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Abstract 

Introduction: Identifying the neural substrates underlying the personality traits is a topic 

of great interest. On the other hand, it is now established that the brain is a dynamic 

networked system which can be studied using functional connectivity techniques. 

However, much of the current understanding of personality-related differences in 

functional connectivity has been obtained through the stationary analysis, which does not 

capture the complex dynamical properties of brain networks. Objective: In this study, we 

aimed to evaluate the feasibility of using dynamic network measures to predict 

personality traits. Method: Using the EEG/MEG source connectivity method combined 

with a sliding window approach, dynamic functional brain networks were reconstructed 

from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state 

MEG data provided from the Human Connectome Project. Then, several dynamic 

functional connectivity metrics were evaluated. Results: Similar observations were 

obtained by the two modalities (EEG and MEG) according to the neuroticism, which 

showed a negative correlation with the dynamic variability of resting state brain 

networks. In particular, a significant relationship between this personality trait and the 

dynamic variability of the temporal lobe regions was observed. Results also revealed that 

extraversion and openness are positively correlated with the dynamics of the brain 

networks. Conclusion: These findings highlight the importance of tracking the dynamics 

of functional brain networks to improve our understanding about the neural substrates of 

personality. 
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Introduction 

Personality refers to a characteristic way of thinking, behaving and feeling, that 

distinguishes one person from another (Back, Schmukle, & Egloff, 2009; Furr, 2009; 

Hong, Paunonen, & Slade, 2008; Jaccard, 1974). Since personality traits are thought to be 

stable and broadly predictable (Canli & Amin, 2002; Deyoung, 2006), it is unsurprising 

that personality is linked to reliable markers of brain function (Yarkoni, 2014). In this 

context, the interest in the neural substrates underpinning personality has substantially 

increased in recent years. One of the most widely used and accepted taxonomies of 

personality traits is the factor five model (FFM), or big-five model, which covers 

different aspects of behavioral and emotional characteristics (McCrae & John, 1992). It 

represents five main factors: conscientiousness, openness to experience, neuroticism, 

agreeableness and extraversion.  

On the other side, emerging evidence shows that most cognitive states and behavioral 

functions depend on the activity of numerous brain regions operating as a large-scale 

network (Bressler, 1995; Edelman, 1993; Fuster, 2010; Goldman-Rakic, 1988; Greicius, 

Krasnow, Reiss, & Menon, 2003; Mesulam, 1990; O Sporns, Chialvo, Kaiser, & 

Hilgetag, 2004). This dynamical behavior is even present in the pattern of intrinsic or 

spontaneous brain activity (i.e., when the person is at rest) (Allen et al., 2014; Baker et 



al., 2014; F. de Pasquale, Penna, Sporns, Romani, & Corbetta, 2015; Francesco de 

Pasquale et al., 2012; Kabbara, Falou, Khalil, Wendling, & Hassan, 2017a; O’Neill et al., 

2017). In particular, the dynamics of brain connectivity patterns can be studied at the 

millisecond time scale, for example using electro-encephalography (EEG) and magneto-

encephalography (MEG).  

However, while multiple studies have been conducted to relate the FFM traits to 

functional patterns of brain networks (Beaty et al., 2016a; Li et al., 2017; Mulders, Llera, 

Tendolkar, van Eijndhoven, & Beckmann, 2018; Tian, Wang, Xu, Li, & Ma, 2018; 

Tomeček & Androvičová, 2017; Toschi, Riccelli, Indovina, Terracciano, & Passamonti, 

2018), we argue that the assessment of such relationships has been limited, in large part, 

due to an ignorance of networks variation throughout the measurement period. In the 

present study, we hypothesized that investigating the dynamic properties of the brain 

network reconfiguration over time will reveal new insights about the neural substrate of 

personality. Our hypothesis was supported by many recent studies that demonstrate the 

importance of examining the temporal variations of brain networks in personality traits 

such as intelligence, creativity, executive function and resilience (Kenett, Betzel, & 

Beaty, 2020; Tompson, Falk, Vettel, & Bassett, 2018; Paban, Modolo et al., 2020).  

