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Abstract—Compressed sensing MRI (CS-MRI) is 

considered as a powerful technique for decreasing the scan 

time of MRI while ensuring the image quality. However, 

state of the art reconstruction algorithms are still subjected 

to two challenges including terrible parameters tuning and 

image details loss resulted from over-smoothing. In this 

paper, we propose a deep frequency-division network 

(DFDN) to face these two image reconstruction issues. The 

proposed DFDN approach applies a deep iterative 

reconstruction network (DIRN) to replace the 

regularization terms and the corresponding parameters by 

a stacked convolution neural network (CNN). And then 

multiple DIRN blocks are cascaded continuously as one 

deeper neural network. Data consistency (DC) layer is 

incorporated after each DIRN block to correct the k-space 

data of intermediate results. Image content loss is 

computed after each DC layer and frequency-division loss 

is gained by weighting the high frequency loss and low 

frequency loss after each DIRN block. The combination of 

image content loss and frequency-division loss is considered 

as the total loss for constraining the network training 

procedure. Validations of the proposed method have been 

performed on two brain datasets. Visual results and 

quantitative evaluations show that the proposed DFDN 

algorithm has better performance in sparse MRI 

reconstruction than other comparative methods.  

 

Keywords—Magnetic resonance imaging, compressed 

sensing, iterative reconstruction, deep learning, 

convolutional neural network 

1. INTRODUCTION 

Magnetic resonance imaging (MRI) is one of the most 

clinically valuable imaging modalities owing to its multiple 

advantages such as non-radiation damage, high resolution of 

soft tissue, rich information with multiple contrasts, etc. 

However, MRI acquisitions are still slow equipment due to its 

inherent physical or physiological constraints [1]. It may take 

minutes for image with high spatial resolutions even in parallel 

imaging based on multiple coils [2-4], which hinders the usage 

of MRI in certain applications such as cardiac and abdominal 

imaging [5].  

In the last decades, compressed sensing (CS) has been used 

to accelerate MR imaging by employing incoherent sampling 

schemes and by incorporating different sparsity regularization 

such as total variation (TV) [6, 7] or wavelet [8, 9]. Although 

these methods based on fixed sparsity transforms are easy to 

optimize, their ability to represent complex structure and 

texture information is restricted. Then some more flexible 

sparsity representations have also been exploited to further 

improve the reconstruction, e.g., feature learning of available 

high quality MR images [10, 11]. However, the above iterative 

optimization schemes still must face three challenging 

problems: 1) the high time cost and memory resource 

requirements; 2) the determination of appropriate 

regularization terms and their corresponding parameters; 3) the 

loss of image details resulted from over-smoothing.  

Recently, CNN based deep learning methods have been 

successfully applied in solving many computer vision tasks 

[12-16]. CS-MRI is analogous to de-aliasing, image 

segmentation and image in-painting in essence [17-20]. Related 

attempts for CS-MRI reported up to now can be roughly 

classified into two types, i.e., expanding network architecture 

and direct deep network for de-aliasing.  

The expanding network architecture is gained from the 

expansion of iterative process of numerical optimization 

generally. In [21], alternating direction method of multipliers 

(ADMM) is unfolded into one deep network to optimize 

iterative MRI reconstruction, which consists of a set of 

reconstruction layers, convolution layers, nonlinear transform 
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layers and multiplier update layers. Variational network model 

embedded in an unrolled gradient descent scheme was 

proposed in [22], in which the prior model as well as the data 

term weights were learned using an offline training procedure. 

Although the related parameters like penalty parameters, 

update rates or shrinkage functions in these implementations 

can be learned via training data pairs including reconstructions 

with under-sampled data and full k-space data, its practical 

effectiveness tends to be compromised by an over-smoothing 

of the reconstructed MR images.  

