STUDY OF TRANSFER OF ALCOHOL (methanol, ethanol, isopropanol) DURING NANOFILTRATION IN WATER/ALCOHOL MIXTURES

Thi Vi Na NGUYEN ${ }^{1}$, Lydie PAUGAM ${ }^{1}$, Philippe RABILLER ${ }^{2}$, Murielle RABILLER-BAUDRY ${ }^{1 *}$
1- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
2- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
*Corresponding author : murielle.rabiller-baudry@univ-rennes1.fr

Supplementary informations

Supplementary 1 : viscosity of water/alcohol mixtures at $\mathbf{2 0}^{\circ} \mathrm{C}$

Fig. S1-1 : Viscosity of water/alcohol mixtures according to [35-37]. ○: water/isopropanol Δ : water/ethanol, \rangle : water/methanol

Fig. S1-2 : Viscosity of water/alcohol mixtures at $20^{\circ} \mathrm{C}$ according to [35-37].

Fig. S1-3: Viscosity of water/methanol mixtures versus temperature according to [35].

Fig. S1-4 : Viscosity of water/ethanol mixtures versus temperature according to [37].

Fig. S1-5: Viscosity of water/isopropanol mixtures versus temperature according to [36].

Supplementary 2 : dielectric constant of water/ethanol at $20^{\circ} \mathrm{C}$

Fig. S2-1 : Dielectric constant of water/alcohol mixtures at $20^{\circ} \mathrm{C}$ according to [54].

Supplementary 3 : Experimental flux $\left(J_{p}\right)$ of water/alcohol mixtures

(b) water/ethanol

(c) water/ isopropanol

(d) $\mathbf{2 . 3 1 3} \mathbf{~ m P a . s}$

Fig. S3-1: Experimental flux $\left(J_{p}\right)$ of water/alcohol mixtures during NF in standard conditions

Supplementary 4: mass transfer coefficient from correlations relating the Sherwood, Reynolds and Schmid numbers

The thickness of the polarization layer (further called $\delta_{S \& M}$) can be also estimated from the Sherwood \& Michel relation using the Chilton \& Colburn analogy (eq. S4-1)and based on the Sherwood (Sh), Reynolds (Re) and Schmidt ($S c$) dimensionless numbers [S4-1, S4-2].
$S h=0.023 \times R e^{0.875} \times S c^{0.25}$
$S h=\frac{k_{S \& M} \cdot d_{H}}{D}=\frac{d_{H}}{\delta_{S \& M}}$
$R e=\frac{\rho \times v \times d_{H}}{\eta}$
$S c=\frac{\eta}{\rho \times D}$
With:
$k_{S \& M}=\frac{D}{\delta_{S \& M}}:$ value of the mass transfer coefficient calculated according to eq. S4-2 that will be compared to $k_{S D-F}$ and $k_{S K-F}$ in the following.
ρ : the density of the solvent mixture (Erreur ! Source du renvoi introuvable.)
v : the cross-flow velocity in the liquid channel calculated from d_{H}
d_{H} : the hydraulic diameter of the liquid channel taking into account the presence of the retentate spacer (Table $\mathbf{S 4 - 1}$) was calculated by the following equation $[\mathbf{S 4 - 1}]$:
$d_{H}=\frac{4 \times \varepsilon}{\frac{2}{h_{S P}}+(1-\varepsilon) \times S_{V S P}}$

Table S4-1: Property of 47 mil retentate spacer

spacer thickness $\mathrm{h}_{\mathrm{SP}}(\mathrm{mm})$	1.2
filament thickness $\mathrm{d}_{\mathrm{F}}(\mathrm{mm})$	0.7
mesh length (mm)	3.0
porosity ε	0.75
specific surface of the spacer $\mathrm{S}_{\mathrm{VSP}}\left(\mathrm{mm}^{-1}\right)$	5.71