Here, we tested our hypothesis on two datasets: 1) Resting-state EEG data acquired from 

56 subjects, and 2) Resting-state MEG data provided from the publicly available Human 

Connectome Project (HCP) MEG2 release including 61 subjects. Dynamic brain 

networks were reconstructed using the EEG/MEG source connectivity approach (Hassan 

& Wendling, 2018) combined with a sliding window approach as in (Kabbara et al., 

2017a; O’Neill et al., 2017; Rizkallah et al., 2018). Then, based on graph theoretical 



approaches, several dynamic features were estimated. Correlations between individual 

FFM traits and network dynamics were assessed. Our findings reveal robust relationships 

between dynamic network measures and four of the big five personality traits (openness, 

conscientiousness, extraversion and neuroticism). 

Materials and methods 

The full pipeline of the current study is summarized in Figure 1.  

Dataset 1: EEG dataset 

Participants 

A total of 56 healthy subjects were recruited (29 women). The mean age was 34.7 years 

old (SD = 9.1 years, range = 18–55). Education ranged from 10 years of schooling to a 

PhD degree. None of the volunteers reported taking any medication or drugs, nor suffered 

from any past or present neurological or psychiatric disease. The study was approved by 

the “Comité de Protection des Personnes Sud Méditerranée ” (agreement n° 10–41). 

EEG Acquisition and Preprocessing 

Each EEG session consisted in a 10-min resting period with the participant’s eyes closed 

(Paban, Deshayes, Ferrer, Weill, & Alescio-Lautier, 2018). Participants were seated in a 

dimly lit room, were instructed to close their eyes, and then to simply relax until they 

were informed that they could open their eyes. Participants were informed that the resting 

period would last approximately 10 min. The eyes-closed resting EEG recordings 

protocol was chosen to minimize movement and sensory input effects on electrical brain 



activity. EEG data were collected using a 64-channel Biosemi ActiveTwo system 

(Biosemi Instruments, Amsterdam, The Netherlands) positioned according to the 

standard 10–20 system montage, one electrocardiogram, and two bilateral electro-

oculogram electrodes (EOG) for horizontal movements. Nasion-inion and preauricular 

anatomical measurements were made to locate each individual’s vertex site. Electrode 

impedances were kept below 20 kOhm. EEG signals are frequently contaminated by 

several sources of artifacts, which were addressed using the same preprocessing steps as 

described in several previous studies dealing with EEG resting-state data  (Kabbara et al., 

2017; Kabbara et al., 2018; Rizkallah et al., 2018). Briefly, bad channels (signals that are 

either completely flat or contaminated by movement artifacts) were identified by visual 

inspection, complemented by the power spectral density. These bad channels were then 

recovered using an interpolation procedure implemented in Brainstorm (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011) by using neighboring electrodes within a 5-cm radius. 

Epochs with voltage fluctuations between  +80 μV and −80 μV were kept. Five artifact-

free epochs of 40-s length were selected for each participant. This epoch length was used 

in a previous study, and was considered as a good compromise between the needed 

temporal resolution and the results reproducibility (Kabbara et al., 2017a).  

Dynamic brain networks construction 

Dynamic brain networks were reconstructed using the “EEG source connectivity” method 

(M Hassan & Wendling, 2018), combined with a sliding window approach as detailed in 

(Kabbara et al., 2017; Kabbara et al., 2018; Rizkallah et al., 2018). “EEG source 

connectivity” involves two main steps: i) solving the inverse problem in order to estimate 



the cortical sources and reconstruct their temporal dynamics, and ii) measuring the 

functional connectivity between the reconstructed time-series.  

Briefly, the steps performed were the following: 

1- EEGs and MRI template (ICBM152) were coregistered through the identification 

of anatomical landmarks by using Brainstorm (Tadel et al., 2011). 

2- A realistic head model was built using the OpenMEEG (Gramfort, Papadopoulo, 

Olivi, & Clerc, 2010) software. 

3- A Desikan-Killiany atlas-based segmentation approach was used to parcellate the 

cortical surface into 68 regions (Desikan et al., 2006). 

4- The weighted minimum norm estimate (wMNE) algorithm was used to estimate 

the regional time series (Hamalainen & Ilmoniemi, 1994). 