Direct deep network constructed by arbitrary layers and 

connection types is designed for de-aliasing, which is trained to 

map the sparse reconstruction images to the corresponding high 

quality images reconstructed using full k-space data. In [23], a 

deep cascade of convolutional neural networks was reported for 

dynamic sequence reconstruction of cardiac MRI. A method 

termed “refine generative adversarial network” (RefineGAN) 

was also developed by combining convolutional auto-encoder, 

residual networks, generative adversarial networks (GANs) and 

cyclic loss [24]. Similar to the GAN theory, adversarial loss and 

content loss including both mean square error (MSE) and 

perceptual loss defined by VGG networks were combined to 

enhance the reconstruction accuracy in DAGAN [25]. The 

automated transform based on a manifold approximation 

(AUTOMAP) implemented with a deep neural network in [26] 

demonstrates the potential of manifold learning in sparse 

representation for reducing artifacts and noises in MRI 

reconstruction.  

The reconstruction time cost has been decreased to an 

acceptable level, because there is no online iterative updating 

calculation in deep learning methods. Performance of above 

neural network based methods has proved the promising of 

deep learning in CS-MRI for obtaining high image quality. 

However, the exploitation of deep learning in CS-MRI is still in 

the preliminary stage, which remains to be further improved.  

In this paper, we propose a deep frequency-division network 

(DFDN) to alleviate another two problems in MRI 

reconstruction. This DFDN approach first applies a deep 

iterative reconstruction network (DIRN), in which the 

regularization terms and involved parameters are substituted by 

the stacked CNN with multiple layers. And then multiple DIRN 

blocks are cascaded continuously as one deeper neural network. 

Data consistency layer is incorporated after each DIRN block to 

correct the k-space data of intermediate results. Image content 

loss is computed to ensure the image similarity between 

intermediate results and references after each DC layer. 

Furthermore, a frequency-division loss is gained by calculating 

the high frequency loss and low frequency loss with different 

weights after each DIRN block separately. The combination of 

image content loss and frequency-division loss is considered as 

the total loss for constraining the network training procedure, 

which can be conducive to preserve more image details.  

The rest of paper is structured as follows. The problem 

formulation is described in Section 2. The main features of the 

proposed method are detailed in Section 3. The conducted 

experiments and comparisons with other approaches are given 

in Section 4. Discussion and perspectives are sketched in 

Section 5. 

2. PROBLEM FORMULATION    

After collecting k-space data from receiving coils, the MR 

image reconstruction can be considered as a solution of the 

following linear system: 

        Fx y                                       (1) 

where F  is a Fourier encoding matrix, y and x are the raw data 

in k-space and MR image to be reconstructed,  respectively. 

The inverse problem can be directly solved by the inverse fast 

Fourier transform (IFFT) in the case of complete k-space raw 

data. However, in the acceleration case, where the raw data is 

significantly under-sampled, the reconstructed images obtained 

in this way will suffer from serious artifacts. To reduce them 

the reconstruction problem can be solved following the general 

CS-MRI framework: 

2

2
1

ˆ arg  min  - ( )
2

K

u u k k
x k

x F x y R x





              (2) 

where the first term is a data fidelity term addressing the 

consistency between x  and
uy , and the second one is the 

regularization term concerning sparse constraints upon the MR 

image as the solution. 
uF  and 

uy  are the under-sampled 

Fourier encoding matrix and the corresponding k-space data, 

respectively.   is used to balance the regularization term and 

the data fidelity term. K  is the number of imposed 

regularization terms. In the conventional model-based CS-MRI 

methods, the sparsity constraint such as total generalized 

variation (TGV) [27], wavelets [28] or adaptive transform 

domain obtained by dictionary learning [29, 30], can be 

considered as the regularization term. Although leading to 

improved reconstruction quality, methods based on model (2) 

are often limited by high computation cost, parameter 

sensitivities, and even compromised solution in the case of 

highly under-sampled data.   

3. METHODS 

The procedure of iterative optimization (2) is first unfolded 

as the neural network, and then regularization terms and their 

related parameters are replaced by the stacked CNN. This 

expanding network is considered as one cascade block for the 

proposed DFDN. And a data consistency (DC) layer is 

incorporated behind each block. Frequency-division loss for 

k-space data computed after each block and image content loss 

obtained after each DC layer are combined with different 

weights to preserve fine image details. The reconstruction 

network structure, loss function are described in detail in this 

section. 

