)Rmeimθ

)
=

1

2

(
κ+(εξ)Rmeimθ + κ+(εξ)Rme−imθ

)
=

1

2

(
κ+(εξ)Rmeimθ + κ+(εξ)Rme−imθ

)
.

Thus, the value of (Cm)m≥0 in (2.28) can be reformulated as

Cm =
1

2π

(∫ π

0
κ+(εξ)Rmeimθdθ +

∫ π

0
κ+(εξ)Rme−imθdθ

)
=

1

2π

∫ π

−π
κ+(εξ)Rmeimθdθ

= Z−1 (κ+(εξ)) (m).

By the convolution property and inverting Z−transform, we can conclude that

Υ(Û0(z)) = Z

{
n+1∑
k=0

Cn+1−kU
k
0

}
(z) = κ+(εξ)zÛ0(z),

This ends the proof of Lemma 2.5. �
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2.3. Stiff stability analysis. Under the SKC, we now consider the Proposition 1.3 with nonzero boundary
condition (bn)n∈N ∈ `2(N,R) and homogeneous Cauchy data (fj)j∈N ≡ 0. In order to get the uniform
estimate on (Unj )j∈N, firstly, we prove the following lemma:

Lemma 2.6. Assume that the parameters a,∆x,∆t > 0 satisfy

∆x ≤ 3
√
a

8
∆t.(2.29)

Let ε > 0, R > 1, θ ∈ (−π, π] and then κ−(εξ) be given by (2.3). Then the following property holds∑
j≥0

|κ−(εξ)|2j ≤ ∆t
√
a

∆x(1−R−1)
.(2.30)

Proof. Since the property of Re (µ−(εξ)) in (2.2), we can prove(
Re (µ−(εξ))λxε +

√
(Re (µ−(εξ))λxε)

2 + 1

)2

≤
(
η∆x+

√
η2∆x2 + 1

)2
,(2.31)

where η = −a−1/2Re ξ. According to Lemma A.2 and the inequality (2.31), we have

|κ−(εξ)|2 =

∣∣∣∣µ−(εξ)λxε +

√
(µ−(εξ)λxε)

2 + 1

∣∣∣∣2 ≤ (η∆x+
√
η2∆x2 + 1

)2
.

Then, we obtain the following estimate∑
j≥0

|κ−(εξ)|2j =
(
1− |κ−(εξ)|2

)−1 ≤
(

1−
(
η∆x+

√
η2∆x2 + 1

)2
)−1

.

Since Re ξ satisfies the property (2.1), we get
∆t
√
a

2
≤ −1

η
≤ ∆t

√
a

1−R−1
.

If we assume now ∆x ≤ 3
√
a

8
∆t ≤ − 3

4η
then we have(

1−
(
η∆x+

√
η2∆x2 + 1

)2
)−1

≤ −η−1∆x−1.

Thus, we conclude that ∑
j≥0

|κ−(εξ)|2j ≤ −η−1∆x−1 ≤ ∆t
√
a

∆x(1−R−1)
.

This ends the proof of Lemma 2.6. �

Secondly, by an application of the following Plancherel’s theorem for Z-transform∑
n≥0

R−2n|Unj |2 =
1

2π

∫ π

−π
|Ûj(Reiθ)|2dθ, R > 1,

we have ∑
n≥0

R−2n|Un0 |2 =
1

2π

∫ π

−π
|Û0(Reiθ)|2dθ

=
1

2π

∫ π

−π

∣∣∣∣∣ b̂(z)

Bu + g(εξ)Bv

∣∣∣∣∣
2 (

1 + |g(εξ)|2
)
dθ.

From the Lemma 2.1, under the SKC, we then obtain∑
n≥0

R−2n|Un0 |2 .
1

2π

∫ π

−π
|̂b(Reiθ)|2dθ .

∑
n≥0

R−2n|bn|2.(2.32)



12 BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

Similarly, by an application of the Plancherel’s theorem for Z-transform, we have∑
n≥0

∑
j≥0

R−2n|Unj |2 =
1

2π

∑
j≥0

∫ π

−π
|Ûj(Reiθ)|2dθ

=
1

2π

∑
j≥0

∫ π

−π

∣∣∣∣∣ b̂(z)

Bu + g(εξ)Bv

∣∣∣∣∣
2

|κ−(εξ)|2j
(
1 + |g(εξ)|2

)
dθ.

Again, under the SKC, we get from Lemma 2.1∑
n≥0

∑
j≥0

R−2n|Unj |2 .
1

2π

∑
j≥0

∫ π

−π
|̂b(z)|2|κ−(εξ)|2jdθ.(2.33)

Following Lemma 2.6, if we assume (2.29) holds, then the inequality (2.33) becomes

R− 1

R
∆x
∑
n≥0

∑
j≥0

R−2n|Unj |2 .
∆t

2π

∫ π

−π
|̂b(Reiθ)|2dθ . ∆t

∑
n≥0

R−2n|bn|2.(2.34)

According to (2.32) and (2.34), there exists a constant C > 0 such that

R− 1

R

∑
n≥0

∑
j≥0

R−2n∆x|Unj |2 +
∑
n≥0

R−2n∆t|Un0 |2 ≤ C
∑
n≥0

R−2n∆t|bn|2.

By setting in the above formula R = eγ∆t for γ > 0 and ∆t > 0, and using the classical lower bound
eγ∆t ≥ 1 + γ∆t, we obtain that there exists a constant c > 0 such that

γ

γ∆t+ 1

∑
n≥0

∑
j≥0

e−2γn∆t∆t∆x|Unj |2 +
∑
n≥0

e−2γn∆t∆t|Un0 |2 ≤ c
∑
n≥0

e−2γn∆t∆t|bn|2.

This ends the proof of the Proposition 1.3.

Let us observe that the scheme (1.8) together also with its boundary condition is closed to be forward-
in-time, except it is one-step implicit. By this property, changing the data b to zero after some time T
and unchanged before that time T , the discrete solution Unj is the same for n∆t < T . Therefore, there
exists a constant CT > 0 such that

N∑
n=0

∑
j≥0

∆x∆t
∣∣Unj ∣∣2 +

N∑
n=0

∆t |Un0 |
2 ≤ CT

N∑
n=0

∆t |bn|2 ,(2.35)

with N := T/∆t. This will be useful to prove the Theorem 1.1.

