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Abstract

We consider the Nonlinear Schrödinger (NLS) equation and prove
that the Gaussian measure with covariance (1 − ∂2x)−α on L2(T) is
quasi-invariant for the associated flow for α > 1/2. This is sharp and
improves a previous result obtained in [20] where the values α > 3/4
were obtained. Also, our method is completely different and simpler,
it is based on an explicit formula for the Radon-Nikodym derivative.
We obtain an explicit formula for this latter in the same spirit as
in [4] and [5]. The arguments are general and can be used to other
Hamiltonian equations.

1 Introduction and Theorems

In the present paper, we consider the transport of the Gaussian mea-
sures under the flow generated by the following Cauchy problem of
the cubic NLS with third-order dispersion:

∂tu = −i
(
i∂3x + β∂2x

)
u− i|u|2u, t ∈ R, x ∈ T, (1)

u(0, x) = u0(x), x ∈ T, (2)

where β is a real constant. It is known (see for instance [16]) that this
equation is globally well posed in L2(T).

More precisely, we consider the Gaussian measure µα formally
given by µα(du) = Cαe

− 1
2
‖u‖2Hα du, where Cα is a normalization con-

stant and study its evolution with respect to the flow of (1). This
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measure µα can be defined as the distribution of the random variable
X =

∑
n∈Z

gn(ω)
〈n〉α e

inx where (gn)n∈Z is a sequence of standard inde-

pendent normal variable with values in C. For α > 1/2, it can also be
defined as the centered Gaussian measure on L2(T) with covariance
(1 − ∂2x)−α (for the definition of the Gaussian measure, see, e.g., [13]
or [6] chapter 2).

For the last two decades, the probabilistic approach to nonlinear
evolution equations has attracted a lot of researchers in the field of
PDEs as well as in the field of probability. One of the interesting
problems in this direction is to investigate how Gaussian measures
are transported by such nonlinear Hamiltonian flows as Korteweg-de
Vries, nonlinear Schrödinger equations and others. Especially, it is
natural to ask whether or not the Gaussian measure µα is quasi-
invariant, i.e., mutually absolutely continuous with respect to the
transported Gaussian measure by the nonlinear Hamiltonian flow (see,
e.g., [3], [9], [10], [19]–[23], [25] and [28]).

From a viewpoint of probability theory, in [24], Ramer shows the
Jacobi theorem for the transformation by general nonlinear mappings
(see also Kuo [12]). In [4] and [5], Cruzeiro gives formulas for ordinary
differential equations driven by vector fields in finite and infinite di-
mensions. For nonlinear Hamiltonian dispersive equations, Tzvetkov
[28] studied the quasi-invariance of Gaussian measures. He first uses
Ramer’s Theorem to obtain quasi-invariance for measure supported in
high regularity Sobolev space and then develop a new method based
on the evolution of the measure of Borel sets to treat lower regularity.
Note that he did not give an explicit formula for the Radon-Nikodym
derivative of the transported Gaussian measure with respect to µα.

Nowadays, there are many papers about the quasi-invariance of
Gaussian measures transported by various nonlinear dispersive equa-
tions (see [9] for the fractional NLS, [10] for the nonlinear wave equa-
tion, [19] and [21] for the fourth order NLS and [22] and [23] for
NLS). In [20], Oh, the second author and Tzvetkov have showed the
quasi-invariance of Gaussian measure µα for α > 3/4 under the flow
generated by the Cauchy problem of the cubic NLS with third-order
dispersion by using the Kuo-Ramer theorem ([12], [24]).

In this paper, we give a simpler proof of the result about the quasi-
invariance of µα under the flow of (1)-(2) given in [20] and bring down
their assumption α > 3/4 to α > 1/2. This is optimal since for
α ≤ 1/2, we have µα(Hs(T)) = 0 for any s ≥ 0 and well posedness
does not hold in Hs(T) for s < 0 for (1). We treat only the case
α ≤ 1, since as explained in [20] the case α > 1 is easy and does not
need very refined arguments. We also give a more explicit formula
of the Radon-Nikodym derivative than in [5]. This formula is in fact
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general and generalizes to other hamiltonian systems. We believe that
it has its own interest and can be used in other circumstances. For
instance (see Remark 3.3), it can be used to simplify the proof of
quasi-invariance for the fourth order NLS given in [19].

Throughout this paper, we always assume that

2β/3 6∈ Z\{0}. (NR)

This is a kind of non-resonant condition (see (27) and (30) below).
As already mentioned, for s ≥ 0, equation (1) is globally well posed
in Hs(T). For u0 ∈ Hs(T), we denote by u(t, u0), t ∈ R, the unique
solution to (1). For any measure ν supported by L2(T), it makes sense
to define the push-forward of this measure by the flow of (1). We say
that ν is quasi-invariant if its push-forward is equivalent to ν.