3.1 Network Architecture 

In solving Eq. (2), different optimization methods can be 

used, such as Bregman methods and basis pursuit methods 
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[31-32]. When using a gradient descent algorithm, the updating 

process can be expressed as follows: 

1

1

( ) ( ) ( )
K

t t t T t t T t t t

u u u k k k

k

x x F F x y R R x 



 
    

 
       (3) 

where the superscript T  is the transpose operation for matrix, 

( )k   is the differential of ( )k   in Eq. (2). t

k  and t

kR  take 

some specific forms over iterations. 

Sparsity transform learned from the CNN trained data can be 

applied to improve the CS-based reconstruction [33]. The 

regularization term in Eq. (3) has a similar form as CNN, in 

which t

kR  and ( )t T

kR  can be regarded as the convolutions in 

convolution layers, and t

k  as one activation layer [34].  

According to this observation, the regularization term can be 

written in a more general form: 

1 1

1 1 1

1

( ) (ReLu( ( ReLu( )))),

W * b ,

W *(ReLu( )) b ,  ( 2,  3, , ).

t t t t

L L

t t t t

t t t t

l l l l

Q x f f f

f x

f f l L







 

  

         (4) 

where W ( 1,  2,  )t

l l L ,  is the weight consisting of ln

convolution kernels with a uniform kernel size 
ls , bt

l
 is the 

corresponding bias, * and ReLu( )  denote the convolution 

operator and activation function, respectively. The parameter 

L  in the stacked CNN represents the number of convolution 

layers. Fig.1 illustrates the architecture of such stacked CNN 

with brain MR images. Accordingly, Eq. (3) is transferred into 

the new form as follow: 

 1 ( ) ( )t t t T t t

u u ux x F F x y Q x      .           (5) 

This overall iterative reconstruction procedure can be unfolded 

into neural network termed as a deep iterative reconstruction 

network (DIRN) for MRI, which is shown in Fig. 2(a).  

Compared with overall image information, edge features 

only accounts for a small part in MR image, which implies that 

an underweighted training of the edge features for the network 

might lead to compromised image detail preservation. Thus, it 

seems to be fuzzy in reconstruction results generally. In order to 

reduce this problem, multiple DIRNs are cascaded together 

with data consistency (DC) layers to construct one deeper 

neural network. Furthermore, compound loss including 

frequency-division loss and image content loss are proposed to 

preserve more edge information, which would be described in 

next sub-section. The proposed network with compound loss 

including frequency-division loss is termed as deep 

frequency-division frequency network (DFDN), the 

implementation framework of which is shown in Fig. 2(b). 

  

Fig. 2. The implementation framework of (a) DIRN and (b) DFDN network. The blue and green solid arrows denote that the low frequency and high 

frequency k-space data acquiring operation from intermediate results, respectively. The orange solid arrow is to obtain the intermediate images. 

Fig. 1. The architecture of stacked convolution neural network. 
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3.2 Loss function   

An improved solution to the problem of image details 

missing is to train the neural network with multiple constraints. 

Expect for the conventional image content loss, the 

frequency-division loss is proposed to preserve more image 

edge feature information in this study. 

 The image content based loss function is used as an 

important constraint imposing to the de-aliased image obtained 

from each DIRN block to approach the reference one. The 1

-norm is a sound way for evaluating the above similarity
img

: 

1
mean( )img DC Rx x  ,                          (6) 

where 
DCx  is the output from each DC layer in DFDN and 

Rx  

is the reference image. 

The frequency loss can be used as an additional constraint to 

reduce the difference between frequency data obtained after 

each DIRN block and reference k-space data. Low frequency 

data represents the main content of images, while high 

frequency data implies more image details. In order to preserve 

more edge features and avoid over-smoothing, the high 

frequency loss needs to be assigned higher weights. Thus, the 

high frequency loss and low frequency loss should be divided 

and calculated separately, which is termed as the 

frequency-division loss. The implementation process is 

achieved by the under-sampling mask: 

  
1

1

mean( ( ) ( ) )

mean( ( ) ( ) )

lf DIRN R

hf DIRN R

s y s y

s y s y

 

 
,                   (7) 

where DIRNy  and Ry  are the k-space data obtained from the 

IFFT of de-aliased image after each DIRN block and the 

reference image, respectively. s  denotes the low frequency 

data acquiring operation by under-sampling mask, while s  is 

reverse operation to obtain high frequency data. 