5- The reconstructed regional time series were filtered in different frequency bands 

(delta: 1–4 Hz; theta: 4–8 Hz; alpha: 8–13 Hz; beta: 13–30 Hz and gamma: 30-45 

Hz) 

6- To compute the functional connectivity between the reconstructed regional time-

series, we used the phase locking value (PLV) metric (Lachaux et al., 2000) 

defined by the following equation: 

        
 

 
 

     

     
                             (1) 

where       and   
    are the unwrapped phases of the signals x and y at time t. The 

Hilbert transform was used to comput the instantaneous phase of each signal.    

denotes the size of the window in which PLV is calculated. Dynamic functional 

connectivity matrices were computed for each epoch using a sliding window 



technique (Kabbara, Falou, Khalil, Wendling, & Hassan, 2017b). It consists in 

moving a time window of certain duration   along the time dimension of the epoch, 

and then PLV is calculated within each window. As recommended by (Lachaux et al., 

2000), the number of cycles should be sufficient to estimate PLV in a compromise 

between a good temporal resolution and a good accuracy. The smallest number of 

cycles recommended equals to 6. In each frequency band, we chose the smallest 

window length that is equal to 
 

                 
. Thus, in delta band, as the central 

frequency (Cf) equals to 2.5 Hz,   equals 2.4 s. Likewise,   = 1s in the delta band 

(Cf=6 Hz), 571 ms in the alpha band (Cf=10.5 Hz),279 ms (Cf=21.5 Hz) in the beta 

band, 160 ms (Cf-37.5 Hz) in the gamma band. Functional connectivity matrices were 

represented as graphs (i.e networks) composed of nodes, represented by the 68 ROIs, 

and edges corresponding to the functional connectivity values computed over the 68 

regions, pair-wise.  

7- To ensure equal network density for all the dynamic networks computed across 

time, a proportional (density-based) threshold was applied in a way to keep the 

top 10% of connectivity values in each network.  

Dataset 2: MEG dataset (HCP) 

Participants 

As part of the HCP MEG2 release (Larson-Prior et al., 2013; Van Essen et al., 2012), 

resting-state MEG recordings were collected from 61 healthy subjects (38 women). The 

release included 67 subjects, but six subjects were omitted from the analysis as their 

recordings failed to pass the quality control checks (including tests for excessive SQUID 



jumps, sensible power spectra, correlations between sensors, and availability of sufficient 

good quality recording channels). All subjects are young (22–35 years of age) and 

healthy.  

MEG recordings and pre-processing 

The acquisition was performed using a whole-head Magnes 3600 scanner (4D 

Neuroimaging, San Diego, CA, USA).  Resting state measurements were taken in three 

consecutive sessions of 6 min each. Data were provided pre-processed, after passing 

through a pipeline that removed artefactual segments, identified faulty recording 

channels, and regressed out artefacts which appear as independent components in an ICA 

decomposition with clear artefactual temporal signatures (such as eye blinks or cardiac 

interference).  

Dynamic brain networks construction 

 

Here, we adopted the same pipeline used by the previous studies dealing with the same 

dataset (Colclough et al., 2016). Thus, to solve the inverse problem, we have applied a 

linearly constrained minimum variance beamformer (Van Veen, Van Drongelen, 

Yuchtman, & Suzuki, 1997). Pre-computed single-shell source models are provided by 

the HCP and the data covariance were computed separately in the 1–30 Hz and 30–48 Hz 

bands as in (Colclough et al., 2016). Data were beamformed onto a 6 mm grid using 

normalized lead fields. Then, source estimates were normalized by the power of the 

projected sensor noise. Source space data were filtered in delta: 1–4 Hz; theta: 4–8 Hz; 

alpha: 8–13 Hz; beta: 13–30 Hz and gamma: 30-45 Hz (as in EEG dataset). After 

obtaining the regional time series on the basis of the Desikan-Killiany atlas, a symmetric 



orthogonalization procedure (Colclough, Brookes, Smith, & Woolrich, 2015) was 

performed for signal leakage removal. To ultimately estimate the functional connectivity 

between regional time series, we used the amplitude envelope correlation measure (AEC) 

(M. J. Brookes, Woolrich, & Barnes, 2012). This method briefly consists of 1) computing 

the power envelopes as the magnitude of the signal, using the Hilbert transform, and 2) 

measuring the linear amplitude correlation between the logarithms of ROI power 

envelopes. Finally, a sliding window (length = 6 sec, step = 0.5 sec) was applied to 

construct the dynamic connectivity matrices. This sliding window has been previously 

used to reconstruct the dynamic networks derived from MEG data (O’Neill et al., 2016). 

Also, matrices were thresholded by keeping the strongest 10% connections of each 

network.  

