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Recent progress in the energy characterization of the mechanical
behaviour of rubbers

J.-B. Le Cam?

? Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)
UMR 6251, F-35000 Rennes, France

ABSTRACT: The hysteresis observed in the mechanical response of rubbers (especially filled rubbers) is clas-
sically assumed to be fully due to viscosity. Complete energy balances carried out during cyclic deformation
show that viscosity is not systematically the preponderant contribution to the hysteresis loop: the mechanical
energy brought to the material is not entirely dissipated into heat but can be predominantly used by the material
to change its microstructure. Predicting changes in temperature, and consequently the self-heating, is therefore
not possible from the mechanical response only. This has been evidenced by defining a ratio in terms of en-
ergy. A new way of interpretation of the rubber resistance can therefore by found through its ability to store
mechanical energy.

1 INTRODUCTION

Elastomers are widely used in many industries such
as automotive, nuclear, or civil engineering for their
high deformability, high damping and resistance to
fatigue. Such properties are generally obtained by
adding fillers in the rubber matrix, which induces or
increases the hysteresis loop in the mechanical re-
sponse. Classically, the mechanical energy involved
in the hysteresis loop is assumed to be mainly dis-
sipated into heat. Nevertheless, several observations
question this assumption:

• the mechanical response of some elastomers ex-
hibits a hysteresis loop only when strain-induced
crystallization (SIC) occurs, typically in case of
unfilled natural rubber (NR) (Samaca Martinez,
Le Cam, Balandraud, Toussaint, and Caillard
2013b). In this case, no self-heating accompanies
the mechanical cycles,

• the mechanical hysteresis can be not time-
dependent (D’Ambrosio, De Tommasi, Ferri,
and Puglisi 2008, A. Dorfmann and Ogden 2003,
Rey, Chagnon, Favier, and Le Cam 2014, Van-
denbroucke, Laurent, Hocine, and Rio 2010),

• if all the energy contained in the hysteresis loop
were due to viscosity, the self-heating would be
much higher than that observed experimentally.

One can therefore wonder about the nature and the
time dependency of the phenomena involved in the

formation of the hysteresis loop and about the real
contribution of the intrinsic dissipation to it. To go
further, it should be noted that two other phenomena
can contribute to the mechanical hysteresis:

(a) the thermal dissipation (d2) (in non adiabatic test
conditions). If heat is exchanged with the spec-
imen’s outside, a hysteresis loop in the stretch-
stress relationship forms, even for purely elas-
tic materials (the current temperature appearing
in the elastic coupling). In most of the homoge-
neous tests1 performed, considering the thermal
properties of elastomers, the loading rate is suffi-
ciently high and the thermal dissipation does not
really contribute to the mechanical hysteresis,

(b) the change in microstructure. In this case, all the
work done to the system is not measured as a
temperature change (see for instance the recent
studies by (Mott, Giller, Fragiadakis, Rosenberg,
and Roland 2016) on polyurea). A part of the me-
chanical energy is used by the material to reorga-
nize.

Such analysis is classically carried out in metal-
lic materials, since the pioneering work by (Farren
and Taylor 1925) and (Taylor and Quinney 1934) who
measured the latent energy remaining after cold work-
ing in a metal under quasi-static monotonous load-
ings. Today, the fraction of the anelastic deformation
energy rate irreversibly converted into heat is studied

1in terms of heat source field, see Section 2



through the Taylor-Quinney ratio (Chrysochoos 1985,
Chrysochoos, Maisonneuve, Martin, Caumon, and
Chezeau 1989, Mason, Rosakis, and Ravichandran
1994, Rittel 1999, Oliferuk, Maj, and Raniecki 2004).
Polymers have then benefited from this approach (Rit-
tel 2000, Rittel and Rabin 2000, Benaarbia, Chryso-
choos, and Robert 2014, Benaarbia, Chrysochoos,
and Robert 2015). Concerning elastomers, three re-
cent studies investigate the energetic behavior and the
energy storage during deformation (Le Cam 2017,
Lachhab, Robin, Le Cam, Mortier, Tirel, and Can-
evet 2018, Loukil, Corvec, Robin, Miroir, Le Cam,
and Garnier 2018). From these studies, the energy
storage in different types of elastomers, filled and un-
filled, crystallizing or not, can be discussed. This is
the aim of the present paper. Section 2 presents the
thermodynamics framework to carry out energy bal-
ance. Section 3 presents a typical experimental setup
which consists in uni-axial cyclic tensile tests. Section
4 gives the results of energy balances carried out for
a natural rubber, a thermoplastic polyurethane (TPU)
and a nitrile rubber. Concluding remarks close the pa-
per.

