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The determination of thermophysical properties of hydrofluorocarbons (HFC S ) isvery important,especially the thermal conductivity. The present work, investigated the potential of an artificial neural network (ANN) model to correlate the thermal conductivity of (HFC S ) at (169.87-533.02) K, (0.047-68.201) MPa and (0.0089-0.1984) W.m. -1 K -1 temperature, pressure and thermal conductivity ranges respectively, of 11systems from 3 different categories including five pure systems(R32, R125, R134a,R152a,R143a),four binary mixtures systems(R32+R125, R32+R134a, R125+ R134a,R125+R143a), and two ternary mixtures systems (R32+R125+ R134a, R125+ R134a+ R143a).Each one received 1817,794and 616 data points, respectively.The application of this model forthese3227 data points of liquid and vapor at several temperatures and pressures allowed to train, validate and test the model.

Introduction

In recent years, It has been highlighted the need to establish a balance between "energy consumption" and "environmental protection". The introduction of new refrigerants to replace Chlorofluorocarbons (CFCs)and Hydrochlorofluorocarbons(HCFCs) and the adaptation of new techniques should allow a reduction of the overall environmental impacts. To reduce security risks, another line of research has been developed towards the use of a secondary cooling loop (indirect cooling). The multiple processes used in industry are often based on heat exchanges.

Refrigerants cause global warming and ozone depletion bring on the environmental problems.

So, UN drew up the Montreal Protocol(MP) and its London and Copenhagen

Amendments [START_REF] Amrane | Montreal protocol on substances that deplete the ozone layer report[END_REF]. Prior to the1980s, the principal classes of chemicals used as refrigerants in the refrigeration industry were CFCs and HCFCs. Based on growing evidence of ozone depleting potential (ODP) [START_REF] Ramsdell | Cumulative dose response study comparing HFA-134a albuterol sulfate and conventional CFC albuterol in patients with asthma[END_REF] of CFCs based on the Montreal Protocol, different industries turned to HCFCs as substitutes for CFCs. While HCFCs have a lower ODP than CFCs, they still damage the ozone layer and have become topic to scheduled period out by 2030, A c c e p t e d M a n u s c r i p t Hydrofluorocarbons (HFCs) were used as an acceptable alternative to CFCs and HCFCs because they possess several characteristics, including near-zero ODP and low Global warming potential (GWP), similarity to CFCs and HCFCs in physical properties, short atmospheric lifetimes, less or non-flammable and not expensive [START_REF] Tsai | An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs)[END_REF].

During the previous periods, owing to the understanding of the impact of refrigerants in the destruction of the ozone layer, the concepts of ozone depletion potentials (ODPs) [START_REF]Scientific Assessment of Ozone Depletion: 2006, Global Ozone[END_REF]was designedto determine the relative capacity of a chemical to destroy ozone, [START_REF]Scientific Assessment of ozone depletion: 2002, Global Ozone[END_REF][START_REF] Bridgeman | A three-dimensional model calculation of the ozone depletion potential of 1-bromopropane (1-C3H7Br)[END_REF][START_REF] Olsen | Evaluating ozone depletion from very short-lived halocarbons[END_REF][START_REF] Wuebbles | The new methodology for ozone depletion potentials of short-lived compounds: n-propyl bromide as an example[END_REF].

Consequently, GWP is the purpose of several studies leading to the publication of a wide range of literature data [START_REF] Newman | A new formulation of equivalent effective stratospheric chlorine (EESC)[END_REF].

Many researchers focused their efforts on the measurement of the thermophysical properties of these compounds (Refrigerants), aiming to find proper substitutes. Thermal conductivity is one of the major thermophysical properties, as defined by Fourier's equation, it is the ability of a material to transmit heat by means of conduction. Thermal conductivity, K (W. m. -1 K -1 ), is essential to theknowledge of heat transfer, in particular for refrigerants. In fact, the higher the liquid and vapor thermal conductivity, the higher the heat transfer coefficient.

The context of this work is related to the problem of the substitution of CFC and HCFCs.

Experimental aspect (technical and measurements) and modeling aspects of the data obtained were first considered. The products studied are mixtures (pure, binary and ternary) compounds of R32, R125, R134a, R152a and R143a, which are HFCs of high interest to the industries of air conditioning and refrigeration.