Fig. 3. Some example brain MR images from HCP dataset (a) - (c), and BDP 

dataset (d) - (f).  

Fig. 4. Four typical under-sampling patterns (Radial, Cartesian, Gauss and 

Spiral) adopted in our experiments. 
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In the overall network training process, the proposed DFDN 

is therefore trained to minimize the following combined loss 

function 
comL : 

 
com img lf hf     ,                  (8) 

where  ,   and r  are the weights for 
adv

, 
img

and 
frq

, 

respectively.  

4. EXPERIMENT SETUP AND RESULTS    

4.1 Experiment Setup    

a) Dataset description: The first brain dataset from the 

Human Connectome Project (HCP)
1
 and the second brain 

dataset from the Brain Development Project (BDP)
2
 were both 

used for evaluating the proposed method. Each brain dataset 

includes 500 T1-weighted MR images from ten volunteers (

320 320 and 256 256 in-plane resolution for the first and 

second brain dataset, separately). 5-fold cross validation was 

conducted to test the performance of model in this study, in 

which 400 images were selected from eight volunteers for 

training and 100 images from another two volunteers for testing. 

Each dataset was normalized by the maximum intensity of the 

dataset. Image samples from the two datasets are displayed in 

Fig. 3. The training inputs were generated from the k-space data 

using the pseudo radial under-sampling pattern.  

b) Network training setup: The parameters influencing the 

reconstruction quality include the filter number ln , the size of 

convolution kernel ls , the stage number 
tN and the number of 

DIRN blocks 
sN  . In this study, to reduce the computation cost 

and memory consumption, the number of convolution layers L  

in the stacked CNN was set to 3. Thus, for each stage t in DIRN, 

estimating the parameter set 
1 2 3 1 2 3 = (W , W , W , b , b , b , )t t t t t t t t  

is the optimization target for training the DFDN network. Filter 

numbers  1 2 3{ , , }n n n  and kernel sizes 1 2 3{ , , }s s s , the number 

of stages 
tN  and DIRN blocks should be set for network 

training in the proposed method.  In this study, the default 

configuration for DFDN was 1 2 48n n  , 3 1n  , 

1 2 3 5 5s s s    , 2sN  and 10tN  . The regularization 

parameter 
t  was initially set to 0. The learning rate, batch size 

and epochs are set to be 
-410 , 1 and 50 for training the proposed 

network, respectively. For the loss function in Eq. (8), 
-3 -21,  10 ,  =10     are the pre-defined weight parameters 

in the proposed method 

c) Comparison algorithms: The comparisons with our 

proposed DFDN approach include: zero-filling (ZF), Total 

Variation (TV), DeepADMM [21], DAGAN [25] and DIRN 

presented in this study. The ZF reconstructions and 

corresponding k-space data were used as inputs for all methods, 

 
1 https://www.humanconnectome.org/ 
2 www.brain-develpoment.org/ixi-dataset 

and the reference images are reconstructed from fully sampled 

k-space data. TV was applied through the provided executable 

solver with the regularization parameter equal to 10
6
. For the 

Deep ADMM method, 10 stages in network was recommended 

to achieve convergence. For the DAGAN method, the 

pre-tuned hyper-parameters include: weights for pixel loss, 

perceptual loss, frequency loss and frequency loss. They were 

respectively set to15, 0.0025, 0.1 and 1, and the initial learning 

rate to 0.0001. Regarding to DIRN, the initial learning rate 

0.0001 and 50 epochs for training were used in this study.  

d) Under-sampling Patterns: Radial under-sampling pattern 

was applied to retain 10%, 20% and 30% k-space data 

corresponding to 10 , 5  and 3.3  acceleration factors. In 

order to compare the influence of different under-sampling 

patterns for the proposed DFDN, other patterns like Cartesian, 

gauss and spiral were also tested on brain dataset from BDP 

together. Fig. 4 depicts the four different under-sampling 

patterns.  

e)  Implementation details: In this study, data augmentation 

is conducted to enhance generalization and robustness 

performance of the proposed DFDN. Image flipping, rotation 

and cropping were applied to simulate the elastic deformation 

of human tissues. Normalized mean squared error (NMSE), 

peak signal-to-noise ratio (PSNR in dB), structural similarity 

information (SSIM) and test time cost are adopted to assess the 

performance of different algorithms. This network was trained 

using the neural network toolkit tensorpack
3
 and developed on 

the basis of the tensorflow library. All the computations were 

performed on one PC equipped with Intel(R) Core(TM) 

i5-7500 CPU @3.40 GHz and 16 GB RAM. A 11 GB Nvidia 

GTX 1080 Ti is used as the GPU for network training.  