Dynamic measures 

While functional connectivity provides crucial information about how the different brain 

regions are connected, graph theory offers a framework to characterize the network 

topology and organization. In practice, many graph measures can be extracted from 

networks to characterize static and dynamic network properties. Here, we focused on 

measures quantifying the dynamic aspect of the brain networks/modules/regions and their 

reconfiguration over time.  

Graph-based dynamic measures: 

Most previous studies attempt to average the graph measures derived from temporal 

windows (F. de Pasquale et al., 2015; Kabbara et al., 2017a). However, such strategy 



constrains the dynamic analysis. Distinctively, we aimed here at quantifying the dynamic 

variation of node’s characteristics inferred from graph measures (including strength, 

centrality and clustering). The graph measure’s variation    ) of the node   across time 

windows is defined as: 

           
                          (2) 

Where    is the considered graph measure,   denotes the number of time windows and 

   and      refer to two consecutive time windows.       is the value of the graph 

measure (strength, clustering or centrality) of the considered node   at the time window 

  .  A node with high V reflects that the node is dynamic in terms of the given   . 

In this study we focused on three graph measures: 

1- Strength: The node’s strength is defined as the sum of all edges weights 

connected to a node (Barrat, Barthélemy, Pastor-Satorras, & Vespignani, 2004). It 

indicates how influential the node is with respect to other nodes.   

2- Clustering coefficient: The clustering coefficient of a node evaluates the density 

of connections formed by its neighbors (Watts & Strogatz, 1998). It is calculated 

by dividing the number of existing edges between the node’s neighbors to the 

number of possible edges.  The clustering coefficient of a node is an indicator of 

its segregation within the network. 

3- Betweenness centrality: The betweenness centrality calculates the number of 

shortest paths that pass through a specific node (Rubinov & Sporns, 2011). The 



importance of a node is proportional to the number of paths in which it 

participates. 

An illustrative example of strength variability on a toy dynamic graph is presented in 

Figure 2.B.  

Modularity-based dynamic measures: 

Modularity describes the tendency of a network to be partitioned into modules or 

communities of high internal connectivity and low external connectivity (Sporns and 

Betzel, 2016). To explore how brain modular networks reshape over time, we detected 

the dynamic modular states that fluctuate over time using our recent proposed algorithm 

(Kabbara et al., 2019). Briefly, it attempts to extract the main modular structures (known 

as modular states) that fluctuate repetitively across time. Modular states reflect unique 

spatial modular organization, and are derived as follows: 

● Decompose each temporal network into modules using the consensus modularity 

approach (Bassett et al., 2013; Kabbara et al., 2017a). This approach consists of 

generating an ensemble of partitions acquired from the Newman algorithm 

(Girvan & Newman, 2002) and Louvain algorithm (Blondel, Guillaume, 

Lambiotte, & Lefebvre, 2008) repeated for 200 runs. Then, an association matrix 

of N x N (where N is the number of nodes) is obtained by counting the number of 

times two nodes are assigned to the same module across all runs and algorithms. 

The association matrix is then compared to a null model association matrix 

generated from a permutation of the original partitions, and only the significant 



values are retained (Bassett et al., 2013). To ultimately obtain consensus 

communities, we re-clustered the association matrix using Louvain algorithm.  

● Assess the similarity between the temporal modular structures using the z-score of 

Rand coefficient, bounded between 0 (no similar pair placements) and 1 (identical 

partitions) as proposed by (Traud, Kelsic, Mucha, & Porter, 2008). This yielded a 

T x T similarity matrix where T is the number of time windows.   

● Cluster the similarity matrix into “categorical” modular states (MS) using the 

consensus modularity method. This step combines similar temporal modular 

structures into the same community. Hence, the association matrix of each 

“categorical” community is computed using the modular affiliations of its 

corresponding networks. 

Once the modular states (MS) were computed, two metrics were extracted:  

1- The number of MSs  

2- The number of transitions: It measures the number of switching between MSs.  

In addition, after obtaining the dynamic modular affiliations, two dynamic nodal 

measures were calculated: 

1. Flexibility: It is defined as the number of times that a brain region changes its 

module across time, normalized by the total number of changes that are 

possible. We considered that a module was changed if more than 50% of its 

nodes have changed (Figure 2.C).  

