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ABSTRACT: In this study, the Virtual Fields Method (VFM) is applied to identify constitutive parameters
of hyperelastic models from a heterogeneous test. Digital image correlation (DIC) was used to estimate both
displacement and strain fields required by the identification procedure. Two different hyperelastic models
were considered: the Mooney model and the Ogden model. Applying the VFM to the Mooney model leads to
a linear system which involves the hyperelastic parameters due to the linearity of the stress with respect to
these parameters. In the case of the Ogden model, the stress is a nonlinear function of the hyperelastic param-
eters and a suitable procedure shall be used to determine virtual fields leading to the best identification. This
complicates the identification procedure and affects its robustness. This is the reason why the sensitivity
based virtual field approach recently proposed in case of anisotropic plasticity by Marek et al. (2017) has
been successfully implemented to be applied in case of hyperelasticity. Results obtained clearly highlight the
benefits of such an inverse identification approach in case of non-linear systems.

1 INTRODUCTION

The constitutive parameters of hyperelastic models are
generally identified from several homogeneous tests,
typically uniaxial tension (UT), pure shear (PS) and
equibiaxial tension (EQT). An alternative methodology
consists in performing only one heterogeneous test.
This is typically the case when a multiaxial loading is
applied to a 3-branch, see Guélon et al. (2009) or a 4-
branch cruciform specimen, see Promma et al. (2009),
Johlitz and Diebels (2011), Seibert et al. (2014). Indeed
this induces a large number of mechanical states at the
specimen’s surface. The resulting heterogeneous strain
fields are generally measured by Digital Image Correl-
ation (DIC) technique. Among the different identifica-
tion methodologies, the Virtual Field Method (VFM)
has been successfully applied to hyperelasticity in
Promma et al. (2009). In this work, linear systems were
obtained due to the linearity of the stress with respect
to the constitutive parameters (see the Mooney (1940)
and the Yeoh (1993) models). When the system
becomes nonlinear, typically for the Odgen model
Ogden (1972), a statistical analysis can be carried out
for optimizing the choice of the virtual fields. This

complicates the identification procedure and affects its
robustness. This is the reason why we apply here the
sensitivity-based virtual field approach recently pro-
posed in case of anisotropic plasticity by Marek et al.
(2017). In the next section the theoretical background
of VFM is presented and the sensitivity-based virtual
field approach is more precisely detailed. Then, the
experimental setup is briefly described. The results
obtained for the two approaches are presented and dis-
cussed. Concluding remarks close the paper.

2 THEORETICAL BACKGROUND

Assuming a plane stress state and large strains, the
principle of virtual work can be expressed as follows
in the Lagrangian configuration:
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where Π is the first Piola-Kirchhoff stress tensor,
e0 is thickness of the solid, S0 is the surface of the
solid in the normal direction to the thin dimension
and ∂S0 its boundary. X are the coordinates and N
denotes the normal vector to the edge. S0 and e0 are
measured in the reference configuration.

2.1 Hyperelasticity

For hyperelastic materials, the mechanical behavior
is described by the strain energy density W relating
the stress to the strain through the principle stretches
(λ1,λ2,λ3) or the first two principal invariants of the
left Cauchy-Green strain tensor (I1 and I2). Assum-
ing that the material is incompressible, the first
Piola-Kirchhoff stress tensor for such material reads:

P ¼ �pF�t þ ∂W
∂F

ð2Þ

where p is an indeterminate coefficient due to
incompressibility, F is the deformation gradient
tensor and ●t designates the transpose of a second-
order tensor. For the Mooney model Mooney (1940),
the strain energy density can be written as follows:

W ¼ c1ðI1 � 3Þ þ c2ðI2 � 3Þ; ð3Þ

where c1 and c2 are the constitutive parameters to
be identified. Combining eqs. (2) and (3) and
replacing Π by its expression in eq. (1) lead to the
expression of the principle of virtual work:
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where Θ and Λ are two functions of the principle
stretches. Using eq. (4) with two independent dis-nV
F, nT ime and nP ts denote respectively the numpla-
cement virtual fields leads to the following linear
system
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The two constitutive parameters c1 and c2 are
obtained by inversion of system. The second
model considered in the present study is the
Ogden (1972) one. In this case, the strain energy
density reads