4.2 Qualitative and quantitative assessment   

Fig. 5 shows the reconstructed HCP brain images using 

different methods at 10% and 30% under-sampling rates. It can 

be observed from the zoomed-in ROI images that the quality of 

zero-filling IFFT result at 10% sampling rate has significantly 

decreased when compared with the reference image (i.e. the 

IFFT reconstruction for the original complete k-space data). TV, 

DeepADMM, DAGAN and DIRN comparison methods are 

capable of showing tissue structures relatively better. While the 

proposed DFDN has the best performance in preserving more 

image features and textures. Although the image quality 

reconstructed from all methods is improved obviously at 30% 

sampling rate, the error image related to DFDN show the 

smallest differences. Similar conclusions can be drawn for the 

DFDN when considering the second brain dataset from BDP. 

We can see from Fig. 6 that the proposed DFDN method leads 

visually to a better reconstruction with richer image details than 

the other methods.  

In order to compare the performance of different methods 

comprehensively, the quantitative measurements in terms of 

NMSE and PSNR are summarized in Tables I and II for both 

brain datasets at different sampling rates. For the HCP brain 

 
3 https://tensorpack.readthedocs.io/  
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dataset at 10% and 20% under-sampling rates, deep learning 

based methods almost all surpass the classical TV except the 

DAGAN at sampling rate 20%. The proposed DFDN gained 

PSNR improvements of 0.79 dB and 0.83 dB compared with 

the best results from all selected previous methods. Although 

DeepADMM, DAGAN and DIRN has not advantages 

compared with classical TV at 30% sampling rate, the proposed 

DFDN perform better than the TV about 0.3 dB PSNR. 

Regarding to the BDP brain dataset, the proposed DFDN still 

has the highest PSNR and lowest NMSE compared with other 

comparisons. Fig. 7 provides the SSIMs for both brain datasets 

at different sampling rates, which confirm the quantitative and 

qualitative assessments above. 

Furthermore, the time cost of different algorithms are also 

compared and depicted in Table III. However, the deployed 

convolution neural network can be accelerated using GPU, then 

deep learning-based methods including DeepADMM, DIRN 

and DFDN are extremely fast (less than 1 seconds). The 

running test time of DIRN are decreased to about 0.05 seconds. 

The running time of DFDN is about twice as long because the 

network depth is deepen, but it still runs at lower time cost than 

DeepADMM. 

 

TABLE I 

QUANTITATIVE RESULTS (NMSE, PSNR) CALCULATED FOR COMPARISON PURPOSE BETWEEN THE SELECTED ALGORITHMS WITH DIFFERENT UNDER-SAMPLING 

RATIOS USING THE HCP BRAIN TEST DATASET. 

Methods 
10% 20% 30% 

NMSE PSNR NMSE PSNR NMSE PSNR 

ZF 0.2395 ± 0.0244 24.6566 ± 1.2225 0.1584 ± 0.0187 28.2622 ± 1.1399 0.1184 ± 0.0139 30.7908 ± 1.1188 

TV 0.1467 ± 0.0189 28.9424 ± 1.0318 0.0710 ± 0.0068 35.2156 ± 1.2583 0.0440 ± 0.0047 39.3860 ± 1.6568 

DeepADMM 0.1194 ± 0.0137 30.7127 ± 1.0416 0.0645 ± 0.0062 36.0742 ± 1.3845 0.0465 ± 0.0046 38.8898 ± 1.5492 