2. Promiscuity: It is defined as the number of modules a node participates during 

time (Figure 2.D) 

Statistical analysis 



Dynamic measures were extracted at the level of each brain region (node-wise analysis), 

and at the level of the whole network. At the network-level, flexibility, promiscuity, 

strength variation, clustering variation and centrality variation were averaged over all 

brain regions. At the node-level, the values of each node were kept. In order to 

investigate the associations between the dynamic network measures and FFM personality 

traits, Pearson’s correlation analysis was assessed. To consider the multiple comparisons 

problem (between the five frequency bands, five personality traits and 68 ROIs), p-values 

were corrected using Bonferroni and FDR procedures (Bland & Altman, 1995). 

Bonferroni correction yields an adjusted threshold of         for the network-level. 

For node-level features, p-value were corrected across the five frequency bands, five 

personality traits and 68 regions, resulting in a Bonferroni-adjusted threshold of   

       

To avoid data dredging problem, we conducted randomized out-of-sample tests repeated 

100 times. The out of sample test consists of randomly dividing data into two random 

subsets. If significant correlations were obtained from the two subsets for more than 95% 

of the iterations, the correlation is considered statistically significant on the whole 

distribution.  

Evaluating the FFM personality traits 

The Five-Factor Model (FFM) represents five major personality traits: 1) 

conscientiousness which describes an organized and detailed-oriented nature, 2) 

agreeableness which is associated to kindness and cooperativeness, 3) neuroticism which 

indexes the tendency to have negative feelings, 4) openness is related to intellectual 



curiosity and imagination, 5) extraversion refers to the energy drawn from social 

interactions.  

For the EEG dataset, personality traits were assessed with the French Big Five Inventory 

(BFI-Fr) (Plaisant, Courtois, Réveillère, Mendelsohn, & John, 2010). The BFI-Fr is 

composed by 45 items in which respondents decide whether they agree or disagree with 

each question, on a 1 (strongly disagree) to 5 (strongly agree) Likert scale. Responses are 

then summed to determine the scores for the five personality constructs. 

According to the MEG dataset, the FFM personality traits were assessed via the NEO 

five-factors inventory (NEO-FFI) (Costa & McCrae, 1992; Terracciano, 2003). The 

NEO-FFI is composed by 60 items in which participants reported their level of agreement 

on a 5-points Likert scale, from strongly disagree to strongly agree.  

Results 

In each dataset, the dynamic functional networks were reconstructed using a sliding 

window approach for each subject. Then, dynamic measures were extracted at the level 

of each brain region (node-wise analysis), and at the level of the whole network. At the 

network-level, flexibility, promiscuity, strength variation, clustering variation and 

centrality variation were averaged over all brain regions. At the node-level, the values of 

each node were kept.  

Dataset 1: EEG  



The correlation between FFM personality traits and the network-level parameters are 

presented in Figure 3. Neuroticism showed a negative correlation with the number of 

transitions (                           5) and the overall promiscuity 

(                            ) in the beta band, as well as the flexibility in the theta 

band (                                   ). Results also depict a negative 

correlation between conscientiousness and the overall clustering variation in the alpha 

band (                                  3).  No significant relationship was 

observed at the network-level between any of the dynamic measures with agreeableness, 

openness and extraversion.  

Figure 4 illustrates the correlation between FFM traits and nodal characteristics in terms 

of dynamic features. Results show that higher extraversion was correlated with higher 

clustering variability of superior parietal lobule (SPL) in the theta band 

(                                  ). In contrast, neuroticism was negatively 

correlated with strength variation of the left middle temporal gyrus (MTG) 

(                                  1), left superior temporal gyrus (STG) 

(                                   ) and transverse temporal gyrus (TT) 

(                           ) in the theta band.  

Dataset 2: MEG  

Figure 5 illustrates the correlation between FFM personality traits and network-level 

parameters for the MEG analysis. One can notice that neuroticism showed negative 

correlations with flexibility in the theta (                                  6), alpha 

(                                   ) and beta bands (                       



            ). Neuroticism was also negatively correlated with strength variability in 

delta band (                                    . In contrast, a positive significant 

correlation was depicted between extraversion and the clustering variability in the theta 

band (                           5).   

Results in Figure 6 show that openness was positively correlated with the strength 

variability of the superior frontal gyrus (sFG) in the beta band (                

            . However, negative correlations were observed between neuroticism and 

the strength variation of the left temporal pole (TP) in the  alpha band 

(                                   ), right supramarginal (SMAR) in both theta 

(                                   ) and beta bands (                       

            ). In addition, neuroticism was negatively correlated with flexibility of 

the superior temporal gyrus (STG) in theta band (                              

     ). 