Our main theorems in this paper are the followoing.

Theorem 1.1 Assume that (NR) is satisfied and α ∈ (1/2, 1]. Then,
for all R > 0, the Gaussian measure χ‖u0‖{L2(T)≤R}µα(du0) with L2

norm cut-off weight is quasi-invariant under the flow generated by the
third-order cubic NLS (1).

The proof of this result is based on our second main result. To
state this latter, we introduce the following Cauchy problem of the
third-order NLS truncated to the (2N + 1)-dimensional space.

∂tuN = −i
(
i∂3x + β∂2x

)
uN − iPN

(
|uN |2uN

)
, t ∈ R, x ∈ T, (3)

uN (0, x) = u0,N (x), x ∈ T. (4)

where PNu = 1√
2π

∑
|k|≤N (u, eikx)e−ikx. We will see that it has a

unique solution uN (t, u0,N ), defined for t ∈ R. For u0 ∈ Hs(R), s ≥ 0
we write uN (t, u0) = uN (t, PNu0), t ∈ R.

Theorem 1.2 Let R > 0, α > 1/2 and 0 < s < α−1/2. Let u0 ∈ Hs.
Assume that the following functions

fN (t, u0) = χ{‖u0‖L2(T)≤R} exp

(
−
∫ t

0

(
i(|uN |2uN )(−r, u0), D2αuN (−r, u0)

)
dr

)
(5)

are uniformly bounded in Lp(dµα) for some p > 1. Then the following
function

f(t, u0) = χ{‖u0‖L2(T)≤R} exp

(
−
∫ t

0

(
i(|u|2u)(−r, u0), D2αu(−r, u0)

)
dr

)
(6)
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is in Lp(dµα) and is the Radon-Nikodym derivative of the Gaussian
measure χ{‖u0‖L2(T)≤R}µα(du0) with L2 norm cut-off weight trans-

ported at time t by (1).

We have writen (·, ·) = Re (·, ·)L2(T) and denoted by D the Fourier

multiplier corresponding to (1− ∂2x)1/2, see below. To prove Theorem
1.1, it thus suffices to bound the Lp(dµα) norm of (5).

Remark 1.1 (i) Theorem 1.1 easily implies that for α ∈ (1/2, 1], µα
is quasi-invariant. This is due to the preservation of the L2 norm. As
already mentioned, the result is known and easier to prove for α > 1
(see [20]).

(ii) In [20], it is showed that if (NR) is satisfied and α > 3/4,
the Gaussian measure µα is quasi-invariant under the flow of (1)-(2).
The proof in [20] uses the Ramer theorem (see [24]). The assumptions
in Ramer’s theorem are formulated in terms of the linearized equation
associated with the Cauchy problem (1)-(2) (see [24, (1), (2) and (3)
on page 166]). In the case of nonlinear dispersive equations, the lin-
earized equation often does not work well, because it has less symmetry
than the full system. Indeed, in contrast to [20], we do not prove the
smoothing effect of the nonlinear Duhamel term but that of the quadri-
linear form associated with the nonlinear interaction of (1) (see (26)
and (28) below). This makes our proof of Theorem 1.1 simpler and
the lower bound of α smaller than in [20].

(iii) More generally, given A a non negative self-adjoint operator
on L2(T) and V (u) be a smooth function of u and J = −i, let us
consider the equation:

du

dt
= J

(
Au+ V ′(u)

)
, t ∈ R, (7)

u(0) = u0, (8)

and assume that it is well posed in Hs(T) for some s. Consider the
measure gaussian µα of covariance (1 + A)−α for α such that µα is
supported by Hs(T).

Then, the following function is formally the Radon-Nikodym deriva-
tive of the Gaussian measure χ{‖u0‖L2(T)≤R}µα(du0) with L2 norm cut-

off weight transported by the flow is given by

χ{‖u0‖L2(‘T )≤R}e
∫ t
0

(
JV ′(u(−σ,u0)),(1+A)αu(−σ,u0)

)
dσ

provided it defines an integrable function. The rigorous proof has to be
done case by case for each equation but the proof we give below is quite
general. Clearly, we can also consider more general domains than T.
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Assumptions of Theorem 1.2 are clearly not optimal. For instance,
it suffices to prove uniform integrability of the functions fN (t, ·). We
think that such refinement is not necessary.