W ¼
XN
i¼1

2μi
α2i

λαi1 þ λαi2 þ λαi3 � 3
� �

; ð6Þ

where µi,αi; i =1..N are the constitutive param-
eters governing the model. From eqs. (2) and (6) the
eigenvalues of the Piola-Kirchhoff stress tensor are
given by

�i ¼
∂W
∂λi
� λ�1i p: ð7Þ

The principle of virtual work of eq. (1) becomes
in this case
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where (u, v) is the principle basis of the strain
tensor. In this basis, the cost function to be minim-
ized to find the constitutive parameters can be writ-
ten as follows

f χð Þ ¼XnV F
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nV F, nTime and nPts denote respectively the
number of independent virtual fields, the time steps
and the number of Z.O.I. In this paper, only the first
order (N =1) of this model is considered. The identi-
fication of the constitutive parameters is performed
by minimizing the cost function f.

2.2 Choice of the virtual displacement fields

Since an infinite number of kinematically admissible
virtual fields U* satisfy the principle of virtual work
in Eq. (1), the choice of a set of independent virtual
fields remains a topical issue. A first attempt to fulfill
this aim was to consider analytic forms of the virtual
fields which can work very well for elastic materials,
see Grédiac et al. (2002) and composite materials,
see Pierron and Grédiac (2012) and Grédiac and
Pierron (1998). Another authors considered piece-
wise displacement virtual fields such as in Toussaint
et al. (2006).

2.2.1 Random virtual displacement fields
To deal with hyperelastic materials, different
approaches in the generation of independent virtual
displacement fields should be applied. To the
authors’ knowledge, the virtual fields method was
first applied to hyperelastic materials in Promma
et al. (2009). Motivated by a noise-sensitivity study,
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a set of random virtual displacement fields was gen-
erated. The procedure relies on the division of the
region of interest in the sample into 12 quadrangular
sub-domains over which piecewise virtual fields are
defined. The displacement at the nodes are then gen-
erated and the set of virtual fields leading to the best
identification is chosen. The displacement is approxi-
mated in each sub-domain by four-noded quadrangu-
lar finite elements Zienkiewicz et al. (1977). In
Promma et al. (2009), these random virtual displace-
ment fields were used for two hyperelastic models for
which the application of the virtual fields method led
to a linear system. In this case, to ensure the inde-
pendence of the virtual fields, the criterion was a
good conditioning of the system in eq. (5). However,
for models for which the Virtual Field Method do not
lead to a linear system, such as the Ogden model, a
statistical study should be done to generate independ-
ent virtual fields, which makes identification more
complicated and less robust, and requires the develop-
ment of alternative strategies.

2.2.2 Sensitivity-based virtual displacement fields
In a recent work Marek et al. (2017), a new proced-
ure for generating independent virtual displacement
fields was employed for the identification of the con-
stitutive parameters of an anisotropic plastic material
in the small strain domain. The method is based on
the sensitivity of the stress to small changes of con-
stitutive parameters, typically between 10 and 20 %.
The virtual displacement fields are then generated
proportionally to the stress sensitivity fields through
a finite element-like approach. The method was then
extended to finite strain for anisotropic plasticity in
Marek et al. (2018). In this case, the stress sensitivity
field is defined by

δP ið Þ χ; tð Þ ¼ P ðχ þ δχi; tÞ � P χ; tð Þ; ð10Þ

where 0.1 χi ≤ δχi ≤ 0.2 χi is the sensitivity of the
ith parameter with numerical values picked from lit-
erature. Note that the stress sensitivity field in Eq.
(10) gives the influence of each constitutive param-
eter in the global response of the material at each
point since the experiment used is heterogeneous.
Therefore, the virtual displacement fields were gen-
erated proportionally by setting the stress sensitivity
fields with the following expression