2.4. Numerical experiments. In this paragraph, we first provide the behavior of the numerical solution
(Unj )j∈N according to whether or not the SKC (1.9) is valid. We also look at the degenerate case when the
UKC (1.4) does not hold (and thus, none of the other stability conditions). Following the continuous case
studied by Xin and Xu in [23], the solution of the IBVP (1.1)-(1.3) with homogeneous initial condition
can be constructed by the method of Laplace transform. By inverting the Laplace transform, the solution
U(x, t) has form

U(x, t) = L−1Ũ =
1

2π

∫ +∞

−∞
eζt

b̃(ζ)

Bu + g(εζ)Bv
eµ−(εζ)x/εr−(εζ)dβ,

where ζ = α + iβ, α > 0. Then, we observe the error between the exact solution U(xj , t
n) and the

numerical solution Unj of the numerical scheme (1.8) with homogeneous initial data at the grid point
(xj , t

n) = (j∆x, n∆t). After that, we present some numerical experiments and observe the effective
behavior of the energy terms ‖U‖`2(N×[0,T ),R2) and ‖U‖`2({0}×[0,T ),R2) corresponding to whether or not the
SKC (1.9) is valid.
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As main parameters for the experiments, we choose a = 1, Bv = 1, λxt = 1/3 and let the relaxation
rate ε and the boundary data Bu vary. The test case we consider concerns the following data. The initial
data is the homogeneous one (fj)j∈N ≡ 0. The boundary data is

b(t) =
t

2
sin(t).

Let us observe that these data are compatible in the corner (x, t) = (0, 0) in the sense that Bf(0) = b(0).
Moreover, the Laplace transform of b(t) is

b̃(ζ) =
ζ

(ζ2 + 1)2
.

2.4.1. The behavior of the numerical solution. Let the space step ∆x = 10−2 and the time step ∆t =
λ−1
xt ∆x. Firstly, we choose the value of Bu such that the SKC (1.9) is satisfied with ε = 10−2 and

also with ε = 102. The Figures 2.1 and 2.2 show the numerical solution (Unj )j∈N over the time interval
t ∈ [0, 1.2).

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.14

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

u 
(x
,t)

The numerical solution u(x,t)

t = 0
t = 0.24
t = 0.48
t = 0.72
t = 0.96
t = 1.19

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.0175

−0.0150

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

v 
(x
,t)

The numerical solution v(x,t)

t = 0
t = 0.24
t = 0.48
t = 0.72
t = 0.96
t = 1.19

Figure 2.1. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 10−2. The
SKC (1.9) holds with Bu = −4.

In the first case, ε = 10−2, the incoming solution at the boundary x = 0 go slowly. This is due to the
initial relaxation of solution to the equilibrium system. In the case ε = 102, its solution seems to be faster.
It is not so much influenced by relaxation source term but more by the boundary dissipation.

Secondly, we choose the value of Bu such that the SKC (1.9) is not satisfied. Besides, we also present
the numerical solution when the Uniform Kreiss Condition (1.4) is wrong. The Figures 2.3 and 2.4 show
the numerical solution (Unj )j∈N over the time interval t ∈ [0, 0.5).

When the SKC (1.9) fails, we observe that the numerical solution at the boundary rise gradually. This
is the case for example for ε = 10−2 together with the parameters (Bu, Bv) = (−1/2, 1). The behavior is
even worse when the UKC (1.4) is not satisfied (see Figure 2.4).

2.4.2. The error between the exact solution and the numerical solution. Let us begin with the notation

E(tn) :=

∆x
∑
j≥0

|U(xj , t
n)− Unj |2

1/2

.(2.36)

We choose a set of values Bu such that the SKC (1.9) is satisfied with the space step ∆x and the relation
rate ε vary. The error, as measured in (2.36), are reported in the Tables 1 and 2.
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The numerical solution u(x,t)
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Figure 2.2. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 102. The
SKC (1.9) holds with Bu = −4.
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Figure 2.3. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 10−2. The
SKC (1.9) does not hold with Bu = −1/2.

According to the experiments in Tables 1 and 2, for some ε ∈ (0,+∞) and (Bu, Bv) satisfying the
SKC (1.9), the observed convergence rate is 1 since going down ∆x by a factor 2 decreases the error of
the same factor 2. It means that the behavior of the numerical solution Unj is the same as the evolution
of the exact solution U(xj , t

n). This is the case for example for ε = 10−2 together with the parameters
(Bu, Bv) = (−4, 1).

2.4.3. The effective behavior of the energy terms. Let the space step ∆x = 10−2 and the time step ∆t =
λ−1
xt ∆x. We present hereafter the behavior of the following energy terms for ε ∈ (0,+∞), T = 1.2 and
N = T/∆t. The first one corresponds to the `2 in time and space energy of the discrete solution and the
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The numerical solution u(x,t)
t = 0
t = 0.48

0.0 0.2 0.4 0.6 0.8 1.0
x

0

2000

4000

6000

8000

10000

v 
(x
,t)

The numerical solution v(x,t)
t = 0
t = 0.48

Figure 2.4. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 102. The
UKC (1.4) is wrong with Bu = −1.

∆x ε = 10−2 ε = 10−1 ε = 1 ε = 10 ε = 102

5× 10−2 6.8× 10−3 1.2× 10−2 2.6× 10−2 3.1× 10−2 3.2× 10−2

25× 10−3 3× 10−3 5.9× 10−3 1.3× 10−2 1.6× 10−2 1.6× 10−2

125× 10−4 1.5× 10−3 2.9× 10−3 6.8× 10−3 8.2× 10−3 8.3× 10−3

625× 10−5 7.2× 10−4 1.5× 10−3 3.4× 10−3 4.1× 10−3 4.2× 10−3

Table 1. The error E(1.2) for Bu = −4.

∆x ε = 10−2 ε = 10−1 ε = 1 ε = 10 ε = 102

5× 10−2 8.5× 10−3 1.3× 10−2 2.1× 10−2 2.3× 10−2 2.4× 10−2

25× 10−3 3.8× 10−3 6.4× 10−3 1.1× 10−2 1.2× 10−2 1.2× 10−2

125× 10−4 1.8× 10−3 3.2× 10−3 5.4× 10−3 6.1× 10−3 6.2× 10−3

625× 10−5 9.1× 10−4 1.6× 10−3 2.7× 10−3 3.1× 10−3 3.1× 10−3

Table 2. The error E(1.2) for Bu = 3.

second to the `2 in time energy of the numerical trace at the boundary:

E1 := ‖U‖2`2(N×[0,T ),R2) =
N∑
n=0

∑
j≥0

∆x∆t|Unj |2,

E2 := ‖U‖2`2({0}×[0,T ),R2) =

N∑
n=0

∆t|Un0 |2,

(2.37)

which are shown in the Table 3 and Figures 2.5, 2.6.