Different authors have used diverse equations and methods to predict and reproduce the thermodynamic properties of refrigerant systems. Most of these attempts have been restricted to limited systems and to the best of the knowledge of no systematic work devoted to test the ability of these methods to predict the thermodynamic properties of different categories of systems is available. A number of theories are available providing equations to predict the A c c e p t e d M a n u s c r i p t thermal conductivity of liquids, these equations include theoretical calculations which consider intermolecular distances [START_REF] Bridgman | conductivity of liquids under pressure[END_REF]; there are equations based on the theory of group contribution [START_REF] Sastri | A new temperature thermal conductivity relationship for predicting saturated liquid thermal conductivity[END_REF] or molecular descriptors [START_REF] Poling | The properties of gases and liquids, fifthed[END_REF][START_REF] Gharagheizi | Development of a quantitative structure liquid thermal conductivity relationship for pure chemical compounds[END_REF]; equations involving some fixed parameters in order to describe the thermal conductivity [START_REF] Poling | The properties of gases and liquids, fifthed[END_REF][START_REF] Gharagheizi | Development of a general model for determination of thermal conductivity of liquid chemical compounds at atmospheric pressure[END_REF]. An empirical approach based on a limited number of fixed physical parameters [START_REF] Di Nicola | Anew equation for the thermal conductivity prediction of pure liquid compounds[END_REF] was considered; a new equation to describe the thermal conductivity of R-32, R-125, R134a, and R-143a for practical use, applicable over a wide range of temperature and pressure has also been proposed [START_REF] Yata | Equations for the thermal conductivity of R-32, R-125, R-134a, and R-143a[END_REF]. Semi-empirical approaches for correlating thermal conductivity data for multicomponent liquid mixtures [START_REF] Shi | Prediction method for liquid thermal conductivity of refrigerant mixtures[END_REF][START_REF] Focke | Correlating thermal conductivity data for ternary liquid mixtures[END_REF] were studied, a method to estimate the thermal conductivity and the viscosity similar to cubic equations of state of halogenated hydrocarbon of pure substances in vapor and liquid regions [START_REF] He | New equation of state for transport properties: Calculation for the thermal conductivity and the viscosity of halogenated hydrocarbon refrigerants[END_REF][START_REF] Assael | Measurements of the thermal conductivity of liquid R32, R124, R125, and R141b[END_REF] was proposed; thermal conductivity modeling of refrigerant mixtures in a three-parameter corresponding states format [START_REF] Scalabrin | Thermal conductivity modeling of refrigerant mixtures in a three-Parameter corresponding states format[END_REF] was carried out. There are an extensive studies have been published in the literature on the thermal conductivity of mixed refrigerants [START_REF] Huber | Prediction of the thermal conductivity of refrigerants and refrigerant mixtures[END_REF][START_REF] Mclinden | An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures[END_REF][START_REF] Sami | Study of viscosity and thermal conductivity effects on condensation characteristics of some new alternative refrigerant mixtures[END_REF] which suggested a correlation to calculate the thermal conductivity and viscosity of some alternative refrigerant mixtures such as R-507, R-404A, R-407C, and R-410A.

Recently, some researchers used artificial neural networks (ANNs) to correlate thermal conductivity property [START_REF] Islamoglu | A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger use of an artificial neural network model[END_REF]:and obtained much better results than the traditional approach. To minimize the difficulties of experimental measurements and also their time-consuming and costly nature, it is desirable to develop predictive methods for estimating the phase behavior of these kinds of systems.

The purpose of this study was therefore the application of artificial neural network for representing/predicting the liquid and vapor thermal conductivity of pure refrigerants including R32, R125, R134a, R152a, R143a and their binary, ternary mixtures at different temperatures and pressures.

Methodology and modeling

A c c e p t e d M a n u s c r i p t

Neural network

Artificial neural networks (ANNs) consist of a number of neurons working in unity to solve various scientific and engineering problems such as estimation of physical and chemical properties [START_REF] Taskinen | Prediction of physicochemical properties based on neural network modeling[END_REF].ANN can operate like a black box model, which requires no detailed information about the system or equipment. The ANN can learn the relationship between input and output based on the training data.

ANNs have been used in many engineering applications such as control systems, in classification and in modeling complex process transformations. Detailed information about artificial neural networks can be found in the following References [START_REF] Tsoukalas | Fuzzy and neural approaches in engineering[END_REF][START_REF] Kalogirou | Applications of artificial neural networks for energy systems[END_REF]. ANNs is a widely used numerical method which is able to model any kind of data set even complex ones.

Selection of network parameters

The artificial neurons are arranged in layers where in the input layer receive inputs (u i ), namely experimental data and each succeeding layer receives weighted outputs (w ij , u i ) from the preceding layer asits input resulting therefore a feedforward ANN, inwhich each input is feed forward to its succeeding layer where it is treated. The outputs of the last layer constitute the outputs to the real world [START_REF] Si-Moussa | Prediction of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model[END_REF].In such a feed forward ANN a neuron in a hidden or an output layer has two tasks: (a) It sums the weighted inputs from several connections plus a bias value and then applies a transfer function to the sum as given by (for neuron j of the hidden layer):

𝑧𝑧 𝑗𝑗 = 𝑓𝑓 ℎ �∑ 𝑤𝑤 𝑗𝑗𝑗𝑗 𝐼𝐼 𝑢𝑢 𝑗𝑗 + 𝑏𝑏 ℎ𝑗𝑗 𝑛𝑛 𝑗𝑗=1 �; j = 1, 2, …, m (1) 
(b) It propagates the resulting value through outgoing connections to the neurons of the succeeding layer where it undergoes the same process as given by (for instance outputs 𝑧𝑧 𝑗𝑗 of the hidden layer fed to neuronk of the output layer gives the output𝑉𝑉 𝑘𝑘 ):

𝑉𝑉 𝑘𝑘 = 𝑓𝑓 0 �∑ 𝑤𝑤 𝑘𝑘𝑗𝑗 ℎ 𝑧𝑧 𝑗𝑗 + 𝑏𝑏 0𝑘𝑘 𝑚𝑚 𝑗𝑗=1 �; k=1, 2,…, i (2) 
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Combining equations 1 and 2 the relation between the output 𝑉𝑉 𝑘𝑘 and the inputs𝑢𝑢 𝑗𝑗 of the NN is obtained:

𝑉𝑉 𝑘𝑘 = 𝑓𝑓 0 �∑ 𝑤𝑤 𝑘𝑘𝑗𝑗 ℎ 𝑓𝑓 ℎ 𝑚𝑚 𝑗𝑗=1 �∑ 𝑤𝑤 𝑗𝑗𝑗𝑗 𝐼𝐼 𝑢𝑢 𝑗𝑗 + 𝑏𝑏 ℎ𝑗𝑗 𝑛𝑛 𝑗𝑗=1 � + 𝑏𝑏 𝑜𝑜𝑘𝑘 �;k=1, 2 … , i (3) 
The output is computed by means of a transfer function, also called activation function. It is desirable that the activation function has a sort of step behavior. Furthermore, because continuity and derivability at all points are required features of the current optimization algorithms [START_REF] Rafiq | Neural network design for engineering applications[END_REF][START_REF]Neural network toolbox user's guide[END_REF][START_REF] Si-Moussa | Prediction of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model[END_REF] three kinds of transfer function are considered in this study:

Hyperbolic tangent sigmoid transfer function:

𝑓𝑓(𝑎𝑎) = 𝑒𝑒 𝑎𝑎 -𝑒𝑒 -𝑎𝑎 𝑒𝑒 𝑎𝑎 + 𝑒𝑒 -𝑎𝑎 (4) 
Logarithmic sigmoid transfer function:

f(𝑎𝑎) = 1 1+𝑒𝑒 -𝑎𝑎 (5) 
Pure linear transfer function:

f(a)= 𝑎𝑎 (6) 

Training of network

A Feed forwardback propagation (FFBP) which is very effective in representing nonlinear relationships among variables was used in this work BP algorithm (BPA) is the most widely used in ANN, and has different variants. FFBP with Levenberg-Marquardt (BP) training algorithm and one hidden layer was chosen because it is suitable for modeling the relationship between input data and output variable [START_REF] Witek-Krowiak | Application of response surface methodology and artificial neural network methods in modeling and optimization of biosorption process[END_REF].

Testing of network

The criteria used for measuring the performance of the network are the absolute fraction of variation (R 2 ), and the root mean square error (RMSE), which can be calculated using the following equations.

The fraction of absolute variance is given by: A c c e p t e d M a n u s c r i p t

𝑅𝑅 2 = 1 - ∑ (𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑖𝑖 -𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 ) 2 𝑁𝑁 𝑖𝑖=1 ∑ (𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 ) 2 𝑁𝑁 𝑖𝑖=1 (7) 
The root mean square error value is calculated by

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �� (𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑗𝑗 -𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗 ) 2 𝑁𝑁 𝑗𝑗=1 𝑁𝑁 ⁄ (8) 
Here, 𝑁𝑁 is the number of data patterns in the independent data set, 𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑗𝑗 indicates the values predicted by ANN, 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 is the measured value of one data point i [START_REF] Kalogirou | Artificial intelligence for the modeling and control of combustion processes[END_REF][START_REF] Mellit | Artificial intelligence techniques for photovoltaic applications, a review[END_REF].

The accuracy of the model to reproduce and predict the thermal conductivity of refrigerant systems at different temperatures and pressures may be evaluated using the statistical parameters [START_REF] Haghbakhsh | Development of an artificial neural network model for the prediction of hydrocarbon density at high-pressure, hightemperature conditions[END_REF][START_REF] Amato | Artificial neural networks combined with experimental design: a "soft" approach for chemical kinetics[END_REF]: namely, the absolute average deviation(AAD), and the mean square error (MSE) which are defined as follows:

The mean square error value is calculated according to:

𝑅𝑅𝑅𝑅𝑅𝑅 = 1 𝑁𝑁 � (𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 -𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑗𝑗 ) 2 𝑁𝑁 𝑗𝑗=1 (9) 
The absolute average deviation value is calculated by [START_REF] Si-Moussa | Prediction of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model[END_REF]:

𝐴𝐴𝐴𝐴𝐴𝐴 = 1 𝑁𝑁 ∑ | 𝑁𝑁 𝑗𝑗=1 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 -𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑖𝑖 | (10) 
The Average Absolute Relative Deviation:

𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴% = 100 𝑁𝑁 ∑ | 𝑁𝑁 𝑗𝑗=1 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 -𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑖𝑖 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 | (11) 

Optimization of the network architecture

Optimization of the network architecture is the major task in ANN. The parameters that affect the performance of the network are the number of neurons in the hidden layer, the number of hidden layers, the transfer function and the training algorithm. The network architecture can be optimized by varying the above parameters (using trial and error method) to achieve the results with good accuracy [START_REF] Kalogirou | Artificial intelligence for the modeling and control of combustion processes[END_REF][START_REF] Mellit | Artificial intelligence techniques for photovoltaic applications, a review[END_REF].
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Results and Discussion

In the present study, a total of 3227 data points of thermal conductivity data were considered.

The collected experimental data points were divided into three different sub-datasets five pure systems, (R32, R125, R134a, R152a, R143a), four binary mixtures systems(R32+R125, R32+R134a, R125+ R134a, R125+R143a), and two ternary mixtures systems (R32+R125+ R134a, R125+ R134a+ R143a) at several temperatures and pressures.Each one received 1817, 794, 616 data points respectively.

For developing the neural network model, inputs and outputs should be first defined. The input parameters included, Temperature (T (k)) and pressure (P(MPa)),namely two macroscopic inputs which characterize the physical conditions of the system. Molecular weight (M (g. mol -1 )), critical temperature (T c (k)), critical pressure (P c (MPa)), critical density

(D c (Kg. m -3
)), and mass fraction of liquids or vapor phase (X) were the other selected inputs for pure systems they were specified as pseudo critical mixtures property for binary and ternary systems(9 inputs), and Thermal conductivity was the network output (1 output).The network is simple in structure and easily analyzed mathematically is schematically illustrated in Fig. 1 and Table1shows the physical properties values of these compounds accompanied with related references. This study employs experimental data from the open literature for each (pure, binary, ternary) systems, the details listed in Tables 2 to 4 respectively.