δP ið Þ χ; tð Þ ¼ BglobU
� ið Þ; ð11Þ

where Bglob is the global strain-displacement
matrix from a virtual mesh generated a priori. This
matrix is obtained by assembling the elementary
strain-displacement matrix obtained directly from the
derivation of the shape functions with respect to the
coordinates. U*(i) in Eq. (11) designates the virtual
displacement field corresponding to the ith constitutive
parameter. Note that this virtual displacement field is
a test function and has no physical meaning. In prac-
tice, matrix Bglob should be modified to account for

the boundary conditions of the region of interest (R.O.
I). Typically, for edges where external loading is
unknown a null displacement should be imposed.
Therefore, a new matrix B̅glob is obtained from the
original matrix Bglob. The virtual displacement field is
then given by

U� ið Þ ¼ pin� �Bglob

� �
δP ið Þ χ; tð Þ; ð12Þ

where pinυ designates the pseudo inverse oper-
ator. Once the virtual displacement field is obtained,
its gradient needed in the principle of virtual work is
computed using the classic equation obtained with
the finite elements method

∂U� ið Þ

∂X
¼ BglobU

� ið Þ: ð13Þ

The contribution of each constitutive parameter to
the response of the material is very different and
unique. Therefore, a scaling in the cost function
should be added (see Marek et al. (2017) and Marek
et al. (2018)).

3 EXPERIMENTS

The material used in this study is a carbon black filled
natural rubber. The sample is shown in Figure 1. It
is a 105 mm long and 2 mm thick cruciform sample.
This shape of the specimen gives, when an equi-
biaxial load is applied, several strain states, espe-
cially UT, PS and EQT, and a various states in
between. Therefore, the single heterogeneous test
used in this study can replace all the homogeneous
tests classically used to identify hyperelastic consti-
tutive parameters.

The experimental setup is presented in Figure 2. It
is composed by a home-made biaxial testing
machine and a digital camera. The four independent
actuators were linked to have the same movement

Figure 1. Sample geometry
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such that the specimen center was motionless during
the test. Hence, a reference point is obtained in the
center of the sample with respect to the correlation
procedure. A displacement of 70 mm was applied to
each branch at a loading rate of 150 mm/min, which
corresponds to value of λmax of 3.4.

During the mechanical test, images of the speci-
men surface were stored at a frequency of 5 Hz
using an IDS camera equipped with a 55 mm tele-
centric objective. The charge-coupled device (CCD)
of the camera has 1920 × 1200 joined pixels. The
displacement field at the surface of the specimen
was determined using the digital image correlation
(DIC) technique. The correlation process is achieved
thanks to the SeptD software, see Vacher et al.
(1999). The spatial resolution, defined as the smal-
lest distance between two independent points, was
equal to 10 pixels. A rectangular region defined in
one branch of the specimen is sufficient to apply the
identification procedure described in Section 2. The
rectangular R.O.I is represented in Figure 3. Due to
the large displacement applied during the experi-
ment, the correlation could not be achieved in some
Z.O.I (less than 4% of the total number of Z.O.I).
The displacement in these Z.O.I is approximated
with a linear interpolation of the values

obtained in the surrounding Z.O.I.s. The displace-
ment fields are then smoothed using a mean filter in
order to eliminate noise, especially where significant
gradient occurs. This filter is applied before and after
the differentiation step needed to obtain the displace-
ment gradient tensor.

4 RESULTS

4.1 Experimental kinematic fields

The displacement field obtained from the SeptD soft-
ware is smoothed using a mean centered filter. The
values in Z.O.Is where the correlation could not be
achieved were interpolated beforehand, as discussed
above. The displacement gradient fields are pre-
sented in Figure 4 for the rectangular R.O.I. These
data were smoothed using the same filter. The data
obtained experimentally were used in the identifica-
tion of the constitutive parameters for random and
sensitivity based virtual displacement fields.

4.2 Identification from random virtual fields

The identification procedure described in 2.2.1 is
applied herein for the determination of the hypere-
lastic constitutive parameters. For the Mooney
model, the virtual displacement fields were chosen
in such a way that the conditioning of the matrix A
of Eq. (5) was greater than 0.3. For the Ogden model
no criteria is found in the choice of the virtual dis-
placement fields, hence, 100 virtual fields were gen-
erated and used in the identification procedure. The
parameters identified using this approach are
reported in table 1. The parameters found herein
were then tested, at the end of this section, to repro-
duce the experiments.