Bu ε = 10−2 ε = 1 ε = 102

-4 35× 10−5 77× 10−5 47× 10−4

-2 15× 10−4 39× 10−4 43× 10−3

-1 2.6× 1017 1.69× 1031 3.17× 1056

-0.5 44047.9 418525.12 2837033.2
1 34× 10−4 5× 10−3 10−2

3 48× 10−5 87× 10−5 2× 10−2

Bu ε = 10−2 ε = 1 ε = 102

-4 66× 10−4 8× 10−3 2× 10−2

-2 29× 10−3 4× 10−2 18× 10−2

-1 1.24× 1019 7.17× 1032 1.89× 1058

-0.5 191420.5 9910910.98 106714237.85
1 46× 10−3 55× 10−3 67× 10−3

3 93× 10−4 94× 10−4 12× 10−3

Table 3. The energy terms E1 (left) and E2(right).
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0.0 0.2 0.4 0.6 0.8 1.0 1.2
TIME

0.000

0.001

0.002

0.003

0.004

En
er

gy

The SKC is sa isfied  wi h (Bu,Bv) = (−4, 1) and a=1
ε=10−2 
ε=1 
ε=102 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
TIME

0

200000

400000

600000

800000

1000000

1200000

1400000

En
er

gy

The SKC is no  sa isfied  wi h (Bu,Bv) = (−1/2, 1) and a=1
ε=10−2 
ε=1 
ε=102 

Figure 2.5. Energy evolution E1 for Bu = −4 (left) and Bu = −0.5 (right).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
TIME

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

En
er

gy

The SKC is satisfied with (Bu,Bv) = (−4, 1) and a=1
ε=10−2 
ε=1 
ε=102 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
TIME

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

En
e 

gy
1e7The SKC is not satisfied with (Bu,Bv) = (−1/2, 1)  and a=1

ε=10−2 
ε=1 
ε=102 

Figure 2.6. Energy evolution E2 for Bu = −4 (left) and Bu = −0.5 (right).

• For some ε ∈ (0,+∞), the values of E1 and E2 rise gradually when the SKC (1.9) is not satisfied.
This is the case for example for ε = 102 together with the parameters (Bu, Bv) = (−1/2, 1). The
behavior is even worse when the UKC (1.4) is not hold.
• In the case ε = 10−2, the energy term E1 and E2 increase slowly. This is due to the effect of
incoming solution at the boundary when the initial relaxation of solution tends to the equilibrium
system. In the case ε = 102, those values increase fairly rapidly. It is not so much influenced by
relaxation source term but more by the boundary dissipation.

Clearly, the numerical results show that the numerical solution at the boundary x = 0 increase quickly
as soon as the SKC (1.9) does not hold. If the UKC (1.4) is not satisfied, the behavior of numerical solution
is even worse. Besides, by the decrease of the error E(tn), we can see that the values of Unj tend to the
exact solution U(xj , t

n). Indeed, it seems that the SKC (1.9) is also necessary to ensure the non-increase
rapidly of the energy terms E1 and E2 under the effect of the relaxation source term and the boundary
dissipation.
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3. Stiff stability of the IBVP with homogeneous boundary condition

For convenience in the forthcoming discussions, we recall that the IBVP (1.8) with homogeneous bound-
ary condition writes

(3.1)



Un+1
j − Unj

∆t
+

1

2∆x
A
(
Un+1
j+1 − U

n+1
j−1

)
=

1

ε
SUn+1

j , j ≥ 1, n ≥ 0,

U0
j = fj , j ≥ 0,

BUn0 = 0, n ≥ 0,

1

∆t
Γ
(
Un+1

0 − Un0
)

+
1

2∆x
ΓA

(
Un+1

1 −
n+1∑
k=0

Cn+1−kU
k
0

)
=

1

ε
ΓSUn+1

0 , n ≥ 0.

In [23, Section 5], under the SKC, Xin and Xu find explicitly the solution U(x, t) of the IBVP (1.6) by the
method of Laplace transform. The solution is decomposed into two ingredients, by assembling a solution
for the case of the Cauchy problem and another one for the case of the IBVP with homogeneous initial
condition. In our case, assuming the SKC to hold, the numerical solution (Unj )j∈N can be constructed by
the method of Z−transform. Since the coefficients (Cm)m≥0 are defined for homogeneous initial data, the
numerical solution (Unj )j∈N of the IBVP (3.1) consists of not only the solutions for case of the Cauchy
problem and for the IBVP with zero initial data but also another numerical error term (U IIj )nj∈N. To
complete the proof of the Theorem 1.1 with homogeneous boundary condition, we first use the means
of discrete energy method in order to prove the Proposition 1.2. By an application of the Plancherel’s
theorem for Z-transform [15, 19], the numerical error term of (U IIj )nj∈N will be estimated in Section 3.3.
After that, we get the expected result of the case IBVP with homogeneous initial condition.

3.1. Solution by Z−transform. Again, we follow the explicit solving of the IBVP (3.1) by using the
Z−transform. With

Ûj(z) = Z{Unj }(z) =
∑
n≥0

Unj z
−n, |z| > 1.

Importantly, we now have (fj)j∈N 6= 0, and thus we get∑
n≥0

Un+1
j z−n = zÛj(z)− zU0

j = zÛj(z)− zfj .

Therefore, (3.1) becomes
Ûj+1(z)− Ûj−1(z) = 2λxεM(εξ)Ûj(z) + fj+1 − 2λxεM(ε∆t−1)fj − fj−1, j ≥ 1,(3.2a)

BÛ0(z) = 0,(3.2b)

ΓA

[
Û1(z)−

(
κ+(εξ)I + 2λxεM(εξ)

)
Û0(z)− f1

]
= 0.(3.2c)

Let us recall that the Z−transform of
∑n+1

k=0 Cn+1−kU
k
0 is given by κ+(εξ)zÛ0(z). Firstly, we look at the

solution (Ûj)j∈N(z) to (3.2a)-(3.2c). This is the object of the following proposition:

Proposition 3.1. Assume that the SKC (1.9) is satisfied. Let (fj)j∈N ∈ `2(N,R2) and denote V I
k , w

I(εξ)

and wII(εξ) as follows:

V I
k = fk+1 − 2λxεM(ε∆t−1)fk − fk−1,

wI(εξ) =
+∞∑
k=0

(−1)−kκ−k+ (εξ)V I
k ,

wII(εξ) = −
+∞∑
k=0

κ−k+ (εξ)V I
k .