DAGAN 0.1330 ± 0.0143 29.7724 ± 1.0046 0.0890 ± 0.0082 33.2526 ± 1.1576 0.0699 ± 0.0059 35.3387 ± 1.2903 

DIRN 0.1030 ± 0.0057 31.8783 ± 0.8842 0.0655 ± 0.0040 35.8184 ± 0.7925 0.0489 ± 0.0025 38.3550 ± 0.9405 

DFDN 0.0941 ± 0.0054 32.6677 ± 0.8760 0.0577 ± 0.0032 36.9076 ± 0.9056 0.0421 ± 0.0027 39.6593± 0.8968 

TABLE II 

QUANTITATIVE RESULTS (NMSE, PSNR) CALCULATED FOR COMPARISON PURPOSE BETWEEN THE SELECTED ALGORITHMS WITH DIFFERENT UNDER-SAMPLING 

RATIOS USING THE BDP BRAIN TEST DATASET. 

Methods 
10% 20% 30% 

NMSE PSNR NMSE PSNR NMSE PSNR 

ZF 0.2401 ± 0.0109 27.3308 ± 1.1084 0.1720 ± 0.0080 30.2299 ± 1.0750 0.1313 ± 0.0062 32.5730 ± 1.0665 

TV 0.2007 ± 0.0147 28.8994 ± 1.3313 0.1225 ± 0.0121 33.2058 ± 1.4659 0.0825 ±  0.0101 36.6602 ± 1.6222 

DeepADMM 0.1831 ± 0.0144 29.7024 ± 1.3601 0.1079 ± 0.0123 34.3243 ± 1.6166 0.0749 ±  0.0085 37.4982 ± 1.5201 

DAGAN 0.1951 ± 0.0157 29.1511 ± 1.4187 0.1356 ± 0.0115 32.3115 ± 1.4648 0.1071 ± 0.0112 34.3802 ± 1.6351 

DIRN 0.1705 ± 0.0091 31.0110 ± 0.4604 0.1061 ± 0.0056 35.1264 ± 0.5109 0.0750 ± 0.0045 38.1452 ± 0.6515 

DFDN 0.1494 ± 0.0091 32.1596 ± 0.4817 0.0906 ± 0.0060 36.5100 ± 0.5637 0.0634 ± 0.0050 39.6141 ± 0.6992 
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Fig. 5. Representative HCP brain MR images reconstructed using different algorithms. The first three rows show the results at 10% under-sampling rate: 2D results 

(the 1st row), zoomed-in images (the 2nd row), and error images (the 3rd row). The last three rows correspond to the results at 30% under-sampling rate: 2D results 

(the 4th row), zoomed-in images (the 5th row), and error images (the 6th row). 
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Fig. 6. Representative BDP brain MR images reconstructed using different algorithms. The first three rows show the results at 10% under-sampling rate: 2D results 

(the 1st row), zoomed-in images (the 2nd row), and error images (the 3rd row). The last three rows correspond to the results at 30% under-sampling rate: 2D results 

(the 4th row), zoomed-in images (the 5th row), and error images (the 6th row).

 

4.3 Parameter analysis in network training  

Except for the hyper-parameters in network training, some 

parameters determining network depth and loss function should 

be preset, such as the stage number
tN in each DIRN block and 

the number of DIRN blocks 
sN . In this section, we evaluate 

their impact on the final reconstruction accuracy. 

 a)  Stage number tN in each DIRN block: With the number 

of DIRN blocks 2sN   in the proposed DFDN, representative 

reconstruction results obtained from DFDN with different stage 

number in each DIRN block are shown in Fig. 8. It can be 

observed that the error images obtained from DFDN with 

5,  10, 15 and 20tN   has not obviously difference. However, 

the qualitative measurement PSNR depicted in Fig. 9 shows 

that the first upward and then downward trend with the increase 

of stage number in each DIRN block of DFDN.  

b)  The number of DIRN blocks 
sN  : In the proposed DFDN, 

the number of DIRN blocks sN  not only determines the depth 

of network but also decides the components of compound loss 

function. Different DIRN block numbers 2,  4 , 5 and 10sN   

were tested for the DFDN reconstruction, with the total stage 

number of DFDN set to be 20. Fig. 10 illustrates the results and 

error images obtained from DFDN with different DIRN blocks. 

