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Chiral N-Heterocyclic Carbene 
Ligands Enable Asymmetric C-
H Bond Functionalization.  
Jompol Thongpaen, Romane Manguin, and 
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MINIREVIEW 
Abstract: The asymmetric functionalization of C-H bond is a 
particularly valuable approach for the production of 
enantioenriched chiral organic compounds. Chiral N-Heterocyclic 
Carbene (NHC) ligands have become ubiquitous in 
enantioselective transition-metal catalysis. Conversely, the use of 
chiral NHC ligands in metal-catalyzed asymmetric C-H bond 
functionalization is still at an early stage. This minireview 
highlights all the developments and the new advances in this 
rapidly evolving research area.   

1. Introduction

Chiral molecules play an important role in the chemistry of life, 
medicine and material science. Pioneered by H. B. Kagan,[1] W. 
S. Knowles,[2] R. Noyori[3] and K. B. Sharpless,[4] the field of 
catalytic asymmetric synthesis has grown exponentially, resulting 
in innovative methods and processes for the efficient production 
of enantiomerically pure substances.[5] Among those 
contemporary methodologies, transition-metal-catalyzed 
asymmetric cross-coupling reaction has appeared in the past 
decades as one of the most powerful synthetic tools to construct 
C-C and C-heteroatom bonds.[6] Despite of the tremendous 
success of these transformations, cross-coupling reactions 
require the use of prefunctionalized substrates such as 
organohalides and organometallic reagents, forcing synthetic 
chemists to pursue multistep manipulations. On the other hand, 
the transition metal-catalyzed direct functionalization of inert C-H 
bonds has emerged over the past two decades as an increasingly 
important synthetic tool opening new avenues in the construction 
of chiral molecules from readily available materials.[7] As for other 
asymmetric catalytic processes, chiral ligand engineering has 
been the key to the success of TM-catalyzed C-H 
functionalization. Thanks to their manifold application possibilities, 
phosphorus-based chiral ligands have been central to numerous 
breakthroughs in asymmetric C-H functionalization. [7c] [8] On the 
other hand, In 2009 Yu and co-workers demonstrated that 
monoprotected a-amino acids are effective chiral ligands for 
Pd(II)-catalyzed enantioselective alkylation of Csp2-H and 
Csp3-H bonds.[9]  This discovery has led in the past decade to 
significant advances in the development of efficient asymmetric 
C-H transformations.[10] Meanwhile, Cramer and co-workers 
developed a new class of chiral ligands based on C2-symmetrical 
cyclopentadienyl derivatives that have proven to be efficient in 
asymmetric C-H functionalization catalyzed by rhodium,[11] while 
offering promising potential in a variety of other catalytic 
processes using TM-based Cp* complexes.[12]  

Amongst alternative chiral ligands,[13] N-Heterocyclic 
Carbenes (NHCs) are unambiguously those offering the greatest 
perspectives in TM-catalyzed asymmetric C-H 
functionalization.[14] During the past two decades, NHCs have 
become ubiquitous ligands in coordination chemistry and 
catalysis. Their unique properties, including strong σ-donation, 
are responsible for forming robust TM catalysts that allow for the 
development of more efficient synthetic procedures.[15] Moreover, 
straightforward synthetic methods give access to a large variety 
of NHC structures with diverse chiral architectures.[16] 
Nevertheless, and despite the recent success of chiral NHC 
ligands in asymmetric homogeneous catalysis,[17] including 
intramolecular a-arylation of amides, [18-24] the use of such ligands 
in TM-catalyzed asymmetric C-H bond functionalization is still in 
its infancy. This minireview highlights all the developments and 
the new advances in this burgeoning and promising field of 
research. 
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MINIREVIEW 
2. Functionalization of C(sp3)-H Bonds