(3.3)
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Then, the solution (Ûj)j∈N(z) ∈ `2(N,C2) to (3.2a)-(3.2c) takes the form

Ûj(z) =
κj+1
− (εξ)

4g(εξ)
×
(
Bu − g(εξ)Bv
Bu + g(εξ)Bv

× (g(εξ), 1)wI(εξ)− (g(εξ),−1)wII(εξ)

)
×
(
Bu − g(εξ)Bv
Bu + g(εξ)Bv

× r−(εξ) + (−1)j+1r+(εξ)

)
−

κj−(εξ)

κ+(εξ) + κ−(εξ)
×
(

Φ−(εξ)wI(εξ) + (−1)jΦ+(εξ)wII(εξ)

)
+

1

κ+(εξ) + κ−(εξ)
×

(
j−1∑
k=0

κj−k− (εξ)

(
Φ−(εξ) + (−1)j−k−1Φ+(εξ)

)
V I
k

+

+∞∑
k=j

(−1)j−kκj−k+ (εξ)

(
Φ−(εξ) + (−1)j−k−1Φ+(εξ)

)
V I
k

)
.

(3.4)

Proof. Before we prove the above result, let us notice that we omit the explicit dependence in εξ. Firstly,
we look at the solution (Ûj)j∈N(z) to (3.2a) and consider the two-dimensional problem (3.2a) under the
following nonhomogeneous one-step recurrence form

Wj+1(z) = M1Wj(z) + Vj ,(3.5)

where Wj is the same as in (2.17) and

Vj =

(
V I
j

0

)
.

The solution (Wj)j∈N(z) to (3.5) is thus given by

Wj(z) = M j
1W0(z) +

j−1∑
k=0

M j−1−k
1 Vk.(3.6)

Together with the the explicit formula of M j
1 in Lemma 2.2, the solution (Ûj)j∈N(z) to (3.2a) is given by

Ûj(z) = − 1

κ+ + κ−
×

[
κ̂j+1Ψ̂jÛ0(z) + κ̂jΨ̂j+1Û−1 +

j−1∑
k=0

κ̂j−kΨ̂j−k−1V
I
k

]
.

By the definition of κ̂k and Ψ̂k in (2.10), the above formula is equivalent to

Ûj(z) = −
(−1)jκj+
κ+ + κ−

×

[
− κ+

(
Φ− + (−1)jΦ+

)
Û0(z) +

(
Φ− + (−1)j+1Φ+

)
Û−1(z)

+

j−1∑
k=0

(−κ+)−k
(

Φ− + (−1)j−k−1Φ+

)
V I
k

]

+
κj−

κ+ + κ−
×

[
κ−

(
Φ− + (−1)jΦ+

)
Û0(z) +

(
Φ− + (−1)j+1Φ+

)
Û−1(z)

+

j−1∑
k=0

κ−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k

]
.

(3.7)
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Thanks to the definition of wI and wII in (3.3), one has

j−1∑
k=0

(−κ+)−k
(

Φ− + (−1)j−k−1Φ+

)
V I
k

= Φ−w
I + (−1)jΦ+w

II −
+∞∑
k=j

(−κ+)−k
(

Φ− + (−1)j−k−1Φ+

)
V I
k .

(3.8)

Substituting (3.8) into (3.7), we have

Ûj(z) =−
(−1)jκj+
κ+ + κ−

×

[
Φ−

(
− κ+Û0(z) + Û−1(z) + wI

)
+ (−1)j+1Φ+

(
κ+Û0(z) + Û−1(z)− wII

)]

+
1

κ+ + κ−
×

+∞∑
k=j

(−1)j−kκj−k+

(
Φ− + (−1)j−k−1Φ+

)
V I
k

+
κj−

κ+ + κ−
×

[
κ−

(
Φ− + (−1)jΦ+

)
Û0(z) +

(
Φ− + (−1)j+1Φ+

)
Û−1(z)

+

j−1∑
k=0

κ−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k

]
.

(3.9)

Since we expect (Ûj)j∈N(z) ∈ `2(N,C2), we need a natural boundary condition at x = +∞. Besides, one
gets |κ+| > 1 and |κ−| < 1. Thus, the natural boundary condition takes the form

(3.10)

Φ−

(
−κ+Û0(z) + Û−1(z) + wI

)
= 0,

Φ+

(
κ+Û0(z) + Û−1(z)− wII

)
= 0.

By the definition of Φ± in (2.4), the system (3.10) is equivalent to
(
g, 1
) (
−κ+Û0(z) + Û−1(z) + wI

)
= 0,(

g,−1
) (
κ+Û0(z) + Û−1(z)− wII

)
= 0.

Then, we have

Û−1(z) = κ+(Φ− − Φ+)Û0(z)− Φ−w
I + Φ+w

II .(3.11)

Plugging (3.11) into (3.9), we get

Ûj(z) =
1

κ+ + κ−
×

+∞∑
k=j

(−1)j−kκj−k+

(
Φ− + (−1)j−k−1Φ+

)
V I
k

+
κj−

κ+ + κ−
×

[
κ−

(
Φ− + (−1)jΦ+

)
+ κ+

(
Φ− + (−1)j+1Φ+

)(
Φ− − Φ+

)]
Û0(z)

+
κj−

κ+ + κ−
×
(

Φ− + (−1)j+1Φ+

)(
− Φ−w

I + Φ+w
II

)
+

1

κ+ + κ−
×

j−1∑
k=0

κj−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k .
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Under the properties of Φ± in (2.7), the above formula becomes

Ûj(z) = κj−

(
Φ− + (−1)jΦ+

)
Û0(z)−

κj−
κ+ + κ−

×
(

Φ−w
I + (−1)jΦ+w

II

)
+

1

κ+ + κ−
×

[
j−1∑
k=0

κj−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k +

+∞∑
k=j

(−1)j−kκj−k+

(
Φ− + (−1)j−k−1Φ+

)
V I
k

]
.

(3.12)

Secondly, we look at the boundary data Û0(z) and extend the initial data (fj)j∈N to the whole line by
setting fj = 0 for j ≤ 0. Since f0 = f−1 = 0 and Φ+ + Φ− = I, we can see that

Û1(z) = κ−

(
Φ− − Φ+

)
Û0(z)− κ−

κ+ + κ−
×
(

Φ−w
I − Φ+w

II

)
+

1

κ+ + κ−
×
[
κ−f1 − κ+

+∞∑
k=1

(−1)−kκ−k+

(
Φ− + (−1)−kΦ+

)
V I
k

]
.

(3.13)

On the other hand, by the definition of wI and wII in (3.3), we get the following property
+∞∑
k=1

(−1)−kκ−k+

(
Φ− + (−1)−kΦ+

)
V I
k = Φ−w

I − Φ+w
II − f1.(3.14)

Substituting (3.14) into (3.13), the value of Û1(z) can be reformulated as

Û1(z) = κ−(Φ− − Φ+)Û0(z)− Φ−w
I + Φ+w

II + f1.

Thus, the equation (3.2c) becomes

ΓA

(
κ−(Φ− − Φ+)Û0(z)− Φ−w

I + Φ+w
II − (κ+I + 2λxεM) Û0(z)

)
= 0.(3.15)

Indeed, we observe that

κ+I + 2λxεM = κ−Φ− + (κ+ + 2λxεµ+)Φ+.