2 THERMODYNAMICS FRAMEWORK

The energy balances require the calculation of:

• a quantity P cycle
hyst , calculated in W/m3, obtained

by dividing the energy involved in the hysteresis
loop W cycle

hyst by the cycle duration tcycle. It is an
energy density per time unit or an energy rate,

• the heat power density at any time during the de-
formation s(t), named heat source in the follow-
ing. All of these quantities and their calculation
are presented in Lachhab et al. (2018) and Loukil
et al. (2018).

2.1 Focus on the heat source calculation in case of
homogeneous tests

Most of mechanical tests are conducted under non-
adiabatic conditions. The temperature measured is
therefore affected by heat diffusion, possible tem-
perature gradients at the surface of the undeformed
specimen and external heat sources (for instance ra-
diations). Therefore, changes in temperature are not
only due to the material deformation. In this study, a
”more intrinsic” quantity, namely the heat source, is
determined from the heat diffusion equation applied
to the temperature field measurements. For this pur-
pose, the thermomechanical framework described in
Nguyen et al. (1983) is applied. The local state ax-
iom is assumed (Boccara 1968). Any thermodynami-
cal system out of equilibrium is considered as the sum
of several homogeneous subsystems at equilibrium.
The thermodynamic process, i.e. the deformation, is

considered as a quasi-static phenomenon. The equi-
librium state of each volume material element is de-
fined by n state variables: the absolute temperature T ,
the deformation gradient tensor F andm (= n− 2) in-
ternal tensorial variables ξα. Using the two principles
of thermodynamics, the local form of the heat diffu-
sion equation is written as follows (Balandraud and
Le Cam 2014):

ρCṪ −Div(κ0 GradT ) =

Dint + T
∂Π

∂T
: Ḟ + T

m∑
β=1

∂Aβ

∂T
: ξ̇β︸ ︷︷ ︸

s

+R (1)

where κ0 is a positive semi-definite tensor charac-
terizing the thermal conductivity of the material. ρ
and C are the density and the specific heat, respec-
tively. s denotes the overall heat source induced by the
deformation process. The term Dint corresponds to
the intrinsic dissipation (also named mechanical dis-
sipation). The term T ∂Π

∂T
: Ḟ corresponds to the heat

source due to entropic and non-entropic couplings be-
tween temperature and strain, where Π is the nominal
stress tensor. The term T

∂Aβ

∂T
: ξ̇β corresponds to the

other thermomechanical couplings (for instance re-
lated to changes in the material microstructure). The
term R is related to the external heat sources.

As temperature field provided by infrared camera is
bidimensional, the heat diffusion equation can be sim-
plified by averaging over the direction correspond-
ing to the material thickness. In the case of uniform
heat sources fields, a 0D formulation of the heat diffu-
sion equation has been proposed in Chrysochoos and
Louche (2000). Considering temperature variation θ
instead of temperature and assuming R to be constant
during the deformation process, it writes:

ρC

(
θ̇+

θ

τ

)
= s (2)

where τ is a time characterizing the heat exchanges
between the specimen and its surrounding.