2.1. Intramolecular Arylation of Unactivated C(sp3)-H Bonds 

In 2011, Kündig and coworkers reported the first example of the 
use of chiral NHC ligands in enantioselective functionalization of 
unactivated C-H bonds (Scheme 1).[25] In a continuing effort to 
demonstrate the potential of their unsaturated C2-symmetrical 
NHC ligands based on ortho-substituted a-tert-
butylbenzylamines,[23] high efficiency could be achieved using the 
naphthyl-based L1 ligand in palladium-catalyzed intramolecular 
arylation of unactivated C(sp3)-H bonds at high temperature 
(140-160°C). The great robustness of the catalytic system 
allowed the synthesis of a variety of fused indolines (2 and 4) with 
very high enantioselectivity (up to 99% ee).[26] Mechanistic studies 
revealed that the reaction proceeds first via oxidative addition of 
the C-Br bond giving palladium(II) complex 5, followed by the 
enantiodetermining C-H bond cleavage by means of Concerted-
Metalation Deprotonation (CMD) process (see transition state 
6).[27] When the (S,S)-L1 is employed, reductive elimination from 
the chiral cyclopalladated intermediate 7 affords preferentially the 
enantioenriched product with (R) configuration.  

Scheme 1. Asymmetric intramolecular arylation of unactivated C(sp3)-H bonds 
for the synthesis of fused-indolines. 

Later, the same group reported a regiodivergent synthetic 
approach to indolines using a similar catalytic system (Scheme 
2).[28], [29] The asymmetric C-H annulation of racemic carbamate 
substrates led to the formation of two different indolines with high 
enantio-induction. Enantiomers interacted with the chiral catalyst 
differently, providing for each a regioselective product accordingly 
(Scheme 2). The observed behavior of this parallel kinetic 
resolution methodology was in a good agreement with 
computational studies based on calculated activation barriers of 
the CMD enantiopic-determining step. In the case of substrate 
(S)-8a, the C-H bond cleavage of CH3 is more favored than of 
CH2 (with a large ΔΔG‡ = 14.0 kJ.mol-1) affording the 2-substituted 
indoline 9a exclusively. On the other hand, CH2 bond cleavage of 
(R)-8a is more favored (ΔΔG‡ = 19.2 kJ.mol-1) leading selectively 
to the 2,3-substituted product 10a. 

 

Scheme 2. Regiodivergent synthesis of indolines. 

Baudoin and co-workers described in 2012 the Pd-catalyzed 
intramolecular asymmetric annulation of aryl bromides bearing 
unactivated C(sp3)-H bonds.[30] While the highest 
enantioselectivity in the synthesis of indanes 12 was achieved 
with chiral phosphines, interesting enantio-discrimination could 
also be obtained applying the conditions previously described by 
Kündig and coworkers using the NHC ligand (S,S)-L2 (Scheme 
3). 

 

Scheme 3. Enantioselectivity in the synthesis of indanes. 

Very recently, the same group extended this methodology 
towards the enantioselective synthesis of indane 17, precursors 
of (nor)illudalane sesquiterpenes.[31] The strategy involved the 
intramolecular enantioselective arylation of a C(sp3)–H bond to 
generate a quaternary stereocenter at the adjacent position 
(Scheme 4). Among several NHC ligands that were surveyed, the 
(S,S)-L1, developed by Kündig and coworkers afforded the 
highest enantioinduction (80:20 e.r.) in the desymmetrization of 
the gem-dimethyl group of the morpholinamide substrate 13. By 
employing (L)-proline derived substrate 15, the desired product 
16 could be obtained with good 87% isolated yield and 
satisfactory 85:15 d.r. (matched case). The sequential treatments 
including hydrolysis of the amide group and recrystallization 
furnished the highly enantioenriched compound 17, the parent 
substance of the key intermediate 18 in the synthesis of 
(nor)illudalane sesquiterpenes. 
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Scheme 4. Regiodivergent synthesis of indolines. 

2.2. Intermolecular Arylation of Benzylic C-H Bonds. 

In 2016, Glorius and coworkers reported the first example of 
rhodium(I)-catalyzed intermolecular functionalization of C(sp3)-H 
bonds (Scheme 5).[32] The use of NHC ligands afforded high 
selectivity in favor of the benzylic C-H arylation and the mesityl 
substituent on the NHC appeared crucial for the activity (no 
catalytic activity with Dipp-based ligand such as L10). The authors 
postulated that cyclometalation at the o-tolyl substituent of the 
NHC enabled the generation of the catalytically active species 
(21). Thanks to a multicomponent procedure affording a simple 
and rapid access to unsymmetrical imidazolium salts,[33] a large 
variety of chiral NHC precursors was screened and the best 
results were obtained with L9 that afforded in a model reaction 
the desired product 20a in high 85% isolated yield and 78% 
enantiomeric excess. The direct arylation reaction of 8-benzyl 
quinolones 19 with aryl bromides was only slightly influenced by 
the electronic and steric nature of the substituents on both 
substrates, affording the desired products 20 in high yields and 
good enantiomeric ratios. In the proposed mechanism, the 
authors postulated that the catalytically active cyclometalated 
species 21 undergoes successive oxidative addition of the aryl 
bromide and diastereoselective transmetalation with the 
deprotonated 8-benzyl quinolone substrate 22 to form the Rh(III)-
intermediate 23. 