Then, the equation (3.15) can be represented as

ΓAΦ+Û0(z) = − 1

2κ+
ΓA

(
Φ−w

I − Φ+w
II

)
.(3.16)

Besides, one has

ΓAΦ+ =
a

2g
× (Bu + gBv)× (g,−1).

From the Lemma 2.1, the equation (3.16) is equivalent under the SKC to

(g,−1)Û0(z) = − g

aκ+(Bu + gBv)
ΓA

(
Φ−w

I − Φ+w
II

)
.

Together with the boundary condition (3.2b), one gets(
Bu Bv
g −1

)
Û0(z) = − g

aκ+(Bu + gBv)

 0

ΓA

(
Φ−w

I − Φ+w
II

) .

Then, under the SKC, we have

Û0(z) = − g

aκ+(Bu + gBv)2
× ΓA

(
Φ−w

I − Φ+w
II

)(
Bv
−Bu

)
.(3.17)
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Substituting (3.17) into (3.12), the solution (Ûj)j∈N(z) to (3.2a)-(3.2c) is given by

Ûj(z) =−
κj+1
− g

a(Bu + gBv)2
× ΓA

(
Φ−w

I − Φ+w
II

)
×
(

Φ− + (−1)jΦ+

)(
Bv
−Bu

)
−

κj−
κ+ + κ−

×
(

Φ−w
I + (−1)jΦ+w

II

)
+

1

κ+ + κ−
×

[
j−1∑
k=0

κj−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k +

+∞∑
k=j

(−1)j−kκj−k+

(
Φ− + (−1)j−k−1Φ+

)
V I
k

]
.

Together with the definitions of Φ± and Γ in (2.6) and (2.14), respectively, we have

− g

a(Bu + gBv)2
× ΓA

(
Φ−w

I − Φ+w
II

)
×
(

Φ− + (−1)jΦ+

)(
Bv
−Bu

)
=

1

4g
×
(
Bu − gBv
Bu + gBv

× (g, 1)wI − (g,−1)wII
)
×
(
Bu − gBv
Bu + gBv

× r− + (−1)j+1r+

)
.

Therefore, the solution (Ûj)j∈N(z) to (3.2a)-(3.2c) can be reformulated as

Ûj(z) = =
κj+1
−
4g
×
(
Bu − gBv
Bu + gBv

× (g, 1)wI − (g,−1)wII
)
×
(
Bu − gBv
Bu + gBv

× r− + (−1)j+1r+

)
−

κj−
κ+ + κ−

×
(

Φ−w
I + (−1)jΦ+w

II

)
+

1

κ+ + κ−
×

[
j−1∑
k=0

κj−k−

(
Φ− + (−1)j−k−1Φ+

)
V I
k +

+∞∑
k=j

(−1)j−kκj−k+

(
Φ− + (−1)j−k−1Φ+

)
V I
k

]
.

This ends the proof of Proposition 3.1. �

Secondly, we can see that the solution (Ûj)j∈N(z) to (3.2a)-(3.2c) consists of three parts:

Ûj(z) = Û Ij (z) + Û IIj (z) + Û IIIj (z),(3.18)

where

Û Ij (z) =
(−1)jκj+1

− (εξ)

4g(εξ)
×
(

(g(εξ),−1)wII(εξ)

)
× r+(εξ)

−
κj−(εξ)

κ+(εξ) + κ−(εξ)

(
Φ−(εξ)wI(εξ) + (−1)jΦ+(εξ)wII(εξ)

)
+

1

κ+(εξ) + κ−(εξ)
×

[
j−1∑
k=0

κj−k− (εξ)

(
Φ−(εξ) + (−1)j−k−1Φ+(εξ)

)
V I
k

+

+∞∑
k=j

(−1)j−kκj−k+ (εξ)

(
Φ−(εξ) + (−1)j−k−1Φ+(εξ)

)
V I
k

]
,

(3.19)

Û IIj (z) =
(−1)j+1κj+1

− (εξ)

4g(εξ)
× Bu − g(εξ)Bv
Bu + g(εξ)Bv

×
(

(g(εξ), 1)wI(εξ)

)
× r+(εξ)(3.20)

and

Û IIIj (z) =
κj+1
− (εξ)

4g(εξ)
×
(
Bu − g(εξ)Bv
Bu + g(εξ)Bv

× (g(εξ), 1)wI(εξ)− (g(εξ),−1)wII(εξ)

)
× Bu − g(εξ)Bv
Bu + g(εξ)Bv

× r−(εξ).

(3.21)
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Let us extend the initial data (fj)j∈Z to the whole line by setting fj = 0 for j ≤ 0. It is easy to
verify that Û Ij (z) corresponds to the Z−transform of the solution (U Ij )n of the following extended Cauchy
problem (3.22).

(3.22)


(
U Ij

)n+1
−
(
U Ij

)n
∆t

+
1

2∆x
A

((
U Ij+1

)n+1 −
(
U Ij−1

)n+1
)

=
1

ε
S
(
U Ij
)n+1

, j ∈ Z, n ≥ 0,(
U Ij
)0

= fj , j ∈ Z.

With (Û IIj )j∈N(z) found in (3.20), the value of (U IIj )nj∈N can be obtained by inverting the Z-transform(
U IIj
)n

=
1

2π

∫ π

−π
Û IIj (Reiθ)Rneinθdθ, R > 1.(3.23)

Indeed, the value of Û IIIj (z) can be reformulated as

Û IIIj (z) =
−B

(
Û I0 (z) + Û II0 (z)

)
Bu + g(εξ)Bv

× κ−(εξ)r−(εξ).

Following Section 2.2, Û IIIj (z) corresponds to the Z−transform of the solution (U IIIj )n of the IBVP with
the homogeneous initial data
(3.24)

(
U IIIj

)n+1
−
(
U IIIj

)n
∆t

+
1

2∆x
A

((
U IIIj+1

)n+1 −
(
U IIIj−1

)n+1
)

=
1

ε
S
(
U IIIj

)n+1
, j ≥ 1, n ≥ 0,(

U IIIj
)0

= 0, j ≥ 0,

B
(
U III0

)n
= −B

((
U I0
)n

+
(
U II0
)n)

, n ≥ 0,

1

∆t
Γ
((
U III0

)n+1 −
(
U III0

)n)
+

1

2∆x
ΓA

((
U III1

)n+1 −
n+1∑
k=0

Cn+1−k
(
U III0

)k)
=

1

ε
ΓS
(
U III0

)n+1
, n ≥ 0.