Randomized out of sample tests 

For each feature, a distribution of 200 values (100 p-values for each random subset) was 

obtained as a result of the correlation between the FFM personality traits and the network 

feature. Figure 6.A shows a typical example of a node-level feature that successively 

passed the randomized tests. Specifically, the number of p-values lower than the 

Bonferroni adjusted value          reached 95% of the total number of iterations. 

In contrast, figure 6.B shows an example of a node-level feature that failed to pass the 

randomized tests with a proportion of 65% of significant correlations. We report in Table 



1 and Table 2 the results of randomized tests for all features mentioned as significant for 

the two datasets.  

Discussion 

The present study provides evidence that dynamic features (derived from graph 

measures) based on resting-state EEG data are significantly associated with FFM 

personality traits (derived from the BFI-Fr questionnaire).  

The majority of studies in personality has mainly examined the interaction between 

neuropsychological traits and brain features in a static way. In particular, multiple 

previous studies focused on investigating how personality traits are linked to differences 

in morphological brain properties (DeYoung, 2010; Gray, Owens, Hyatt, & Miller, 2018; 

Liu et al., 2013; Omura, Constable, & Canli, 2005; Riccelli, Toschi, Nigro, Terracciano, 

& Passamonti, 2017). Another traditional way was to perform brain activation analysis to 

understand the neural basis of personality (Cooper, Tompson, O’Donnell, & Falk, 2015; 

Falk et al., 2015). However, these strategies ignore useful information about the way in 

which brain regions interact with each other (Sebastian Markett, Montag, & Reuter, 

2018). Moving forward, multiple connectivity studies have been recently conducted to 

understand the neural substrates of human personality (Adelstein et al., 2011; Aghajani et 

al., 2013; Beaty et al., 2016b; Bey, Montag, Reuter, Weber, & Markett, 2015; Bey et al., 

2015; Dubois, Galdi, Han, Paul, & Adolphs, 2018; Gao, 2013; Kyeong, Kim, Park, & 

Hwang, 2014; S. Markett et al., 2013; Sebastian Markett, Montag, Melchers, Weber, & 

Reuter, 2016; Tompson et al., 2018). Interestingly, graph theoretical assessment derived 



from networks was applied to link topological brain features to the Big Five personality 

traits (Beaty et al., 2016b; Bey et al., 2015; Gao, 2013; Toschi et al., 2018). As an 

example, (Toschi et al. 2018) shows that conscientiousness is linked to nodal properties 

(clustering coefficient, betweenness centrality and strength) of fronto-parietal and default 

mode network regions. Nevertheless, recent evidence revealed that dynamic analysis of 

functional data provides a more comprehensive understanding of neural implementation 

in personality (Tompson et al., 2018). The main originality of the current work is that it 

extends the traditional static view of brain networks to explore the time-varying 

characteristics associated to FFM traits. Particularly, we hypothesized that fast brain 

dynamics in EEG and MEG resting state networks are correlated with FFM personality. 

Our hypothesis is based on many recent studies suggesting that personality-related 

differences in functional connectivity are discernable during rest (Adelstein et al., 2011; 

Beaty et al., 2016; Bey, Montag, Reuter, Weber, & Markett, 2015; Gao, 2013; T. Li et al., 

2017; Y. Li, Qin, Jiang, Zhang, & Yu, 2012; Markett et al., 2013; Mulders, Llera, 

Tendolkar, van Eijndhoven, & Beckmann, 2018; Sheu, Ryan, & Gianaros, 2011; Sheu et 

al., 2011). Such finding is advantageous since collecting brain data during rest is more 

feasible. Also, this hypothesis is supported by the evidence that resting-state brain 

dynamics fluctuates at sub-second timecale (less than 300 ms) (Baker et al., 2014; 

Damborská et al., 2019; Kabbara, Falou, Khalil, Wendling, & Hassan, 2017a).  