 
Scheme 5. Rhodium-catalyzed intermolecular enantioselective C(sp3)-H bond 
arylation. 

2.3. Intermolecular C-H Alkenylation of Alcohols 

Very recently, Shi and coworkers described the first example of 
enantioselective C-H alkenylation of alcohols with alkynes 
(Scheme 6).[34] In order to achieve high stereoselectivity in this 
redox-neutral coupling catalyzed by nickel(0)-system, the authors 
investigated a new class of bulky chiral NHCs, that was initially 
introduced by Gawley in 2011,[35] and concomitantly developed by 
the Shi[36] and the Cramer[37] groups (vide infra, section 3.1). The 
catalytic system made in situ from the deprotonation of the 
imidazolinium salt (L11.HCl; analogue of SiPr) by NaHMDS in the 
presence of Ni(cod)2 and in combination with the electron 
deficient phosphite ligand P(OPh)3 delivered the desired chiral 
allylic alcohols with high E/Z ratios (up to 99:1) and high 
enantioselectivities (up to 92% ee). Similar result could be 
obtained with the isolated Ni(0)-NHC complex C1 and control 
experiment in the absence of P(OPh)3 evidenced only an erosion 
in E/Z ratio confirming the important role of the additive to 
suppress the product isomerization. It is also important to note 
that a range of chiral NHC ligands was tested during the 
optimization of the model reaction between benzyl alcohol (24a) 
and 4-octyne (25a) showing the strong impact of NHC structure 
on the reaction outcome. In fact, the commonly used C2 
symmetrical NHC ligands L12 and L13 proved to be inoperative. 
On the other hand, a noticeable decreased of the catalytic 
efficiency was observed in the presence of ligands L14 and L15, 
unsaturated analogues of L11. The proposed mechanism 
involves dehydrogenation of alcohol 24 to generate the 
corresponding aldehyde 27, which undergoes oxidative 
cyclization with alkyne 25 and Ni(0) to produce the 
enantioenriched oxanickelacycle 28 as a key intermediate.       
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Scheme 6. Nickel-catalyzed enantioselective C-H alkenylation of alcohols with 
alkynes. 

3. Functionalization of C(sp2)-H Bonds

3.1. Intramolecular Hydroarylation of Olefins 

In 2014, Cramer and coworkers reported a nickel-catalyzed C-H 
functionalization of 2-pyridones by selective intramolecular olefin 
hydroarylation (Scheme 7).[38] The regioselectivity of the 
cyclization was fully controlled by the ligand and unsymmetrical 
chiral NHC L16 based on the isoquinoline framework delivered 
selectively the endo-cyclization product with promising 
enantioselectivity. 

Scheme 7. Ligand controlled nickel-catalyzed annulation of pyridones. 

More recently, the same group further investigated this 
transformation and among the chiral NHCs that were surveyed, 
the sterically demanding monodentate ligand L17 allowed for 
highly enantioselective C-H functionalization of 2- and 4-
pyridones (Scheme 8).[37] While unsatisfactory results were 
obtained with common chiral carbene ligands (L4, L1, L18), 
interesting catalytic activities could be obtained using L14.[35],[36]  

Introduction of the acenaphthene fragment on the backbone of 
L15 improved the selectivity and authors evidenced that this 
flexible ligand displays an improved C2-symmetric binding pocket. 
The enantioselectivity could be further increased with the 
introduction of bulky aromatic side arms, i.e. 3,5-di-methyl phenyl 
groups (L17). Then, in the presence of MAD (methylaluminium 
bis(2,6-di-tert-butyl-4-methylphenolate), the desired endo-
cyclized annulated pyridines were obtained with high yields (up to 
91% yield) and enantioselectivities (up to 98% ee) under mild 
reaction conditions. The endo-cyclization selectivity is in 
accordance with theoretical and mechanistic studies of Ni-
catalyzed hydroarylations, in which a mechanism involving direct 
ligand to ligand hydrogen transfer (LLHT) is proposed.[39] 

 
Scheme 8. Nickel-catalyzed enantioselective pyridone C-H functionalizations. 
MAD = methylaluminium bis(2,6-di-tert-butyl-4-methylphenoxide). 