3.2. The energy method for the Cauchy problem. In this paragraph, we prove the Proposition 1.2
by means of the discrete energy method. The energy estimate in the continuous case are obtained using
the integration by parts rule. Therefore, we need the corresponding summation by parts rules for the
discrete approximations of ∂/∂x [12]. The idea is to find a symmetric positive definite matrix H, such
that HA is symmetric and HS is negative definite. Therefore, we choose

H =

(
a 0
0 1

)
.

Now, let us multiply the first equation in (3.22) by ((U Ij )n+1)TH and sum over Z, one obtains∑
j∈Z

〈
(U Ij )n+1 − (U Ij )n, H(U Ij )n+1

〉
+

∆t

2∆x

∑
j∈Z

〈
A
(
(U Ij+1)n+1 − (U Ij−1)n+1

)
, H(U Ij )n+1

〉
=

∆t

ε

∑
j∈Z

〈
S(U Ij )n+1, H(U Ij )n+1

〉
,

(3.25)

where 〈., .〉 denotes the usual Euclidean inner product. Since H is a symmetric positive definite matrix,
we have ∑

j∈Z

〈
(U Ij )n+1 − (U Ij )n, H(U Ij )n+1

〉
≥ 1

2

∑
j∈Z

(〈
(U Ij )n+1, H(U Ij )n+1

〉
−
〈
(U Ij )n, H(U Ij )n

〉)
.
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Together with the symmetric matrix HA, the second flux term in (3.25) becomes∑
j∈Z

〈
A
(
(U Ij+1)n+1 − (U Ij−1)n+1

)
, H(U Ij )n+1

〉
= 0.

Thus, we directly get the inequality∑
j∈Z

(〈
(U Ij )n+1, H(U Ij )n+1

〉
−
〈
(U Ij )n, H(U Ij )n

〉)
≤ 2∆t

ε

∑
j∈Z

〈
S(U Ij )n+1, H(U Ij )n+1

〉
.(3.26)

Let us remind that HS is negative definite. Then, from the inequality (3.26), for any n ∈ N, the following
inequality holds ∑

j∈Z

〈
(U Ij )n, H(U Ij )n

〉
≤
∑
j∈Z
〈fj , Hfj〉 .(3.27)

Furthermore, since H is a symmetric positive definitive matrix, the following inequality holds for some
constants m, k > 0

m
〈
(U Ij )n, H(U Ij )n

〉
≤
〈
(U Ij )n, (U Ij )n

〉
≤ k

〈
(U Ij )n, H(U Ij )n

〉
.(3.28)

According to (3.27) and (3.28), there exists a constant C > 0 such that∑
j∈Z

∆x
∣∣∣(U Ij )n∣∣∣2 ≤ C∑

j∈Z
∆x|fj |2, for any n ∈ N,(3.29)

with the constant C independent of ε and ∆x.
This ends the proof of the Proposition 1.2.

To complete the proof of the Theorem 1.1 for the numerical scheme of the IBVP (3.1), observe that
from (3.29) and setting fj = 0 for j < 0, for any T > 0, there exists CT > 0 such that

N∑
n=0

∑
j≥0

∆x∆t
∣∣∣(U Ij )n∣∣∣2 ≤ CT∑

j≥0

∆x|fj |2,(3.30)

with N = T/∆t. Furthermore, from the inequality (3.29) and ∆x = ∆tλxt, one obtains
N∑
n=0

∆t
∣∣(U I0 )n

∣∣2 ≤ CT∑
j≥0

∆x|fj |2.(3.31)

3.3. The uniform estimate on (U IIj )n. The following lemma concerns the estimate on (U IIj )n:

Lemma 3.2. Assume that the SKC (1.9) is satisfied and let λxt ≤ 3
√
a/8 be a positive number. Then,

for any T > 0, there exists a constant CT > 0 such that for any ∆t > 0 together with ∆x = λxt∆t, for
any (fj)j∈N ∈ `2(N,R2), the values of (U IIj )j∈N defined in (3.23) satisfy

N∑
n=0

∑
j≥0

∆t∆x
∣∣(U IIj )n

∣∣2 +
N∑
n=0

∆t
∣∣(U II0 )n

∣∣2 ≤ CT∑
j≥0

∆x|fj |2(3.32)

where N := T/∆t and CT is independent of ε ∈ (0,+∞).

Proof. By an application of the following Plancherel’s theorem for Z-transform, we have∑
n≥0

R−2n
∣∣(U II0 )n

∣∣2 =
1

2π

∫ π

−π
|Û II0 (Reiθ)|2dθ, R > 1

=
1

2π

∫ π

−π

|κ−(εξ)|2

16|g(εξ)|2
×
∣∣∣∣Bu − g(εξ)Bv
Bu + g(εξ)Bv

∣∣∣∣2 × ∣∣(g(εξ), 1)wI(εξ)
∣∣2 × (1 + |g(εξ)|2

)
dθ.
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From the Lemma 2.1, still under the SKC, Bu + g(εξ)Bv is uniformly bounded away from 0 in εξ ∈ C+,
and g(εξ) is uniformly bounded in εξ ∈ C+. Moreover one has |κ−(εξ)| < 1, we therefore obtain∑

n≥0

R−2n
∣∣(U II0 )n

∣∣2 .∑
k≥0

|fk|2.(3.33)

Similarly, by an application of the Plancherel’s theorem for Z-transform, under the SKC, we have∑
n≥0

∑
j≥0

R−2n
∣∣(U IIj )n

∣∣2 .∑
j≥0

|κ−(εξ)|2j
∑
k≥0

|fk|2.(3.34)

Following Lemma 2.6, since we assume that the condition (2.29) holds, one gets the following property∑
j≥0

|κ−(εξ)|2j ≤ ∆t
√
a

∆x(1−R−1)
.

Together with λxt = ∆x/∆t, the inequality (3.34) becomes

R− 1

R

∑
n≥0

∑
j≥0

R−2n∆x
∣∣(U IIj )n

∣∣2 .∑
k≥0

∆x|fk|2.(3.35)

Assembling the estimates (3.33) and (3.35), there exists C > 0 such that

R− 1

R

∑
n≥0

∑
j≥0

R−2n∆x
∣∣(U IIj )n

∣∣2 +
∑
n≥0

∑
j≥0

R−2n∆t
∣∣(U II0 )n

∣∣2 ≤ C∑
k≥0

∆x|fk|2.

By setting in the above formula R = eγ∆t for γ > 0 and ∆t > 0, and using the classical lower bound
eγ∆t ≥ 1 + γ∆t, we obtain that there exists a constant c > 0 such that

γ

γ∆t+ 1

∑
n≥0

∑
j≥0

e−2γn∆t∆t∆x
∣∣(U IIj )n

∣∣2 +
∑
n≥0

e−2γn∆t∆t
∣∣(U II0 )n

∣∣2 ≤ C∑
k≥0

∆x|fk|2.