The error images are reduced with the increase of sN  until it 

reach to 5. Quantitative analysis of DFDN with different sN  

for each DIRN are presented in Fig. 11, from which we can see 

that the reconstruction accuracy is improved first and then 

decreased with the increase of sN .  
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4.4 Study on different under-sampling patterns  

For a given sampling rate, the reconstruction performance is 

not only determined by the network model but also by the 

under-sampling patterns. In order to determine the optimal 

under-sampling pattern for the DFDN method, four various 

masks were tested on BDP brain test datasets with an 

under-sampling rate equal to 20%. From the images shown in 

the second and fourth rows in Fig. 12, it is obvious that the 

spiral 

pattern leads to minimal errors. Fig. 13 plots the quantitative 

comparison of PSNRs in dB: 34.9790 ± 2.5078 (Radial), 

34.2835±2.1655 (Cartesian), 37.4535±3.1001 (Gaussian) and 

37.8754±1.9934 (Spiral). Clearly, the proposed DFDN method 

performs better in the case of spiral pattern. 

 

Fig. 7. SSIM measurements on both HCP and BDP brain test datasets at the 

sampling rate 10%, 20% and 30% respectively for the selected methods. 

TABLE III TEST TIME COST COMPARISONS OF DIFFERENT METHODS ON HCP 

AND BDP BRIAN TESTING DATASETS (IN SECONDS) 

Methods HCP BDP 
with/without 

GPU 

ZF 0.0021 0.0018 without 

TV 1.334 1.060 without 

DeepADMM 0.987 0.779 with 

DAGAN 0.023 0.018 with 

DIRN 0.048 0.046 with 

DFDN 0.097 0.096 with 

 

Fig. 8. Typical BDP MR images reconstructed from DFDN with 

5,  10, 15 and 20tN  in the second brain dataset at 20% sampling rate: 2D 

results (the first and third rows) and their corresponding error images (the 

second and fourth rows). 

 

Fig. 9. PSNRs (in dB) computed by DFDN with respect to 

5,  10, 15 and 20tN  in the BDP brain dataset at 20% sampling rate.  
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Fig. 10. Typical BDP MR images reconstructed from DFDN with 

2,  4, 5 and 10sN  in the second brain dataset at 20% sampling rate: 2D 

results (the first and third rows) and their corresponding error images (the 
second and fourth rows). 

 

Fig. 11. PSNRs (in dB) computed by DFDN with respect to 

2,  4, 5 and 10sN  in the BDP brain dataset at 20% sampling rate.  

 

Fig. 12. Comparison of DFDN performance with respect to various patterns at 

20% under-sampling rate: 2D results (the first and third rows) and their 

corresponding error images (the second and fourth rows). 

 

Fig. 13. PSNRs (in dB) computed by DFDN with respect to different patterns at 

20% under-sampling rate.  

5. DISCUSSION AND CONCLUSION 

Inspired by the effective application of stacked CNN in 

many computer vision applications, the iterative algorithm 

adopts CNN to substitute its regularization terms and 

corresponding parameters and then be unfolded as neural 

network to improve reconstruction quality of CS-MRI in this 

study. However, the resulting reconstructions (DIRN in this 

study) still suffer from the problem of structure blurring. 

Therefore, a deep frequency-division based network strategy 

(DFDN) is proposed. Multiple DIRN blocks are cascaded 

continuously as one deeper neural network. Data consistency 

(DC) layer is incorporated after each DIRN block to correct the 

k-space data of intermediate results. Image content loss is 

computed after each DC layer and frequency-division loss is 

gained by weighting the high frequency loss and low frequency 
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loss after each DIRN block. The combination of image content 

loss and frequency-division loss is considered as the total loss 

for constraining the network training procedure. In this study, 

two brain datasets are used to validate the effectiveness of the 

proposed method. Visual inspections and quantitative 

measurements in terms of NMSE, PSNR and SSIM 

demonstrate that the DFDN method leads to the best 

performance when compared to other methods.  

Nevertheless, image blurring may still be observed in the 

reconstructed images with the proposed DFDN method, 

especially for high under-sampling rates. Our work in progress 

will consider some other loss functions like histogram 

matching or entropy in order to improve the present results. 

Furthermore, strategies dealing with extended frequency 

truncations will be explored to achieve more elaborated and 

accurate reconstructions. 
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