The intramolecular regio- and enantioseletive C-H cyclization of 
pyridines with olefins was very recently reported by Shi and 
coworkers (Scheme 9).[40] Among several chiral NHC ligands that 
were investigated, the bulky chiral saturated L11,[34] the analogue 
of SiPr, provided excellent catalytic activities and furnished the 
targeted tetrahydroquinolines and tetrahydroisoquinolines with 
excellent enantioinduction (up to 99% ee). During the optimization 
of the reaction conditions, pronounced ligand effect could be 
observed in the cyclization of substrate 33a. Notably, while L11 
performed with high reactivity and selectivity (99% yield and 93% 
ee), its replacement by the unsaturated analogue L14 
dramatically decreased the yield and enantioselectivity (77% yield 
and 60% ee). It should be noted that 34a could be obtained with 
up to 96% ee using the bulkier ligand L21, but with slightly lower 
reactivity. The proposed mechanism involves coordination of the 
bulky MAD to the pyridine nitrogen, which favors the 
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regioselective oxidative C-H bond addition on Ni(0), which is 
potentially the rate determining step (KIE = 2.5). The following 
anti-Markovnikov hydronickelation of the alkene and subsequent 
reductive elimination afford the desired endo-annulation product 
36. The electronic and steric properties of the NHC ligands are
apparently critical to every elementary steps of this catalytic cycle. 

Scheme 9. Nickel-catalyzed enantioselective C-H functionalization of pyridines. 

In 2019, Cramer and coworkers introduced new members of this 
ligands family to achieve high enantioselectivity in Ni-catalyzed C-
H functionalization of indoles and pyrroles (Scheme 10).[41] The 
authors demonstrated that both the reactivity and selectivity of the 
cyclization reaction was impacted by the NHC ligand structure. 
While poor yield and enantiocontrol could be obtained using the 
imidazole-2-ylidene L14, an increase of the bulk on the aryl side-
arms (L22) improved the catalytic activity and reversed the 
enantioselectivity to afford 61% yield of the cyclized product 38a 
with 40% ee in favor of the (S)-enantiomer. Pleasantly, the use of 
a dihydroimidazole-2-ylidene ligand with sterically more 
demanding 3,5-di-tert-butyl phenyl groups on the side arms 
(L23)[42] resulted in complete conversion of 37a, 93% yield of 38a 
with 88% ee. Finally, a decrease of the reaction temperature to 
60 °C and by replacing the solvent to trifluorotoluene improved 
the enantiocontrol of the endo-cyclisation to obtain 38a with 90% 
ee. The optimized conditions were then applied with high 

efficiency to the enantioselective cyclization of pyrroles, indoles 
and related aza-heterocycles with a variety of substituted alkenes. 
The regioselectivity of the cyclization and results obtained from 
deuterium transfer experiments support a mechanism involving 
direct ligand to ligand hydrogen transfer.[39] 

 
Scheme 10. Nickel-catalyzed enantioselective C-H functionalization of indoles 
and pyrroles. 