The available correlations for prediction can be described as follows:

𝐾𝐾= f (T, 𝑃𝑃, M, T 𝐶𝐶 , P 𝐶𝐶 , D 𝐶𝐶 , X 𝑗𝑗 , X 𝑗𝑗 , X 𝑘𝑘 ) (12) 

Calculation of the pseudo critical mixtures properties

The different equations of state were developed from the knowledge of the properties P, V, T of pure substances. I n the case of mixtures of known composition, it is necessary to make use of mixing rules for calculating the average properties of the mixture. Pseudo properties in the case of critical mixtures, are generally obtained from the rule of Kays (1936):
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T 𝑃𝑃𝐶𝐶 = ∑ X 𝑗𝑗 * T 𝐶𝐶𝑗𝑗 𝑛𝑛 𝑗𝑗=0 (13) 
P 𝑃𝑃𝐶𝐶 = � X 𝑗𝑗 * P 𝐶𝐶𝑗𝑗 (14) 𝑛𝑛 𝑗𝑗=0 D 𝑃𝑃𝐶𝐶 = � X 𝑗𝑗 * D 𝐶𝐶𝑗𝑗 ( 15 
) 𝑛𝑛 𝑗𝑗=0 M 𝑃𝑃𝐶𝐶 = � X 𝑗𝑗 * M 𝐶𝐶𝑗𝑗 ( 16 
) 𝑛𝑛 𝑗𝑗=0 𝐾𝐾= f ( T, P,M 𝑃𝑃𝐶𝐶 , T 𝑃𝑃𝐶𝐶 , P 𝑃𝑃𝐶𝐶 , D 𝑃𝑃𝐶𝐶 , X 𝑗𝑗 , X 𝑗𝑗 , X 𝑘𝑘 ) (17) 
n=1 for pure refrigerant, X 𝑗𝑗 = 1, X 𝑗𝑗 = 0, X 𝑘𝑘 = 0, n=1, 2 for binary mixtures, X 𝑗𝑗 +X 𝑗𝑗 =1, X 𝑘𝑘 = 0 and n=1, 2, 3 for ternary mixtures, X 𝑗𝑗 +X 𝑗𝑗 + X 𝑘𝑘 = 1.

Procedure for neural network modeling of the thermal conductivity

ANN modeling is described consists in the following four steps: (a) extract the results from experiments or theoretical calculations (b) train the network using experimentally or theoretically predicted values(c) testing of network with data, which are not used for training,(d) identify the best network architecture based on statistical performance values [START_REF] Kalogirou | Artificial intelligence for the modeling and control of combustion processes[END_REF][START_REF] Mellit | Artificial intelligence techniques for photovoltaic applications, a review[END_REF].

(i)phase of collection of experimental data as complete as possible. From this, the following procedure was considered:

(ii) division of data base to three parts (DB of pure systems, BD of binary systems, BD of ternary systems).

(iii)phase of pre-treatment and analysis of the data.

(iv)dividing data into three subsets-train, validation and test.

(v)phase of choice of the parameters of the neural network (neural network (FFBP), neurons number in hidden layer, activation function in hidden layer (tan-sig), activation function in output layer(Tang-sig)).

(vi)saving the parameters of the optimal ANN.

A c c e p t e d M a n u s c r i p t experimental and predicted values (Fig. 2).

Reduction technique

The reduced data refers to the analysis and transformation of the input and target variables having different physical units with different range values in order to minimize the input parameters (9 inputs to 7 inputs) and to improve the learning quickness, the present study use this method to calculate the minimum and the maximum of each vector variable and scaling the data with respect the upper limits. Finally, the values of the outputs from the neural network reduced are converting before being presented.
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For data reduce, the following equations are considered:

𝐺𝐺 𝑟𝑟 = 𝐺𝐺 -𝐺𝐺 𝑚𝑚𝑗𝑗𝑛𝑛 𝐺𝐺 𝑚𝑚𝑎𝑎𝑒𝑒 -𝐺𝐺 𝑚𝑚𝑗𝑗𝑛𝑛 (17) 
X 𝑗𝑗 = X 𝑗𝑗 + 1 ( 18 
)
𝑇𝑇 𝑟𝑟 = 𝑇𝑇 𝑇𝑇 𝐶𝐶 , 𝑃𝑃 𝑟𝑟 = 𝑃𝑃 𝑃𝑃 𝐶𝐶 (19) 
For converting (to real value) of data estimated by ANN:

𝐺𝐺 = 𝐺𝐺 𝑟𝑟 * (𝐺𝐺 𝑚𝑚𝑎𝑎𝑒𝑒 -𝐺𝐺 𝑚𝑚𝑗𝑗𝑛𝑛 )+𝐺𝐺 𝑚𝑚𝑗𝑗𝑛𝑛 ( 20 
)
𝐾𝐾 = f (T 𝑟𝑟 , P 𝑟𝑟 , M 𝑟𝑟 , D 𝑟𝑟 , X 𝑗𝑗 , X 𝑗𝑗 , X 𝑘𝑘 ) ( 21 
)
Where 𝐺𝐺 is the original data value, 𝐺𝐺 𝑟𝑟 is the corresponding reduced variable; min, max are the minimal and the maximal values of each vector respectively.

The validation agreement, coefficients of determination(R 2 exp) and (R 2 cal), and different errors values RMSE, MSE, AAD, AARD, and SSE, are collected in Table 12. The performance of the present developed ANN (RN2, RN3) models were compared to the previously developed ANN models (RN1) to estimate the thermal conductivity for original (real) data and also the reduced data. The three models provided high values of the correlation coefficient R 2 , as illustrated in Fig. 3 otherwisethe RN1model obtained was similar to RN3;

while the RN2 model led to a better fit of experimental data than the RN1, RN3 models.