Then, for all T > 0, there exists a constant CT > 0 such that
N∑
n=0

∑
j≥0

∆t∆x
∣∣(U IIj )n

∣∣2 +

N∑
n=0

∆t
∣∣(U II0 )n

∣∣2 ≤ CT∑
k≥0

∆x|fk|2,

with N = T/∆t. �

3.4. Stiff stability analysis. Following Section 2.3, for any T > 0, there exists CT > 0 such that the
solution (U IIIj )nj∈N to (3.24) satisfies

N∑
n=0

∑
j≥0

∆x∆t
∣∣(U IIIj )n

∣∣2 +
N∑
n=0

∆t
∣∣(U III0 )n

∣∣2 ≤ CT N∑
n=0

∆t

∣∣∣∣B((U I0 )n + (U II0 )n
)∣∣∣∣2 .

Furthermore, from the inequalities (3.31) and (3.32), one obtains

N∑
n=0

∆t

∣∣∣∣B((U I0 )n + (U II0 )n
)∣∣∣∣2 ≤ CT∑

k≥0

∆x|fk|2.

Therefore, we show the uniform estimate on (U IIIj )nj∈N

N∑
n=0

∑
j≥0

∆x∆t
∣∣(U IIIj )n

∣∣2 +
N∑
n=0

∆t
∣∣(U III0 )n

∣∣2 ≤ CT∑
j≥0

∆x|fj |2,(3.36)

with the positive constant CT independent of ε,∆x and ∆t.
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To complete the proof of the Theorem 1.1 for the numerical scheme of the IBVP (3.1), observe that from
the inequalities (3.30) and (3.36), for any T > 0, there exists CT > 0 such that for any (fj)j∈N ∈ `2(N,R2)
and N := T/∆t, the solution (Unj )j∈N to (3.1) satisfies

N∑
n=0

∑
j≥0

∆x∆t|Unj |2 +
N∑
n=0

∆t|Un0 |2 ≤ CT
∑
j≥0

∆x|fj |2,(3.37)

where the constant CT independent of ε,∆x and ∆t. This is the last step to prove the Theorem 1.1.

3.5. Numerical experiments. In this paragraph, we present some numerical experiments for the be-
havior of the numerical solution (Unj )j∈N corresponding to whether or not the SKC (1.9) holds. We also
look at the numerical solution when the UKC (1.4) is wrong. After that, we observe the effective behavior
of the energy terms E1 inside the domaine and E2 along the boundary, which are defined in (2.37).

In our numerical experiments, we choose a = 1, Bv = 1, λxt = 1/3, fix the space step ∆x = 5 × 10−3,
the time step ∆t = λ−1

xt ∆x, and let the relaxation rate ε and the boundary data Bu vary. The boundary
data is the homogeneous one bn ≡ 0, for any n ∈ N. The initial data is

fj =


100×

(
13

30
− xj

)(
xj −

1

4

)
×
(

1 −1
)T

, if xj ∈
[

1

4
,
13

30

]
,(

0 0
)T

, otherwise.

Let us first observe that these data are compatible in the corner (x, t) = (0, 0) in the sense that Bf0 = 0.
Moreover, the choice of an initial data with support in [1/4, 13/30] is motivated by the property of
finite speed of propagation available at the continuous side (1.1). More precisely, the exact solution we
approximate has characteristic velocities ±1 and therefore vanishes outside some space interval [0, 0.63] for
small times in [0, 0.2]. Thus, we choose for our experiments the space interval [0, 1] and the time interval
[0, T ) with T = 0.2. Let us mention that the numerical experiments are performed we another discrete
right boundary condition at x = 1. This is chosen to be the classical homogeneous first order Neumann
extrapolation boundary condition UnJ+1 = UnJ , for any n ∈ N, at the rightmost cell J . That boundary
condition indeed exhibits convenient stability features for both the inflowing and the outflowing transport
equation [10].

3.5.1. The behavior of the numerical solution. Firstly, we choose a set of values Bu such that the SKC (1.9)
is satisfied with ε = 10−2 and also with ε = 102. The Figures 3.1 and 3.2 show numerical solution (Unj )j∈N
over the time interval t ∈ [0, 0.2).

In the first case, ε = 10−2, due to the initial relaxation of solution to the equilibrium system, the
numerical solution descends over time (see Figure 3.1). In the case ε = 102, at time t < 0.2, its solution
seems to translate to the left and the ghost solutions do not go backward in space for the implicit scheme.
After that, the initial condition re-enters the domain from the left boundary (see Figure 3.2). It is not so
much influenced by relaxation source term but more by the boundary dissipation.

Secondly, we choose the value of Bu such that the SKC (1.9) is not satisfied. Besides, we also present
the numerical solution when the Uniform Kreiss Condition (1.4) is wrong. The Figures 3.3 and 3.4 show
numerical solution (Unj )j∈N over the time interval t ∈ [0, 0.2).

We can observe that the numerical solution at the boundary rise gradually when the SKC (1.9) fails.
This is the case for example for ε = 10−2 together with the parameters (Bu, Bv) = (−1/2, 1). When the
UKC (1.4) does not hold, the behavior is even worse (see Figure 3.4).

3.5.2. The effective behavior of the energy terms. We present hereafter the effective behavior of the energy
terms E1 and E2 for ε ∈ (0,+∞), T = 0.2 and N = T/∆t.

According to Table 4 and Figures 3.5, 3.6, we can see that
• For any ε ∈ (0,+∞), the values of E1 and E2 rise gradually when the SKC (1.9) is not satisfied.
This is the case for example for ε = 102 together with the parameters (Bu, Bv) = (−1/2, 1). The
behavior is even worse when the UKC (1.4) is not hold.
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Figure 3.1. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 10−2. The
SKC (1.9) is valid with Bu = −2.

Bu ε = 10−2 ε = 1 ε = 102

-4 0.038009 0.083375 0.160487
-2 0.038014 0.191338 0.440354
-1 7.54× 1019 8.94× 1030 3.149× 1041

-0.5 696.71 16628.4 101893.6
1 0.030684 0.03537 0.038031
3 0.035051 0.038022 0.046627

Bu ε = 10−2 ε = 1 ε = 102

-4 2.13× 10−5 1.05× 10−3 1.46× 10−3

-2 2.69× 10−5 0.43× 10−2 0.71× 10−2

-1 5.3× 1021 8.68× 1032 3.58× 1043

-0.5 19235.1 125624.5 437872.2
1 2.87× 10−5 0.0515 0.0715
3 1.9× 10−5 0.0620 0.0894

Table 4. The energy terms E1 (left) and E2(right).