In their continuing effort to develop asymmetric C-H cyclization 
reactions with alkenes, Shi and coworkers recently reported the 
first example of catalytic enantioselective functionalization of 
polyfluoroarenes.[43] The reaction achieved by the use of bulky 
NHC ligands (L11 or L17) for Ni(0)-based catalysts afforded a 
large variety of cyclized products in high efficiency and excellent 
levels of chemo-, regio-, and enantioselectivity (Scheme 11).  
Initial attempts to cyclized the styrene-based substrate 39a with a 
catalytic system generated in situ involving commonly used C2-
symmetrical chiral NHC ligands such as L12 were unsuccessful. 
Under the same reaction conditions, the saturated ligand L11 was 
inapplicable as predominant alkene isomerization occurred. On 
the other hand, its unsaturated ligand analogue L14 could prevent 
alkene isomerization[44] and afforded the desired product 40a in 
good 52% yield and enantioselectivity (76% ee). Further ligand 
screening evidenced the bulky acenaphthene-based NHC L17 as 
the most efficient ligand affording 40a in nearly quantitative yield 
and high 97 % enantiomeric excess. While the catalytic system 
based on L17 was also applicable to 1,1-dialkyl alkene substrates, 
L11 demonstrated higher efficiency with such substrates that are 
less prone to isomerize under the reaction conditions. With the 
optimized conditions in hand, a variety of chiral fluorotetralins 40 
were synthesized with excellent enantiocontrol from tetrafluoro, 
trifluoro and diflurorobenzenes tethered alkenes 39. Importantly 
no competitive C-F bond cleavage was observed with the catalytic 
systems based on L11 and L17. The authors reasoned that the 
bulky NHCs favor the formation of monomeric active Ni-NHC 
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catalysts which favor C-H activation. In the same way as for the 
C-H cyclization of pyridines with olefins (vide supra, scheme 9), 
the electron-donating and sterically demanding properties of the 
NHC ligands are apparently critical to every elementary steps of 
the catalytic cycle. However, while a mechanism involving C-H 
oxidative addition of Ni(0) and alkene insertion is not excluded, 
deuterium transfer experiments indicate that direct ligand to 
ligand hydrogen transfer (LLHT) is likely the favored pathway.[39]  

Scheme 11. Nickel-catalyzed enantioselective C-H alkylation of fluoroarenes 
with alkenes. 

3.2. Intermolecular Hydroarylation of Olefins 

Catalytic systems based on chiral NHC ligand and Ni(0) have also 
demonstrated high potential in the asymmetric synthesis of 
indanol derivatives with the direct generation of four stereocenters 
(Scheme 12). The reductive three components coupling involving 
ortho-C-H functionalization of an aromatic aldehyde in the 
presence of a silane and a norbornene substrate was achieved 
by a Ni(0) catalyst bearing the chiral C2-symmetric NHC ligand 
L24.[45] The originality of ligand L24 resided in the 1,2-
di(naphthalene-1-yl)ethylene diamine backbone that strongly 
influenced the reaction outcome to allow accessing the desired 
annulated products 43 as single diastereoisomer in high 
enantioselectivity. In the proposed mechanism, the 
enantiodetermining step is the formation of the oxanickelacycle 
which subsequently reacts with silane leading to a nickel-hydride 
intermediate able to perform C(sp2)-H activation in the presence 
of another equivalent of norbonene.    

 
Scheme 12. Nickel-catalyzed enantioselective three-component coupling to 
access indanol derivatives. 

In a program to develop first-row transition metal-based systems 
for C-H functionalization, [46] Ackermann and coworkers described 
in 2017, the first enantioselective iron-catalyzed C-H alkylation 
using NHC ligand (Scheme 13).[47] In this study, the authors 
clearly demonstrated the critical role of the newly designed meta-
decorated NHC ligands in the stereoinduction. Detailed 
mechanistic insights and additional experiments with isotopically 
labelled substrates strongly support an inner-sphere C-H 
activation mechanism.[48] The reaction is initiated by the formation 
of active species iron complex 47, followed by the coordination of 
olefin. Then the enantio-determining step is believed to proceed 

Scheme 13. Iron-catalyzed intermolecular asymmetric C-H Alkylation of indoles. 
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during migratory insertion induced by secondary interaction in the 
transition state which is promoted by the addition of the second 
molecule of substrate to form the key intermediate 49 involved in 
the C-H activation step. 