(iv) Theorem 1.2 is in the same spirit as the result in Cruzeiro
in [5, Théorème 1.4.1 on page 208 and (4.3) on page 226]. There
Cruzeiro gives a formula of the Radon-Nikodym derivative for more
general vector fields and considers the Wiener measure in dimension
1, if we forget about boundary conditions, the Wiener measure corre-
sponds to µ1. The result in [5] holds under very restrictive assump-
tions on the vector field. Its divergence with respect to the Wiener
measure (the operator δ in [5]) has to be exponentially integrable. In
the case considered here of Hamiltonian systems, this divergence sim-
plifies considerably due to the preservation of the L2 norm and to the
fact that µα is invariant for the linear equation. Also, our integrability
condition is on trajectories and we can take advantage of smoothing
for the Hamiltonian flow. We thus obtain a more explicit formula un-
der weaker conditions. Indeed, in our setting, conditions (i)-(iii) in
Théorème 1.4.1 of [5] are not satisfied. In this respect, our Theorem
1.2 is a refinement over Theorem 1.4.1 in [5] for nonlinear wave and
dispersive equations with Hamiltonian structure.

Here we list the notation which will be used throughout this paper.
We denote the Fourier transform in the spatial variable of function
f(x) by f̂(k). Let the Fourier transform in both time and spatial
variables of f(t, x) denote f̃(τ, k). For a ∈ R, we put 〈a〉 = (1+a2)1/2.
Let Du = F−1[〈k〉û(k)]. For s, b ∈ R, we define the Fourier restriction
space Xs,b and its norm as follows (see Bourgain[2, (7.14) on page
211]).

‖u‖Xs,b =
(∑
k∈Z

∫
R
〈k〉2s〈τ + k3 − βk2〉2b|ũ(τ, k)|2 dτ

)1/2
,

Xs,b =
{
u ∈ S ′(R2)

∣∣ u(t, x+ 2π) = u(t, x), ‖u‖Xs,b <∞
}
.

For T > 0, we also define the localized Fourier restriction space on
(−T, T ) as follows.

‖u‖
Xs,b
T

= inf
{
‖v‖Xs,b

∣∣ v ∈ Xs,b, v(t) = u(t) on (−T, T )
}
,

Xs,b
T =

{
u ∈ D ′(R×T)

∣∣ ‖u‖
Xs,b
T
<∞

}
.

The rest of the paper is organized as follows. In Section 2, we prove
several lemmas which are used for the proof of Theorem 1.1. In Section
3, we show Theorem 1.1 by using the results proved in Section 2 and
Theorem 1.2. In Section 4, we describe the proof of Theorem 1.2.
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2 Preliminaries

Lemma 2.1 Let 1/4 > s > 0and p > 2. Then, we have

‖f‖
L
4+ 16s

1−4s (R;L4(T))
≤ C‖f‖

Xs,( 1+2s
3 )+ , (9)

‖f‖Lp(R;L2(T)) ≤ C‖f‖X0,(1/2−1/p)+ . (10)

Proof. We have the following two inequalities.

‖f‖L4(R×T) ≤ C‖f‖X0,1/3+ , (11)

‖f‖L∞(R;L2(T)) ≤ C‖f‖X0,1/2+ . (12)

Inequalities (11) and (12) are the Strichartz estimate and the Sobolev
embedding in t, respectively (for the Strichartz estimate, see, e.g., [16,
Proposition 2.4 on page 1710]).

We first have (10) by (12) and interpolation. We now show (9).
Let θ = 1− 4s and p, q defined by:

1/p = θ/4 + (1− θ)/∞, 1/q = θ/4 + (1− θ)/2.

Then p = 4 + 16s
1−4s , q = 4 − 16s

1+4s . Since θ/3 + (1 − θ)/2 = 1+2s
3 , the

interpolation between (11) and (12) yields

‖f‖
L
4+ 16s

1−4s (R;L
4− 16s

1+4s (T))
≤ C‖f‖

X0,( 1+2s
3 )+ . (13)

It remains to use the Sobolev embedding Hs,4− 16s
1+4s (T) ⊂ L4(T) to

obtain (9)
�
For s ∈ R and p ≥ 1, let Bs

p denote Bs
pp(T), where Bs

pq(T) is the
Besov space (for the definition of the Besov space, see, e.g., Triebel
[27]). Recall that Bs

2 = Hs(T).

Lemma 2.2 Let {gn} be a sequence of independent equidistributed
complex centered Gaussian random variables. Let α > 0, p ≥ 2 and
s ≥ 0 be such that α− 1 + 1/p > s. For r ≥ 1 and B > 0, we set

F (ω) := χ{(∑
n∈Z |gn(ω)|2/〈n〉2α

)1/2
<B
}exp

(∥∥∑
n∈Z

gn(ω)

〈n〉α
einx

∥∥r
Bsp(T)

)
.