• On the boundary x = 0, the value of E2 for ε = 10−2 increase slowly. This is due to the effect of
incoming solution at the boundary when the initial relaxation of solution tends to the equilibrium
system. In the case ε = 102, its value increase fairly rapidly. It is not so much influenced by
relaxation source term but more by the boundary dissipation.

Clearly, in our numerical experiment, the numerical solution at the boundary x = 0 increase quickly as
soon as the SKC (1.9) is not valid. The behavior of numerical solution is even worse if the UKC (1.4) is
not satisfied. Indeed, it seems that the SKC (1.9) is also necessary condition to ensure the non-increase
rapidly of the energy terms E1 and E2 under the effect of the relaxation source term and the boundary
dissipation.

Appendix A. Technical lemmas

Lemma A.1. Let ζ ∈ C with Re ζ > 0 and h(ζ) =
√
ζ(1 + ζ), then Re ζ ≤ Reh(ζ).

Proof. In the half plane {ζ ∈ C : Re ζ ≥ 0}, the complex function h(ζ) is analytic. As usual, we take
√
ζ

to be the principal branch with the branch cut along the negative real axis.
Let ζ = x+ yi with x ≥ 0, y ∈ R and

p = x(1 + x)− y2, q = (1 + 2x)y.

Then,

Reh(ζ) = Re
√
p+ qi =

√
p+

√
p2 + q2

2
.
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Figure 3.2. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 102. The
SKC (1.9) is valid with Bu = −2.

Now, we observe that √
p2 + q2 =

√
(x(1 + x)− y2)2 + (1 + 2x)2y2

=
√

(x(1 + x) + y2)2 + y2

≥ x(1 + x) + y2.

Therefore,

Reh(ζ) ≥
√
x(1 + x) ≥ x.

This ends the proof of Lemma A.1. �

Lemma A.2. Let ζ ∈ C with Re ζ < 0, then |ζ +
√
ζ2 + 1| ≤ Re ζ +

√
(Re ζ)2 + 1 < 1.

Proof. Assume that ζ = x+ yi with x < 0 and y ∈ R.
Case 1: Consider first the easy case y = 0. Then∣∣∣ζ +

√
ζ2 + 1

∣∣∣ = x+
√
x2 + 1,



28 BENJAMIN BOUTIN, THỊ HOÀI THƯƠNG NGUYỄN, AND NICOLAS SEGUIN

0.0 0.2 0.4 0.6 0.8 1.0
x

0

20

40

60

80

100

120

140

160

u 
(x
,t)

The numerical solution u(x,t)
t = 0
t = 0.045
t = 0.09
t = 0.135
t = 0.195

0.0 0.2 0.4 0.6 0.8 1.0
x

−40

−20

0

20

40

60

80

v 
(x
,t)

The numerical solution v(x,t)
t = 0
t = 0.045
t = 0.09
t = 0.135
t = 0.195

Figure 3.3. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 10−2 . The
SKC (1.9) is not valid with Bu = −0.5.
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Figure 3.4. The numerical solution u(x, t) (left) and v(x, t) (right) for ε = 102. The
UKC (1.4) is wrong with Bu = −1.

but since x < 0, one obtains by simple considerations the inequality x+
√
x2 + 1 < 1.

Case 2: In the general case y 6= 0, let us begin with some notations:

ζ2 + 1 = p1 + q1i, with p1 = x2 − y2 + 1 and q1 = 2xy,

√
ζ2 + 1 = a1 + b1i, with a1 =

√
p1 +

√
p2

1 + q2
1

2
and b1 = sgn(q1)

√
−p1 +

√
p2

1 + q2
1

2
.

Together with these notations, some algebraic identities are available:

(A.1) x2 + b21 + 1 = a2
1 + y2 and y =

a1b1
x

,

Firstly, we prove the next inequality

(A.2) a1x
2 + b21x+ a1b

2
1 ≥ 0.
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Figure 3.5. Energy evolution E1 for Bu = −4 (left) and Bu = −0.5 (right).
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Figure 3.6. Energy evolution E2 for Bu = −4 (left) and Bu = −0.5 (right).

We can see that the inequality (A.2) is equivalent to a1(x2 + b21) ≥ −xb21 and since x < 0, the
latter is now equivalent to its squared version, that reads

a2
1x

2(x2 + 2b21) ≥ b41(x2 − a2
1).

By the definition of a1, b1 above, the previous inequality is

4x2

(
p1 +

√
p2

1 + q2
1

)(
x2 − p1 +

√
p2

1 + q2
1

)
≥
(
−p1 +

√
p2

1 + q2
1

)2(
2x2 − p1 −

√
p2

1 + q2
1

)
⇔ 4x4

(
p1 +

√
p2

1 + q2
1

)
+ 2x2q2

1 ≥
(
p1 −

√
p2

1 + q2
1

)(
4x2p1 + q2

1

)
⇔ 4x4

(
p1 +

√
p2

1 + q2
1

)
+ 2x2 × 4x2y2 ≥

(
p1 −

√
p2

1 + q2
1

)(
4x2(x2 − y2 + 1) + 4x2y2

)
⇔ 2x2

(√
p2

1 + q2
1 + y2

)
≥ p1 −

√
p2

1 + q2
1.
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But, for any p1, q1 ∈ R, this is easy to see that p1 −
√
p2

1 + q2
1 ≤ 0 and thus any of the previous

inequalities and so the expected one (A.2) follow.
Now let us observe that the required inequality |ζ +

√
ζ2 + 1| ≤ x+

√
x2 + 1 is fully equivalent to

(A.3) (x+ a1)2 + (y + b1)2 ≤ (x+
√
x2 + 1)2,

that we prove now. According to the algebraic identities in (A.1), by eliminating the occurences
of y, the previous formula is equivalent to

a1x+ b21 +
a1b

2
1

x
≤ x

√
x2 + 1.

In addition, we observe that x2 + 1 = x−2
(
a2

1x
2 + a2

1b
2
1 − b21x2

)
, and thus the previous inequality

is equivalent to

(A.4) a1x+ b21 +
a1b

2
1

x
≤ −

√
a2

1x
2 + a2

1b
2
1 − b21x2.

Since x < 0 and from the inequality (A.2), the formula (A.4) reads also(
a1x

2 + b21x+ a1b
2
1

)2 ≥ x2
(
a2

1x
2 + a2

1b
2
1 − b21x2

)
⇔ (x+ a1)2(x2 + b21) ≥ 0.

This ends the proof of the inequality (A.3). Now since Re ζ < 0, the analysis of the first easy case
again applies to get Re ζ +

√
(Re ζ)2 + 1 < 1.

This ends the proof of Lemma A.2. �
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