In 2016, Ohmiya, Sawamura and coworkers reported a copper-
catalyzed enantioselective alkylations of electron-deficient azoles 
with g,g-disubstituted allylic phosphates (Scheme 14).[49] The 
reaction is believed to proceed through an inner-sphere 
mechanism involving the base assisted C-H cupration of 
heterocycles to form [ArCuL(OtBu)-] active species.[50] The 
structure of NHC ligand was found critical to form a controlled all-
carbon quaternary stereogenic center. In the model reaction 
between benzothiazole (50a) and the E-allylic phosphate (51a), 
the unsymmetrical chiral NHC ligand L29 bearing a phenoxy 
group at the ortho position afforded low catalytic activity and low 
enantioselectivity. However, by changing the phenol group to a 
naphtol group, dramatic increases in product yield and 
enantioselectivity were obtained using L30. The enantioselectivity 
could be further increased to 81% ee using ligand L31 bearing the 
N-2,4-dicyclohexyl-6-methylphenylgroup, but at the expense of 
product yield. Under the optimized conditions using L31 in the 
presence of [Cu(CH3CN)4]PF6 in a solvent mixture of THF/CH3CN, 
the reaction between various azoles 50 and allylic phosphates 51 
afforded a variety of quaternary stereogenic carbon centers with 
high enantioselectivity.     

Scheme 14. Copper-catalyzed enantioselective C-H alkylation of azoles. 

3.3. intermolecular Hydroalkenylation of Olefins 

Transition metal-catalyzed 1,2-hydrovinylation of two terminal 
alkenes via C-H functionalization can lead to a number of 
products with high degree of functional density.[51] The use of 
chiral NHC ligand in asymmetric nickel-catalyzed cross-
hydrovinylation was reported by Ho and coworkers in 2015 
(Scheme 15).[52] The intermolecular tail-to-tail hydroalkenylation 

of vinylarenes 53 with terminal olefins 54 was catalyzed by in situ 
generated NiH[53] complexes bearing C1-symmetrical NHC L36 
and afforded the chiral gem-disubstituted olefin products 55 with 
high enantioselectivity. While both N-aryl groups of the NHC were 
substituted with a bulky cyclohexyl substituent at position 2, a 
steric discrimination at the ortho-positions was beneficial to the 
enantioselectivity of the reaction. Moreover, the reaction involving 
electron rich styrene substrates was found to be optimal when the 
electronics of one N-aryl group was modified by a fluoro 
substituent in the para-position. 

 
Scheme 15. Nickel-catalyzed asymmetric cross-hydrovinylation. 

4. Summary and Outlook

In this minireview, we highlighted all the development and the 
recent advances in the field of TM-catalyzed enantioselective C-
H functionalization using chiral NHC ligands. During the past two 
decades, NHCs have become ubiquitous ligands in coordination 
chemistry and catalysis. Concomitantly, enantioselective C-H 
functionalization has experienced an exponential growth. 
Nevertheless, and despite the success of chiral NHC ligands in 
asymmetric homogeneous catalysis, the use of such ligands in 
TM-catalyzed asymmetric C-H bond functionalization has 
remained, until recently, relatively limited. The unique properties 
of NHC ligands, including their strong s-donation, allow for the 
development of highly stable TM-catalyst that can efficiently 
prevent undesired background reactions. This advantage was 
evidenced in the seminal work published by Kündig in 2011 which 
described the spectacular highly enantioselective 
functionalization of unactivated C(sp3)-H bonds at up to 160 °C. 
Moreover, the numerous existing synthetic methodologies to 
construct NHCs offer a large diversity of chiral structures to be 
surveyed in a given asymmetric C-H transformation. This 
approach has played a significant role in the multiple recent 
successes encountered in enantioselective C-H functionalization 
with nickel-based catalysts and will certainly contribute to the 
exponential use of abundant 3d TM-catalysts in this rapidly 
evolving research area.[54] Overall, chiral NHCs, including yet 
underexplored multifunctional NHCs,[55] are promising ligands for 
a variety of TM-catalyzed C-H functionalization reactions and we 
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expect that the recent enthusiasm for their use in fine catalyst 
engineering will lead to an increasing pace of discovery in this 
exciting research field.   
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MINIREVIEW 

REVIEW 
The asymmetric functionalization of C-
H bond is a particularly valuable 
approach for the production of 
enantioenriched chiral organic 
compounds. Chiral NHC ligands have 
become ubiquitous in enantioselective 
transition-metal catalysis. Conversely, 
the use of chiral NHC ligands in metal-
catalyzed asymmetric C-H bond 
functionalization is still at an early 
stage. This minireview highlights all the 
developments and the new advances 
in this rapidly evolving research area.   
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