Figure 2. Experimental setup

Figure 3. Region of interest with 10 by 10 pixels Z.O.I Figure 4. Experimental displacement gradient fields
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Figure 5. Randomly generated virtual fields for the identi-
fication of the Mooney model

4.3 Identification from sensitivity-based virtual
fields

The identification procedure presented in 2.2.2 is
used to obtain the hyperelastic constitutive param-
eters. First, a virtual mesh has to be generated. It can
be different from the correlation grid. Then, the vir-
tual fields are generated proportionally to the stress
sensitivity fields. The reference values for the param-
eters used in this work are reported in Table 2. The
values of the parameters identified are reported in
table 3. The parameters for all the models considered
here are in agreement with the reference values.
Note that, the parameters in Table 3 are obtained for
several simulations with different sensitivity param-
eters, i.e. different virtual fields. Furthermore, the
mean values for the parameters do not affect the

final result of the identification. Indeed, the mean
values for each parameter could change within the
reference range without affecting the final result of
the identification. For the Ogden model, the least
square error (the value of the objective function at
the end of the identification) is about 1.5 10-5.

Figure 6. Sensitivity based virtual fields for the identifica-
tion of the Mooney model

4.4 Results comparison

To evaluate the accuracy of the identified param-
eters, the biaxial experiment used in this work was
simulated by using the Abaqus FE package. A plane
stress problem was considered with the parameters
given in Tables 1 and 3. The mesh used in the model
was CPS4. This element is a four node bilinear plane
stress quadrilateral. The four edges of the cruciform
sample were subjected to a traction displacement of
70 mm each. The displacement was blocked in the
shear direction along the edges of the sample. For
each set of parameters, the resulting force was
recorded in each branch of the sample and compared
to the experimental load obtained in the experiment.
The results of this comparison are shown in figure 7,
where SBVF and RVF refer to sensitivity based vir-
tual fields and random virtual fields, respectively.
For the RVF method, the Mooney model appears to
have a good result for a maximum stretch up to 2.7,

Table 1. Identified hyperelastic constitutive parameters
using random virtual displacement fields

Model Parameters Identified value

Mooney c1 0:229 MPa
– c2 9:4 10-3 MPa
Ogden 1 μ1 0:68 MPa
– α1 1:4

Table 2. Reference values for the constitutive parameters

Model Parameters Identified value

Mooney c1 0.4 MPa
– c2 0.04 MPa
Ogden 1 μ1 0.768 MPa
– α1 1.26

Table 3. Parameters identified using sensitivity-based vir-
tual fields

Model Parameters Identified value

Mooney c1 0.22 MPa
– c2 1.9 10-2 MPa
Ogden 1 μ1 0.46 MPa
– α1 2.11
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which is the usual range for the Mooney model.
However, the Ogden model overestimates the force
in the branch for the whole experiment. This is due
to the choice of the virtual displacement fields,
which was done randomly. For the SBVF method,
the Mooney model has a good prediction for the
experimental force for a maximal stretch up to 2.6.
The Ogden model has a better result for wider strain
range corresponding to a maximal stretch up to 3.
The results of these two models are very satisfactory
given that they do not take into account the stress
hardening phenomenon. The second order Ogden
model predicts very well the experimental force for
the whole experiment. Hence, the capacity of the
SBVF method in the generation of the virtual dis-
placement fields is illustrated here in the case of
hyperelastic behavior.

5 CONCLUSION

In this study, the Virtual Fields Method (VFM) was
applied to identify constitutive parameters of hyper-
elastic models from a heterogeneous test in the
cases of linear and non-linear relationships between
the stress and the constitutive parameters to be
identified. In the former case, the Mooney model
was considered and virtual field were randomly
generated. For the latter case, the Ogden model was
used and a sensitivity-based virtual fields approach
inspired from a recent work due to Marek et al.
(2017) for anisotropic plasticity was applied to
choose the virtual fields. Results obtained with the
two approaches clearly highlight the benefits of
using the sensitivity-based virtual fields approach
for identifying the constitutive parameters in case
of non-linear systems.
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