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ABSTRACT: In the present study, a numerical method based on a metaheuristic parametric algorithm has
been developed to identify the constitutive parameters of hyperelastic models, by using FE simulations and
full kinematic field measurements. The full kinematic field was measured at the surface of a cruciform speci-
men submitted to equibiaxial tension. The test was simulated by using the finite element method (FEM). The
constitutive parameters used in the numerical model were modified through the optimization process, for the
predicted kinematic field to fit with the experimental one. The cost function was formulated as the minimiza-
tion of the difference between these two kinematic fields. The optimization algorithm is an adaptation of the
Particle Swarm Optimization algorithm, based on the PageRank algorithm used by the famous search engine
Google.

1 INTRODUCTION

The constitutive parameters of hyperelastic models
are generally identified from three homogeneous
tests, basically the uniaxial tension, the pure shear
and the equibiaxial tension. From about 10 years,
an alternative methodology has been developed
(Guélon et al. 2009, Promma et al. 2009, Johlitz
et al. 2011, Seibert et al. 2014), and consists in per-
forming only one hete-rogeneous test as long
as the field is sufficiently hete-rogeneous. This is
typically the case when a multiaxial loading
is applied to a 3 branch (Guélon et al. 2009) or a
4-branch (Promma et al. 2009) cruciform speci-
men, which induces a large number of strain states
at the specimen surface. The Digital Image Correl-
ation (DIC) technique is generally used to charac-
terize the full kinematic field at the specimen
surface. The induced heterogeneity is analysed
through the distribution of the biaxiality ratio and
the maximal eigen value of the strain. Thus, a large
number of experimental data is provided for identi-
fying the constitutive parameters of the considered
model.

Several methods have been recently developed to
identify parameters from experimental full field
measurements, typically the finite element updating
method (FEMU), the constitutive equation gap
(CEGM), the virtual fields method (VFM), the equi-
librium gap method (EGM) and the reciprocity gap
method (RGM). These methods are fully reviewed
in (Avril et al. 2008).

In the present study a new methodology is pro-
posed in order to minimize the cost function in the
FEMU approach. The optimization algorithm used is
based on the Particle Swarm Optimization (PSO)
algorithm and the artificially smart PageRank algo-
rithm used by the famous search engine Google.
This algorithm enables us to minimize the full kine-
matic field differences by modifying the constitutive
parameters, while minimizing the CPU calculation
time. Even though the final objective is the identifi-
cation of complex constitutive models, i.e. a large
number of constitutive parameters, the two-parameter
Mooney’s model (Mooney 1940) is presented in this
paper to illustrate the methodology.

2 EXPERIMENTAL SETUP

The material considered here is a carbon black filled
natural rubber. The specimen geometry is given in
Figure 1. It is a 2 mm thick cruciform specimen.
Figure 2 presents an overview of the experimental
setup composed of a home-made biaxial testing
machine and an optical camera. The machine is com-
posed of four independent RCP4-RA6C-I-56P-4-
300-P3-M (IAI) electrical actuators. They were
driven by a PCON-CA-56P-I-PLP-2-0 controller
and four PCON-CA (IAI) position controllers. The
actuators were controlled by an in-house LabVIEW
program. Two load cells, whose capacity is equal to
1094 N, store the force variation in the two perpen-
dicular directions. In the present study, one equibiaxial
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loading was carried out in such a way that the speci-
men’scentre was motionless for the displacement
measurement to be easier. The displacement and load-
ing rate were set at 70 mm and 150 mm/min respect-
ively for the four independent actuators.

Images of the specimen surface at increasing
stretches were stored at a frequency equal to 5 Hz
with a IDS camera equipped with a 55 mm tele-
centric objective. The charge-coupled device (CCD)
of the camera has 1920 × 1200 joined pixels. The
Digital Image Correlation (DIC) technique is used to
determine the displacement field at the specimen

surface. The software used for the correlation pro-
cess was SeptD (Vacher et al. 1999), and a uniform
cold lighting was ensured by a home-made LED
lamp. The spatial resolution, defined as the smallest
distance between two independent points was equal
to 4 pixels corresponding to 0.343mm. The Region
Of Interest (ROI) and the grid used for the digital
correlation is represented in Figure 3.

3 NUMERICAL MODEL

A finite element calculation is performed by assum-
ing plane stress state and material incompressibility.
The four-node PLANE182 ANSYS element is used.
The mesh is made of 9600 nodes and 9353 elements.
A biaxial traction load is obtained by prescribing the
same displacement of 70 mm on the four branches of
the specimen. The two-parameters hyperelastic
Mooney model is used for the calculation. The
values of the constitutive parameters are changing at
each iteration of the optimization process, as
described in the next section.

As the spatial resolution between the numerical and
the measured kinematic fields was different, the experi-
mental kinematic field was fitted by a polynomial-
based function. In this way, the numerical kinematic
field was compared, for each node, with the experimen-
tal field at the same position in the specimen. With the
fitting method applied, the difference between the
experimental field and the polynomial-based function
was less than 0.2 mm for every point considered.