The mass transfer coefficients were determined for $\mathrm{S} \& \mathrm{M}$ for sake of comparison.
Table S4-2 depicts the calculated dimensionless numbers and the mass transfer coefficient and polarisation layer thickness deduced from the Sherwood \& Michel relation. The Reynolds number decreased when the alcohol content increased. It means that the turbulence was decreased when the alcohol content increased, in good accordance with viscosity increase. In empty and smooth channels, the flux is laminar for Reynolds numbers up to 2000 [S4-3]. However, in the narrow channels, the flux becomes unstable at much smaller Reynolds numbers (order of one hundred) [S4-4, S4-5, S4-6, S4-7]. Therefore, in this study, the turbulent regime has been established, even without accounting the local turbulences due to the added retentate spacer. So, it can be guessed that the effect of concentration polarization could be more noticeable for a filtration with more alcohol content. This is in good accordance with the increase of the polarization layer thickness (Table S4-2).

Table S4-2: Re, Sc, Sh and parameters of the S\&M model

water/alcohol v/v		Re 377	$\begin{gathered} \mathrm{Sc} \\ \hline 20.10^{5} \end{gathered}$	Sh155	$\mathrm{ks} \& \mathrm{~m}$$\left(10^{-5} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$10	$\begin{gathered} \delta \mathrm{S} \& \mathrm{M} \\ (\mu \mathrm{~m}) \end{gathered}$
water/	90/10					
methanol	77/23	300	31.10^{5}	141	8	7
water/ ethanol	90/10	344	26.10^{5}	153	8	6
	85/15	293	38.10^{5}	146	7	7
	80/20	254	50.10^{5}	138	5	7
	70/30	200	81.10^{5}	126	4	8
water/ isopropanol	94/6	371	31.10^{5}	171	7	6
	90/10	298	48.10^{5}	157	6	6
	79/21	201	103.10^{5}	135	3	7

The mass transfer coefficient in the polarisation layer deduced from the 3 calculations, $\mathrm{k}_{\mathrm{S} \& \mathrm{M}}, \mathrm{k}_{\mathrm{SD}}$ ${ }_{\mathrm{F}}$ and $\mathrm{k}_{\text {SD-F }}$, exhibited the same trends with respect to the alcohol content: k decreased with
 closer than $\mathrm{k}_{\text {SK-F }}$ and $\mathrm{k}_{\mathrm{S} \mathrm{\&}}$ (Fig. S4-1). Accordingly, the three calculation methods gave values of the polarization layer thickness in the same order of magnitude but those obtained from SK-F were lower than the two others (Fig. S4-1).

Fig. S4-1: Mass transfer coefficients of alcohol in the polarization layer (k) and thickness of the polarization layer $\delta_{C P}$ during NF of water/alcohol mixtures as calculated according three different approaches: from analogy using dimensionless numbers (S\&M), combination of solution diffusion and film (SD-F) and combination of Spiegler \&Kedem and film (SK-F).

Supplementary 5 : concentration polarisation by SD-F model

(b) ethanol

(c) isopropanol

Fig. S5-1: C_{m} / C_{b} polarization coefficient during $N F$ of water/alcohol mixtures as calculated according to combination of Solution Diffusion and film (SD-F).

Supplementary 6 : pore radius value depending on the alcohol radii selected for the calculation

Table S6-1: Several solute radii (in nm) according to [40]

Alcohol	$\mathrm{r}_{\mathrm{s}, \text { Stokes }}$	$\mathrm{r}_{\mathrm{s}, \mathrm{Vm}}$	$\mathrm{r}_{\mathrm{s}, \text { theoretical }}$.
MeOH	0.26	0.26	0.21
EtOH	0.31	0.29	0.26
i-PrOH	0.40	0.31	0.29

1- Solute radius $=$ Stokes radius (in water)
Table S6-2 summarizes the obtained values when using the Stokes radii of alcohols deduced from diffusion experiments in water given in Table 2 when fitting $\sigma_{S H P}$ and $\sigma_{S K-F}$.