2.2 Energy balance

Both the mechanical and the calorific responses are
required. The mechanical response provides the en-
ergy and its rate P cycle

hyst corresponding to the hystere-
sis loop. Integrating the heat source with respect to
time over one cycle gives the mean intrinsic dissipa-
tion D̃int:

D̃int =
1

tcycle

∫
cycle

s dt (3)



The difference between P cycle
hyst and D̃int gives the en-

ergy rate stored at each cycle:

P cycle
stored = P cycle

hyst − D̃int (4)

Moreover, even though rubber elasticity is mainly en-
tropic, non-entropic effects (change in the internal
energy) can take place (Treloar 1973, Flory 1961).
They can be investigated by comparing the strain
power density with the heat source at any time during
the mechanical cycles. This enables us to highlight
some kinetics differences in internal energy change
between loading and unloading if any, typically in NR
(see Le Cam (2017)). To further discuss on the rela-
tive contribution of the energy stored in the hysteresis
loop of rubbers, a ratio γse has been proposed. It is
written in terms of energy as follows:

γse =
W cycle
stored

W cycle
hyst

(5)

• if γse tends to 0, no energy is stored during the
deformation. The whole hysteresis loop is due to
the intrinsic dissipation,

• if γse tends to 1, the whole hysteresis loop is due
to energy stored and no intrinsic dissipation is
detected. This is typically the case in unfilled nat-
ural rubber (Samaca Martinez, Le Cam, Balan-
draud, Toussaint, and Caillard 2013b), for which
the energy is released with a different kinetics.

3 EXPERIMENTAL SET-UP

Three materials are considered in the discussion: an
acrylonitrile butadiene rubber (NBR) unfilled and car-
bon black filled, an unfilled natural rubber and a
polyurethane (TPU). Further information on the ma-
terials and the specimens used is provided in Loukil
et al. (2018), Le Cam (2017) and Lachhab et al.
(2018), respectively. The mechanical tests consist in
applying sets of several cycles at an increasing max-
imum stretch λmax. The number of cycles at a given
maximum stretch is chosen in such a way that the last
one is mechanically and thermally stabilized. Several
loading rates were applied.

3.1 Temperature measurements

Temperature measurements were carried out by us-
ing FLIR infrared cameras. The camera model, the
integration time, the acquisition frequency, the ther-
mal resolution or noise equivalent temperature dif-
ference, the spatial resolution and the surface emis-
sivity are given in Le Cam (2017), Lachhab et al.
(2018) and Loukil et al. (2018). The infrared cameras
are switched on at least 3 hours before testing in or-
der to ensure its internal temperature to be stabilized.
The calibration of camera detectors was performed

with a black body using a Non-Uniformity Correc-
tion (NUC) procedure. The mean temperature of two
zones of interest is considered. They are located at
the centres of the tested and reference specimens. A
suitable movement compensation technique is used to
track the centre of the tested specimen (see (Pottier,
Moutrille, Le Cam, Balandraud, and Grédiac 2009)
and (Samaca Martinez, Le Cam, Balandraud, Tous-
saint, and Caillard 2013a) for further information on
this technique). The reference specimen provides the
ambient temperature during the test. The temperature
variation of the tested specimen is corrected with re-
spect to changes in the ambient temperature if any.

4 RESULTS AND DISCUSSION

The heat source s (in W.m−3) is calculated for
each stabilized cycle at different maximum stretches.
P cycle
hyst and D̃int are then considered for calculating
γse. Figure 1 summarizes the energetic behavior of the
three materials considered. It will be fully presented
and discussed during the talk.
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Figure 1. Map of the energetic behavior of the materials consid-
ered

5 CONCLUSION

Recent studies reviewed in this paper investigate the
energetic behavior and the energy storage during de-
formation in different types of elastomers (Le Cam
2017, Lachhab, Robin, Le Cam, Mortier, Tirel, and
Canevet 2018, Loukil, Corvec, Robin, Miroir, Le
Cam, and Garnier 2018). A ratio γse has been pro-
posed to relativise the energy stored at each cycle.
Results show that viscosity is not systematically the
preponderant contribution to the hysteresis loop: the
mechanical energy brought to the material is not en-
tirely dissipated into heat and can be mainly used by
the material to change its microstructure. This ratio is
of a first importance for designing rubber parts as it
characterizes the greater or lesser ability of the rubber
to absorb mechanical energy without damaging.
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