4 METAHEURISTIC OPTIMIZATION
STRATEGY

The aim of the optimization process was to find the
constitutive parameters for the numerical kinematic
field to fit the experimental one. The cost function f
was the squared difference between the experimental
and the numerical fields, considering the force too,
as follows:

f ¼ min
XN

i¼1
1

N
Ux;exp � Ux;num

Ux;exp

� �2

þ Fexp � Fnum

Fexp

� �2

ð1Þ

where N is the number of nodes in the numerical
ROI, Ux,exp is the polynomial-based experimental
displacement, Ux,num is the numerical horizontal dis-
placement, Fexp is the experimental horizontal force,
and Fnum is the numerical horizontal force.

The optimization algorithm used is an adaptation
of the classical Particle Swarm Optimization algo-
rithm. In this version, all the particles are influenced
by all the others, by considering this influence to be

Figure 1. Specimen geometry (dimensions in mm)

Figure 2. Home-made biaxial testing machine

Figure 3. Region of Interest for the DIC technique
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adapted as a function of the respective performance
of the particles. The population of PSO particles is
then considered as a Markov chain, in which the par-
ticles are the nodes, and the links between them are
considered as the transition probabilities. For each
particle, the Page-Rank value – that is the steady
state of the considered Markov chain – is given by
equation (2). In this way, the PageRank value of
each particle is deduced from its performance com-
pared to the best one.

πTtarget ¼
fitnessðGbestÞ � 100

fitnessðGbestÞ � fitnessðPÞ þ ε

���� ���� ð2Þ

It is possible to deduce the transition connectivity
matrix C giving the influence of all the particles on
all the others by using a pseudo-random process.
The classical equations of PSO are modified, weigh-
ing the influence of all the particles by using the
components of C, as follow:

Vi
tþ1 ¼ ω� Vi

t þ c1 � r1 � ðPtþ1
i;best � Xt

i Þ

þc2 � r2 �
XN
j¼1

Cij � ðPtþ1
j;best � Xt

i Þ
ð3Þ

Xi
tþ1 ¼ Xt

i þ Vtþ1
i ð4Þ

where V tþ1
i is the speed of the ith particle at iter-

ation t+1, c1 and c2 are confident parameters, ω is
the inertia weight, V tþ1

i is the position of particle i at
iteration t+1, r1 and r2 are random numbers given in
[0,1], V tþ1

j;best is the personal best position of particle i
at iteration t+1, and C is the transition connectivity
matrix of the considered Markov chain. This
Inverse-Page-Rank-PSO algorithm is fully described
in (Di Cesare et al. 2015).

5 RESULTS AND DISCUSSION

As the particles are initially randomly defined, the opti-
mization was launched 10 times, to compare the
obtained solutions and be sure that the global minimum
of the cost function was reached. The convergence
curves of the 10 launched optimization calculations
are represented in Figure 4. The obtained values of
the cost function and constitutive parameters are
given in Table 1.

The validation of the optimized results is checked
by comparing the displacements and efforts meas-
ured in the sample with the numerical optimized
one. In the final numerical model, the values of the
constitutive parameters have been set to the mean of
the obtained optimized values found in the 10 differ-
ent calculations launched. Figure 5 shows the differ-
ence between the experimental polynomial-based

Figure 4. Convergence curve of the 10 optimization calculations launched
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kinematic field, and the optimized numerical one, for
every point in the ROI.

This difference is presented in a quantitative way
in Figure 6 showing the difference between the two
fields for every point of the ROI. One can note that
the difference is always less than 6.5 % of the
experimental kinematic field. For the force, the
experimental value was 176.02 N, while the numer-
ical value obtained with the optimized values of the
constitutive parameters was 176.37 N, which leads
to a difference up to 0.4 %.

6 CONCLUSIONS

This work is proposing a new numerical method for
inverse identification of hyperelastic parameters. It is
based on the use of a PSO-based parametric opti-
mization algorithm. Experimental and numerical
kinematic fields are compared to finally be fitted
through the optimization process, while the constitu-
tive parameters are smartly modified. This process is
able to find the constitutive parameters reproducing
the mechanical response of the specimen and the

Table 1. Obtained results

Cost function C01 C10

1 8.05E-3 0.5159 0.01792
2 8.13E-3 0.5116 0.022541
3 7.98E-3 0.5188 0.020369
4 7.98E-3 0.5197 0.018879
5 7.98E-3 0.5176 0.019914
6 7.99E-3 0.5175 0.020986
7 8.01E-3 0.5153 0.02008
8 8.03E-3 0.5146 0.022146
9 8.15E-3 0.5109 0.021573
10 7.98E-3 0.5202 0.019215
Mean 8.03E-3 5.16E-1 2.03E-2
Std 6.47E-5 3.19E-3 1.15E-4

Figure 5. Comparison between the two kinematic fields after the optimization process

Figure 6. Difference between the kinematic fields for every
point of the ROI
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kinematic field measured experimentally, while min-
imizing the number of optimization iterations.
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