At the level of the whole network, both EEG and MEG analyses showed common 

observations according to the neuroticism personality trait. This latter appeared to be the 

most sensitive to the analysis through dynamic approaches. Importantly, the EEG study 

showed negative correlations between neuroticism and centrality variation, number of 



transitions, promiscuity, and flexibility. Similarly, MEG study showed negative 

correlations between neuroticism, flexibility and strength variation. This suggests that the 

more individuals had a strong tendency to experience negative affection, such as anxiety, 

worry, fear, and depressive mood  (Ormel et al., 2013), the less their brain showed 

dynamic characteristics in terms of modular organization over time. In other words, one 

may speculate that individuals with low dynamic measures of brain networks did not 

have enough capacity to get over their tendency to experience negative emotions and 

their psychological distress. 

 More particularly, at the node-level, the degree of neuroticism was associated with low 

dynamic variation of temporal regions using the two modalities (mainly STG, MTG and 

TT in EEG study; STG in MEG study). Importantly, the temporal lobe is known to be 

involved in processing sensory input related to visual memory, language comprehension, 

and emotion association (Kosslyn, 2007). In particular, the STG is involved in the 

interpretation of other individuals' actions and intentions (Pelphrey & Morris, 2006). 

Others stated that STG plays an important role in emotional processing and effective 

responses to social cues, such as facial expressions and eye direction (Pelphrey & Carter, 

2008; Singer, 2006). These findings are in agreement with a recent study showing that 

neurotic individuals present delayed detection of emotional and facial expressions 

(Sawada et al., 2016). 

Using MEG dataset, extraversion was showed to be positively correlated with the 

clustering variation of the whole network. The similar dynamic behavior was also found 

using EEG dataset where a positive correlation was established between extraversion and 

the clustering variation of superior parietal lobule (SPL), which is involved in attention 



and visuomotor integration (Iacoboni & Zaidel, 2004). These findings highlight the 

complementary information that can be provided by the two modalities (F. de Pasquale, 

Corbetta, Betti, & Della Penna, 2018). In line with (Suslow et al., 2010) showing that 

extraverts displayed enhanced sensitivity and efficiency in sensory information 

processing compared with introverts, our data add to our neurobiological underpinning 

knowledge of extraversion highlighting the involvement of the SPL in such processes. 

Thus, SPL would play a central role promoting segregation within the network of 

extraverted individuals.  

Besides these similar observations led by both MEG and EEG analyses, 

conscientiousness revealed a significant correlation with dynamic metrics only using 

EEG, while openness showed a significant correlation with the dynamic measures using 

MEG solely.  This discrepancy can be due to the fact that MEG-EEG differences 

particularly arise when investigating the transient resting-state functional connectivity 

patterns (Coquelet et al., 2020). It may also be due to the difference in the sample 

analyzed by the two modalities, as well as the pre-processing, source reconstruction and 

connectivity methods used to reconstruct underlying networks. Moreover, several studies 

show that openness to experience and conscientiousness traits appear to differ across 

different samples (Hofstee, de Raad, & Goldberg, 1992; Johnson & Ostendorf, 1993). 

Still, the impact of these differences was less drastic on the neuroticism and the 

extraversion traits. Importantly, these two traits are universally accepted and appear in all 

major models of personality traits (Zelenski & Larsen, 1999). Thus, the most consistent 

and significant result obtained shows that the dynamic flexibility in functional networks 



could plausibly contribute to increased emotional reactivity, particularly linked to 

neuroticism and extraversion (Yarkoni, 2014).  

Results show that among the five frequency bands studied, most changes were observed 

within slow oscillations (namely, delta, theta, and alpha bands). As suggested by 

(Knyazev, 2012), these oscillations might play a major role in integration across diverse 

cortical sites by synchronizing coherent activity and phase coupling across spatially 

distributed neural assemblies, so that it might not be surprising that network properties 

related to personality traits were affected only within slower frequency bands.  

Overall, the present study adds to our recent paper (Paban et al. 2019) in providing new 

evidence that the dynamic reconfiguration of brain networks is of particular importance 

in shaping behavior.  

Limitations: 

In this study, we have assessed the personality traits using FFM. One common limitation 

of FFM is that it does not provide an adequate coverage of all personality domains 

(McAdams, 1992). As an example, it lacks the description of religiosity, honesty, sense 

of humor and many other domains. However, there is no consensus about the exact 

number of broad personality dimensions (Boyle, 2008). Second, FFM self-reports are 

sometimes subjective and may be influenced by many moderator factors such as cultures 

and situations (Boyle, 2008; “Five-Factor Model Personal. Across Cult.,” 2002). Some 

studies also show that many personality traits (such as openness to experience and 

conscientiousness) are not replicable across different samples (Hofstee, de Raad, & 

Goldberg, 1992; Johnson & Ostendorf, 1993). Despite all these limitations, the FFM has 



potentially been considered as a useful structure for describing the personality constructs. 