Artificial neural network prediction

The assembled of new experimental data points, namely 660 data points, for harmful refrigerants covered thermal conductivity range 0.0106-0.15 W/m. K, temperature range of 164.77-463K, and pressure range of 0.059-69.58 MPa. These collected data were distributed into 363 data points for three pure systems (R22, R124, R142b), 240 data points for two binary systems (R22+R142b, R22+R152a) and 57data points for one ternary system (R142b+R124+R22).In this part the range of experimental data parameters and the number of The prediction of the new data base(DB2) of the harmful refrigerants by no harmful refrigerants using (DB1) are given in Fig. 4 this indicates that the new approach (RN3) improved the prediction of thermal conductivity, producing the following RMSE, MSE, AAD, AARD, SSE and R 2 values, 0.0123, 0.0002, 0.0094%, 17.92%, 0.10 and 0.974, respectively (Table 16).

These results show the good predictive ability of the ANN model. In general, in Fig. 5 the residual did not exceed -0.025 to 0.04 for new data base (DB2) and ±0.02 for data base (DB1),(except for a few experimental points).The illustration of harmful refrigerants for all (pure, binary, ternary) systems by different colors that shows an appropriateR 2 value, 0.95,areshown in Fig. 6 this confirms that the method out performs prediction ability. All experimental data points (DB1+DB2), namely the whole 3887 data points, were divided into three different sub-datasets: eight pure systems, (R32, R125, R134a, R152a, R143a, R22, R124, R142b), six binary mixtures (R32+R125, R32+R134a, R125+ R134a, R125+R143a, R22+R142b, R22+R152a), and three ternary mixtures (R32+R125+ R134a, R125+ R134a+ R143a, R142b+R124+R22), namely 2180, 1034, 673 data points respectively.

Figs. 8,9 and Table 17 shows a significant correlation with percentage residual error varying in the range of± 0.02, a high R 2 value, 0.998, and fairly accurate prediction the absolute average deviation error (AARD), estimated to be 5.8%, as well as a high robustness.

Conclusion

In this paper, a methodology for choosing an ANN model to predict thermal conductivity was presented. The methodology starts with a wide search in order to select the model with An artificial neural network model was used to predict the thermal conductivity of pure refrigerants and their binary, ternary mixtures for liquid and vapor phaseof11 systems from 3 different categories containing five pure systems (R32, R125, R134a, R152a, R143a), four binary mixtures(R32+R125, R32+R134a, R125+ R134a, R125+R143a) and two ternary mixtures (R32+R125+ R134a, R125+ R134a+ R143a).This study involved 3227 data points including the temperature, the pressure, the molecular weight, the critical temperature, the critical pressure, the critical density and the mass fraction of liquid and vapor phases of refrigerants.

In this work, the feed forward Backpropagation (BP) algorithm with Levenberg-Marquardt(LM) training was applied to estimate the thermal conductivity. One relevant model (RN1) we attempted to improve their performance by using the reduction technique to attain (RN3).The best network model obtained consisted of the best fit of the validation agreement plot, and high R 2 value,0.997was obtained. Furthermore, the statistical analysis showed that the model (RN3) was able to yield quite satisfactorily estimates for pure, binary and, ternary refrigerant systems, as well as the global system, the model was shown to be robust.

The performance of the proposed ANN model was also examined through its application to test a data set consisting of 660 experimental points of thermal conductivity for various systems for diverse pure, binary and ternary mixtures of refrigerants over a wide range of temperatures and pressure. The results of this evaluation indicate that the developed ANN model was capable to predict thermal conductivity with a high coefficient of determination.

The results of applying the trained neural network model to the test data indicate that the method has a very good prediction capability with respect to not only the temperature and pressure ranges but also the refrigerant types.

A c c e p t e d M a n u s c r i p t

Lastly the gathering of all experimental data points DB1and DB2 (RN4)gave a high R 2 value, 0.998, and a low average absolute relative deviation error (5.8%). A c c e p t e d M a n u s c r i p t A c c e p t e d M a n u s c r i p t 

Nomenclature

A c c e

  p t e d M a n u s c r i p t data points accompanied with their references in Tables13, 14 and 15 for different systems (pure ,binary, ternary),respectively.

Fig.7shows the

  Fig.7shows the prediction of DB2 by DB1 in the range [0.01, 0.03]W.m -1 . K -1 .

A c c e

  p t e d M a n u s c r i p t minimum complexity, optimal performance and choice of the respective parameters (inputs and outputs, activation functions, training algorithm, reduction technique, hidden layers).

  Critical density (Kg.m-3 ) Acronyms ASHRAE American society of heating, refrigerating and air conditioning engineers

A c c e p t e d M a n u s c r i p t

  

A c c e p t e d M a n u s c r i p tFig. 1 .

 1 Fig.1.Feed forward neural network for the prediction of thermal conductivity of refrigerants.

Fig. 2 .

 2 Comparison of experimental and calculated values for the whole data set (a) Pure systems, (b) Binary systems, (c) Ternary systems, (d) Global system.

Fig. 3 .

 3 Fig. 3.Comparison of reduced and calculated values for the whole data set: (e) RN2 (number of neurons=17), (f) RN3 (number of neurons=13) for global system.

Fig. 4 .

 4 Fig.4.Comparison between data base DB1and DB2 for pure, binary and ternary systems:(a) RN1, (b) RN2, (c), RN3, for the prediction model.

A c c e p t e d M a n u s c r i p tFig. 5 .