Table S6-2: Estimation of apparent pore radius from single alcohol rejection according to SK-F + SHP and using alcohol Stokes radius (in water)

water/alcohol v/v		$\mathrm{r}_{\mathrm{p}, \mathrm{SK}-\mathrm{F}+\mathrm{SHP}}$ (nm)
water/methanol	90/10	0.45
	77/23	0.49
water/ethanol	90/10	0.46
	85/15	0.54
	80/20	0.61
	70/30	1.12
water/ isopropanol	94/6	0.57
	90/10	0.66
	79/21	0.72

2- Comparison of pore radius according to assumption on solute radius
The following Figures were obtained from values in Table 10.

Fig. S6-1: Pore radii according to various assumptions on solute radii

(a) methanol

(b) ethanol

0.50							- simultaneously adjusted rs
0.45				0			
0.40	00						
				\bigcirc			
							OStokes radius
0.20							- equivalent molar radius
0.15							Δ theoretical molecular radius
0.10							
	5	10	15	20	25	30	
			OH (v				

(c) isopropanol

Fig. S6-2: Alcohol radii according to various assumptions

Supplementary 7: osmotic pressure detailed calculations for water/ethanol mixtures

Fig. S7-1: Calculated $\Delta \pi_{\mathrm{obs}}$, for the water/ethanol mixtures according to assumption on B^{\prime} value (see Table 4) \bullet : van't'Hoff - \quad : $\mathrm{B}^{\prime}=2.1 \times 10^{-5}-\mathbf{A}: \mathrm{B}^{\prime}=5.82 \times 10^{-5}$

- water/EtOH 90/10
- water/EtOH 85/15

- water/EtOH 80/20
- Van't Hoff

- water/EtOH 80/20
- Van't Hoff

Fig. S7-2: Results of adjustment of experimental flux $\left(\mathrm{J}_{\mathrm{p}}\right)$ in water/ethanol according to the best $\mathrm{L}_{\mathrm{p}, \mathrm{BGS}}$ value calculated (eq. 17) with respect to assumption to calculate $\Delta \pi_{\text {obs. }}$ - experimental water/ethanol,: van't Hoff assumption, ■: virial assumption. Equations on figures are those corresponding to the experimental data

Supplementary 8: osmotic pressure detailed calculations for water/methanol mixtures

Fig. S8-1: Calculated $\Delta \pi_{\text {obs }}$, for the water/methanol mixtures according to assumption on B^{\prime} value (see Table 4) •:
van't'Hoff - $-B^{\prime}=2.0 \times 10^{-5}-\Delta: B^{\prime}=4.05 \times 10^{-5}$

Water/MeOH
- $\mathrm{B}^{\prime}=2.0 \times 10-5$

water/MeOH 90/10
Van't Hoff
$B^{\prime}=4.05 \times 10-5$
- water/MeOH 77/23
- Van't Hoff

Fig. S8-2: Results of adjustment of experimental flux (J_{p}) in water/methanol according to the best $\mathrm{L}_{\mathrm{p}, \mathrm{BGS}}$ value calculated (eq. 17) with respect to assumption to calculate $\Delta \pi_{\text {obs. }}$ - experimental water/methanol,: van't Hoff assumption, ■: virial assumption $\left(B^{\prime}=4.05 \times 10^{-5}\right)$. Equations on figures are those corresponding to the experimental data

Supplementary 9: osmotic pressure detailed calculations for water/isopropanol mixtures

Fig. S9-1: Calculated $\Delta \pi_{\text {obs }}$, for the water/methanol mixtures according to assumption on B^{\prime} value (see Table 4)

Fig. S9-2: Results of adjustment of experimental flux $\left(\mathrm{J}_{\mathrm{p}}\right)$ in water/isopropanol according to the best $\mathrm{L}_{\mathrm{p}, \mathrm{BGS}}$ value calculated (eq. 17) with respect to assumption to calculate $\Delta \pi_{\text {obs }}$. experimental water/methanol,: \bullet van't Hoff assumption, ■: virial assumption $\left(B^{\prime}=7.65 \times 10^{-5}\right)$. Equations on figures are those corresponding to the experimental data