Moreover, in this paper, we have investigated the dynamic brain networks during resting-

state. We believe that the use of cognitive tasks that stimulate the related networks for 

each personality trait may advance our understanding of individual differences in 

dynamic network features. 

Methodological considerations: 

First, in MEG analysis, the head model was computed from the individual MRI of each 

subject. Nevertheless, in EEG analysis, we used a template generated from MRIs of 

healthy controls, instead of a native MRI for EEG source connectivity. Recently, a study 

showed that there is no potential bias in the use of a template MRI as compared to 

individual MRI co-registration (Douw, Nieboer, Stam, Tewarie, & Hillebrand, 2018). In 

this context, a considerable number of EEG/MEG connectivity studies have used the 

template-based method due to the unavailability of native MRIs (Hassan et al., 2017; 

Kabbara et al., 2018; Lopez et al., 2014).  However, we are aware that the use of subject-

specific MRI is more recommended in clinical studies.  

Second, we have adopted in each dataset the same pipeline (from data processing to 

networks construction) used by the previous studies dealing with the same datasets. Thus, 

for the EEG dataset, we used the wMNE/PLV combination to reconstruct the dynamic 

networks, as it is supported by two comparative studies (Mahmoud Hassan, Dufor, 

Merlet, Berrou, & Wendling, 2014; Mahmoud Hassan et al., 2016). For the MEG dataset, 

beamforming construction combined with amplitude correlation between band-limited 



power envelops was sustained by multiple studies (Brookes et al. 2012, Colclough et al. 

2015, 2016; O’Neill et al. 2016).  

Third, choosing the suitable window width is a crucial issue in constructing the dynamic 

functional networks. On the one hand, short windows do not contain sufficient 

information to accurately estimate connectivity. On the other hand, large windows may 

fail to capture the temporal changes of the brain networks. Hence, the ideal is to choose 

the shortest window that guarantees a sufficient number of data points over which the 

connectivity is calculated. This depends on the frequency band of interest that affects the 

degree of freedom in time series. In this study, we adapted the recommendation of 

Lachaux et al. (Lachaux et al., 2000) in selecting the smallest appropriate window length 

that is equal to where 6 is the number of ‘cycles’ at the given frequency band. The 

reproducibility of resting state results whilst changing the size of the sliding window was 

validated in a previous study (Kabbara et al., 2017a). 
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Figure 1. Full study pipeline. First, dynamic brain networks were reconstructed from 

resting state EEG data of 56 participants and MEG data of 61 participants. Then, for each 

subject, dynamic features were extracted (modularity-based features and graph-based 

features). Correlations between FFM personality traits (agreeableness, extraversion, 

neuroticism, openness, conscientiousness) and the dynamic features were then evaluated. 

Finally, statistical tests were assessed using a randomized out of sample test. STR = 

strength, CLUST=clustering coefficient, CENT=betweenness centrality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. An illustrative example of the dynamic features extracted from a toy dynamic 

graph. A) The dynamic modular networks. B) The strength variation. C) Flexibility of red 

and blue nodes. D) Promiscuity of red and yellow nodes. 

 



 

Figure 3. Significant correlations between the FFM traits and the dynamic graph 

measures computed on the network-level using EEG dataset.  

 



 

Figure 4. The cortical surface illustrating the brain regions for which the dynamic 

measures significantly correlated with FFM traits using EEG dataset. STR = strength, 

CLUST=clustering coefficient, CENT=betweenness centrality, FLEX: flexibility, 

FUS=Fusiform, PCC: posterior cingulate cortex SPL=superior parietal lobule, STG= 

superior temporal gyrus, MTG=middle temporal gyrus, TT= transverse temporal. 

 



 

Figure 5. Significant correlations between the FFM traits and the dynamic graph 

measures computed on the network-level using MEG dataset.  

 



 

Figure 6. The cortical surface illustrating the brain regions for which the dynamic 

measures significantly correlated with FFM traits using MEG dataset. STR = strength, 

FLEX: flexibility, SMAR=Supramarginal, STG= superior temporal gyrus, TP= temporal 

pole. 
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