 5 Fig.5.Plot of the residuals for calculated values ofthermalconductivity from the ANN model versus their experimentalvalues for DB2, [𝑅𝑅𝑒𝑒𝑅𝑅𝑖𝑖𝑅𝑅𝑢𝑢𝑎𝑎𝑐𝑐 = 𝐾𝐾 𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗 -𝐾𝐾 𝑐𝑐𝑎𝑎𝑐𝑐,𝑗𝑗 ].

Fig. 6 .

 6 Fig.6.Prediction of the new data base DB2.

Fig. 7 .

 7 Fig. 7.The prediction between the DB2 and the actual data base DB1 in the range [0.01, 0.03].

Fig. 8 .

 8 Fig.8.Regression analysis plot for the optimal model between output and target of thermal conductivity(RN4).

  0

Fig. 9 .

 9 Fig. 9.Plot of the residuals for calculated values of thermal conductivity from the ANN model and their experimental data points (RN4).

  s c r i p t

Table 5

 5 shows the structure of the optimized ANN model for each pure systems, binary systems, ternary systems and global systems Tan-sig is a sigmoid transfer function used in the hidden layer and used in the output layer for all systems, in this table, R2 values and RMSE of the trained networks have been shown for different number of hidden layer neurons. The best configuration with minimum error measure (RMSE) and appropriate R 2 value. The parameters (weight and biases values) of the best selected NN model for each system (pure, binary, ternary, global) are listed in Tables 6 to 9 respectively, where W I is the input-hidden layer connection, W h is the hidden layer output connection, b hj and b 0k are biases of the neuron j of the hidden layer and the neuron of the output layer respectively.

	method provide good results with high correlation coefficients (R 2	exp ,R 2	cal ). Comparison
	between the output data and calculated values of the thermal conductivity of different
	refrigerant systems with(R 2	pure =0.997, R 2	binary =0.998, R 2 ternary =0.998, R 2	global =0.997), shows

Table10 shows the regression line of the network model equation during training, validation, and prediction sets of pure systems, binary systems, ternary systems and global system RMSE, MSE,AAD,AARD, and SSE, are collected in Table

11

showing that there was a significant correlation between experimental and predicted values. For each plot, the ANN lopes close to unit and an intercept values close to zero, confirming the agreement between

Table 1 The critical properties of compounds used in this work

 1 

	Component Molecular weight (g/mol)	T C (K)	P C (Mpa)	D C (Kg/m 3 )	Reference
	R32	50.020	351.55	5.83000	430.0	[56]
	R125	120.02	339.45	3.59000	571.0	[56]
	R134a	102.00	374.18	4.05629	508.0	[49]
	R152a	66.050	386.44	4.52000	365.0	[44]
	R143a	84.040	346.25	3.81100	434.0	[44]
	R22*	86.470	369.35	4.99000	513.0	[56]
	R124*	136.48	395.65	3.63400	560.0	[44]
	R142b*	100.50	410.25	4.24600	459.0	[44]
	R152a*	66.050	386.44	4.52000	365.0	[44]

Table 2 Sources and ranges of data base used in this work for pure systems

 2 

	Component	T (K)	P(Mpa)	X i K(W. m. -1 K -1 )	Reference
		293.15-353.15	0.10-2.540	1	0.0123-0.0256	[37]
		272.46-400.47	0.1005-8.9437	1	0.1165-0.0948	[38]
		202.83-303.05	1.2919-5.1772	1	0.08445-0.1272	[39]
		253.25-363.15	0.096-6.097	1	0.01205-0.10605	[40]
		203.00-393.00	0.09-68.201	1	0.01036-0.14495	[41]
	R134a	273.15-363.15 252.97-333.20	0.10-2.8 1.71-22.43	1 1	0.01096-0.02036 0.0707-0.1113	[42] [43]
		169.87-290.06	10.00	1	0.0862-0.1430	[44]
		303.00-463.00	0.10	1	0.01376-0.02758	[45]
		223.15-323.15	2-25	1	0.07448-0.12087	[46]
		213.01-292.88	1.00-21.34	1	0.087297-0.13048	[47]
		232.75-323.25	2.00-20.00	1	0.0751-0.1184	[48]
		295.85-532.94	0.1.0-50.00	1	0.01276-0.10494	[49]
		295.85-354.95	1.379-4.147	1	0.05715-0.08401	[50]
		172.74-290.02	10.00	1	0.0679-0.1116	[44]
		283.15-333.15	0.100-2.010	1	0.01229-0.01777	[51]
		253.04-313.46	1.24-16.03	1	0.0578-0.0793	[52]
	R125	187.43-413.61	0.18-6.040	1	0.011-0.1075	[53]
		254.45-354.35	0.104-7.033	1	0.01212-0.08426	[54]
		231.25-324.05	2.00 -20.00	1	0.0524-0.0984	[55]
		231.25-324.05	2.00 -20.00	1	0.0524-0.0984	[48]
		283.15-333.15	0.10 -3.00	1	0.01084-0.02025	[51]
		252.67-312.83	3.68-17.63	1	0.1148-0.1704	[52]
	R32	223.15-323.15	2.00-20.00	1	0.11035-0.1984	[46]
		233.45-334.95	0.098-6.194	1	0.01081-0.17762	[54]
		232.55-322.95	2.00-20.00	1	0.1141-0.1927	[55]
		263.15-363.15	0.082-6.22	1	0.01215-0.1263	[40]
		223.15-323.15	2.1-20.1	1	0.0928-0.145	[56]
	R152a	303-423	0.1	1	0.01491-0.02592	[45]
		189.61-299.33	7.71-8.55	1	0.1076-0.159	[57]
		211.69-294.29	0.79-18.5	1	0.10259-0.14752	[58]
		293.15-353.15	0.1-3.98	1	0.0126-0.0375	[37]
	R143a	298-383	0.1	1	0.0123-0.01873	[45]
		233.15-323.45	2-20	1	0.0576-0.1121	[59]

Table 3 Sources and ranges of data base used in this work for binary systems Table 4 Sources and ranges of data base used in this work for ternary systems

 3 

	N: Number of experimental data; R410A (R32, R125: 50%, 50%); R507A (R125, R143a: 50%, 50%),407C (R32, R125, R134a:
	23%, 25%, 52%); 404A (R125, R134, R143: 44%, 4%, 52%).

Table 5 The values of coefficient of determination, R 2 and RMSE of different transfer function with the optimal number of neurons in each case

 5 

	Binary		T (K)		P(Mpa)		X i +X J = 1	K(W. m. -1 K -1 )	N	Reference
	Systems						
			283.15-298.15	0.10-1.20		1876-0.8222	0.0117-0.01502	69	[51]
	R32+R125	232.65-323.95	2-20		0.2522-0.7595	0.0639-0.1667	120	[55]
			213-293		2-30		0.249-0.75	0.0814-0.1785	60	[60]
	R410A		255.04-409.8		0.101-3.69	0.5+0.5=1	0.02276-0.00998	50	[61]
			223.15-323.15	2-25		0.3057-0.7496	0.08165-0.17378	72	[46]
	R32+R134a	193.2-316.1		2-30		0.249-0.75	0.0846-0.1953	84	[60]
	R125+R134a 232.75-323.55	2-20		0.191-0.785	0.0597-0.1143	98	[48]
			254.71-372.17	0.101-2.647		0.01007-0.02138	34	[61]
	R507A		297.95-332.55	1.465-3.775	0.5+0.5=1	0.05-0.0637	128	[62]
			312.59-424.24	0.105-1.902		0.01468-0.02528	79	[63]
	Ternary		T (K)	P (Mpa)	+X J +X k = 1	K(W. m. -1 K -1 )	N	Reference
	systems						
	R32+R125	193.1-293	2-30			0.19-0.23	0.0797-0.144	44	[64]
	+R134a	232.55-324.15	2-20			0.18-0.61	0.0641-0.1505	168	[65]
	407C	253.27-389.83	0.101-2.447		0.23+0.25+0.52=1	0.00968-0.02012	38	[61]
	407C	303.9-424.25	0.1055-2.038		0.23+0.25+0.52=1	0.0133-0.02454	97	[66]
		252.8-393.09	0.101-2.763		0.44+0.04+0.52=1	0.0099-0.02234	46	[61]
	404A	233.55-322.95	2-20			0.44+0.04+0.52=1	0.0563-0.1056	24	[59]
		311.32-428.94	0.13-1.841		0.44+0.04+0.52=1	0.02584-0.01451	91	[67]
		297.85-332.65	1.277-3.818	0.44+0.04+0.52=1	0.05073-0.06532	108	[70]

Type of Network Input layer Hidden layer Output layer Neurons Number Activation function

  

			M a n u s c r i p t
	FFBP FFBP A c c e p t e d 13 16	Logsig Logsig	Activation function Tansig Purelin	R 2 0.99312 0.99411	RMSE 0.0039 0.0033
	Pure systems	FFBP	13	Tansig	Tansig	0.99615	0.0027
		FFBP	19	Tansig	Purelin	0.98434	0.0054
		FFBP	25	Purelin	Tansig	0.75703	0.0200

Table 6 Weights and biases of the optimal ANN architecture (Pure systems)

 6 

	Input-Hiddenlayer

Table 7 Weights and biases of the optimal ANN architecture (Binary systems)

 7 

		FFBP	16	Logsig	Tansig	0.9971	0.0037
		FFBP	15	Logsig	Purelin	0.9956	0.0045
	Binary systems	FFBP	13	Tansig	Tansig	0.9980	0.0030
		FFBP	19	Tansig	Purelin	0.9911	0.0064
		FFBP	25	Purelin	Tansig	0.9909	0.0065
		FFBP	15	Logsig	Tansig	0.9934	0.0046
	Ternary systems	FFBP	16	Logsig	Purelin	0.9928	0.0048
		FFBP	12	Tansig	Tansig	0.9983	0.0023
		FFBP	19	Tansig	Purelin	0.9933	0.0046
		FFBP	25	Purelin	Tansig	0.9080	0.0157
		FFBP	09	Tansig	Tansig	0.9925	0.0063
	Global system(RN1)	FFBP	16	Logsig	Tansig	0.9941	0.0057
		FFBP	15	Logsig	Purelin	0.9825	0.0081
		FFBP	13	Tansig	Tansig	0.99667	0.0036
		FFBP	19	Tansig	Purelin	0.99279	0.0052
		FFBP	25	Purelin	Tansig	0.81528	0.0251

Table 8 Weights and biases of the optimal ANN architecture (Ternary systems) Input-Hidden layer connections

 8 

	Weights(w j I )	Bias

Table 9 Parameters (weight and bias) of the ANN of global systems (pure systems +Binary systems +Ternary systems) Input-Hidden layer connections

 9 

	Weights(w j I )	Bias

Table 10 Linear regression vectors (linear equation:𝜸𝜸 cal

 10 

= 𝜶𝜶𝜸𝜸 exp + 𝜷𝜷 , with, 𝛼𝛼 = slope 𝜷𝜷 = y

intercept, R 2 correlation coefficient)

  

			M a n u s c r i p t
	Systems Pure systems Binary systems Ternary systems A c c e p t e d N 1817 Training phase Validation phase Test phase Total 794 Training phase Validation phase Test phase Total 616 Training phase Validation phase Test phase Total Training phase	𝛼𝛼 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	𝜷𝜷 0.00120 0.00120 0.00030 0.00096 0.00120 0.00094 0.00130 -0.00120 0.0001100 0.0001700 0.0002900 0.0000064 0.00054	R 2 0.99667 0.99539 0.9944 0.99615 0.99810 0.99790 0.99780 0.99800 0.99810 0.99910 0.99880 0.99830 0.99668
	Global systems (RN1)	3227	Validation phase Test phase	1.000 1.000	0.00067 0.00071	0.99641 0.99690
			Total	1.000	0.00058	0.99667

Table 11 The values of the different errors of this study Table 12 Linear regression vectors and error performance between models obtained byRN1, RN2, RN3

 11 

Table 13 Sources and ranges of new data base for pure systems. Table 14 Sources and ranges of new data base for binary systems

 13 

	Systems		RMSE	MSE	AAD		AARD%	SSE	R 2 Cal
	Pure systems		0.0027	0.0000	0.0024		07.6812	0.0244	0.9977
	Binary systems		0.0030	0.0000	0.0020		07.4144	0.0074	0.9988
	Ternary systems		0.0023	0.0000	0.0013		04.8599	0.0033	0.9989
	Global system(RN1)	0.0036	0.0000	0.0023		08.1295	0.0411	0.9980
	𝛼𝛼	𝜷𝜷	R 2 exp	RMSE MSE AAD	AARD%	SSE	R 2 cal
	RN1	01.000 0.00058 0.99667 0.0036 0.0000 0.0023	08.1295	0.0411	0.9980
	RN2	01.000 -0.00082 0.99805 0.0027 0.0000 0.0018	05.2531	0.0237	0.9988
	RN3	01.000 -0.00330 0.99683 0.0035 0.0000 0.0023	07.7516	0.0393	0.9981
	Pure	T (K)		P(Mpa)	X i = 1	K(W. m. -1 K -1 )	N	Reference
	Systems						
		298.15-393.15	0.1-5.76	1	0.0106-0.0682	130	[69]
		252.48-333.32	0 1-26.58	1	0.0667-0.1141	37	[43]
	R22	223.15-323.15	2.1-20.1	1	0.0713-0.1262	50	[57]
		303-463	0.1	1	0.01089-0.02064	05	[45]
		208.56-289.6	0.9	1	0.0875-0.1222	16	[58]
		293.15-353.15	0.1-1.35	1	0.0109-0.0165	21	[37]
		302.201-304.346	1.6425-69.5827	1	0.08064-0.11163	32	[39]
	R142b	223.15-323.15	2.1-20.1	1	0.0734-0.1183	25	[57]
		298-418	0.1		1	0.01249-0.0214	05	[45]
		210.4-289.55	4.31-7.59	1	0.0872-0.1164	07	[58]
	R124	252.4-333.1	0.62-18.67	1	0.0584-0.0909	35	[52]
	Binary		T (K)		P(Mpa)	X i +X J = 1		K(W.m. -1 K -1 )	N	Reference
	Systems						
	R22+R142b	223.15-323.15	2.1-20.1	0.2796-0.729	0.01664-0.1207	[57]
			164.77-295.76	2.7-8.14	0.377-0.765	0.0854-0.1422	[58]
	R22+R152a	223.15-323.15	2.1-20.1	0.2488-0.7505	0.0759-0.1391	[57]
	R22+R152a	176.6-297.45	2.44-8.02	0.269-0.765	0.0916-0.1512	[58]
	R415		308.22-415.55	0.12-1.684	0.5+0.5=1		0.0139-0.0225	[70]

Table 15 Sources and ranges of new data base for ternary systems
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	N: Number of experimental data; R415 (R22, R152a: 50%, 50%); R409 (R142b, R124, R22: 15%, 25%,
	60%).

Table 16 Comparison between the prediction model of different results of new data base (DB2) obtained by each model RN1, RN2, RN3

 16 

Table 17 Statistical analyses of the error of the predicted results (RN4).

 17 

	Ternary	T (K)	P(Mpa)		X i +X J +X k = 1		K(W. m. -1 K -1 )	N	Reference
	Systems								
	R409	305.67-427.13	0.0591-1.364		0.15+0.25+0.6=1		0.0118-0.0196	5 7	[71]
	Model	Systems	N	RMSE		MSE	AAD AARD%	SSE	R 2	Cal
		Pure	363	0.0284 0.0008	0.0212	48.7426	0.2925 0.8446
	RN1	Binary Ternary	240 57	0.0116 0.0002 0.0304 0.0009	0.0094 0.0202	21.046 115.911	0.0486 0.9754 0.0525 -2.7634
		Total	660	0.0244	0.0006	0.0169	44.7115	0.3936	0.8982
		Pure	363	0.0218	0.0005	0.0147	23.0868	0.1723	0.9084
	RN2	Binary Ternary	240 57	0.0167 0.0021	0.0004 0.0000	0.0121 0.0017	23.2145 10.8684	0.1017 0.0002	0.9484 0.9827
		Total	660	0.0204	0.0004	0.0126	22.0780	0.2743	0.9291
		Pure	363	0.0140	0.0002	0.0108	21.1563	0.0710	0.9623
	RN3	Binary Ternary	240 57	0.0090 0.0020	0.0001 0.0000	0.0092 0.0017	14.6979 10.8850	0.0292 0.0002	0.9853 0.9832
		Total	660	0.0123	0.0002	0.0094	17.9208	0.1004	0.9742
	System	N	MSE		MSE	AAD	AARD%	SSE	R 2	Cal
	DB1+DB2	3887	0.0028	0.0000	0.0018		5.78	0.0303	0.9988