Assume that B > 0 for r < 4αp
p−2+2ps and B is sufficiently small for

r = 4αp
p−2+2ps . Then, F (ω) ∈ L1(dω).
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Remark 2.1 Lemma 2.2 implies that if α ≤ 1 and α − 1
2 > s ≥ 0,

then for any C > 0,

χ{(∑
n∈Z |gn(ω)|2/〈n〉2α

)1/2
<B
}exp

(
C
∥∥∑
n∈Z

gn(ω)

〈n〉α
einx

∥∥4
Bs2(T)

)
∈ L1(dω),

since in this case 4 < 2α
s .

Corollary 2.3 Let Zα be a Gaussian random variable in L2(T) with
covariance D−2α for α > 1− 1/p+ s. Then,

E
(

exp
(
‖Zα‖rBsp(T)

)
χ‖Zα‖L2(T)<B

)
<∞,

for p, r, s, B as above. Equivalently, if µα is a Gaussian measure with
covariance D−2α then∫

exp
(
‖x‖rBsp(T)

)
χ‖x‖L2(T)<B

dµα(x) <∞.

Proof of Corollary 2.3. For any h ∈ L2(T):

E
(

(Zα, h)2L2(T)

)
= ‖D−αh‖2L2(T).

Let Y = DαZ, then Y is Gaussian and since:

E
(

(Y, h)2L2(T)

)
= ‖h‖2L2(T)

it has covariance Id and it is a white noise. Therefore, it can be iden-
tified with {gn} be a sequence of independent equidistributed complex
Gaussian random variable. We deduce:

E
(

exp
(
‖Zα‖Bsp(T)

)
χ‖Zα‖L2(T)<B

)
= E

(
exp

(
‖D−αY ‖Bsp(T)

)
χ‖D−αY ‖L2(T)<B

)
.

This is precisely the integral of F . �

Proof of Lemma 2.2. The case p = 2 and s = 0 is clear, we
assume that either p > 2 or s > 0. For simplicity, we may assume
gn ∼ N (0, 1). We follow the argument by Bourgain [3, the proof of
Lemma 3.10]. We estimate the probability of the following event.

P
[
ω
∣∣ ∥∥∑

n∈Z

gn(ω)

〈n〉α
einx

∥∥
Bsp(T)

> λ,
(∑
n∈Z

|gn(ω)|2

〈n〉2α
)1/2

< B
]
. (14)
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We first decompose the sum
∑

n∈Z an dyadically into∑
|n|≤M

an +
∑
N>M

∑
|n|∼N

an,

where M =
(
λ
2B

) 1
1
2−

1
p+s . We have by the Sobolev embedding∥∥ ∑

|n|≤M

an
〈n〉α

einx
∥∥
Bsp(T)

≤M
1
2
− 1
p
+s∥∥ ∑

|n|≤M

an
〈n〉α

einx
∥∥
L2(T)

≤M
1
2
− 1
p
+s
B =

λ

2
. (15)

Let {σN}N≥M be a sequence such that

σN ≥ 0, 0 <
∑
N>M

σN ≤ 1.

If ‖
∑
|n|∼N

gn
〈n〉α e

inx‖Bsp(T) ≤ 1
2σnλ for all N > M , then

∑
N>M

∥∥ ∑
|n|∼N

gn
〈n〉α

einx
∥∥
Bsp(T)

≤ λ

2

and ∥∥∑
n∈Z

gn
〈n〉α

einx
∥∥
Bsp(T)

≤ λ

2
.

Therefore, we deduce that

P
[
ω|
∥∥∑
n∈Z

gn(ω)

〈n〉α
einx

∥∥
Bsp(T)

> λ,
(∑
n∈Z

|gn(ω)|2

〈n〉2α
)1/2

< B
]

≤ P
(
‖
∑
|n|∼N

gn
〈n〉α

einx
∥∥
Bsp(T)

>
1

2
σNλ for some N > M

)
≤
∑
N>M

P
(∥∥ ∑
|n|∼N

gn
〈n〉α

einx
∥∥
Bsp(T)

>
1

2
σNλ

)
.

It suffices to estimate each of the above events.
For each dyadic block, we have by the Sobolev embedding∥∥ ∑
|n|∼N

ane
inx
∥∥
Bsp(T)

. N1/2−1/p+s∥∥ ∑
|n|∼N

ane
inx
∥∥
L2(T)

(2 ≤ p ≤ ∞).

(16)
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We deduce that on each event on the right hand side above:

1

2
σNλ <

∥∥ ∑
|n|∼N

gn
〈n〉α

einx
∥∥
Bsp(T)

≤ N1/2−1/p+s∥∥ ∑
|n|∼N

gn
〈n〉α

einx
∥∥
L2(T)

≤ N−(α−1/2+1/p−s)∥∥ ∑
|n|∼N

gne
inx
∥∥
L2(T)

,

which yields ( ∑
|n|∼N

|gn(ω)|2
)1/2

>
1

2
σNN

α−1/2+1/p−sλ. (17)

Since the sequence {gn}|n|∼N is the N -dimensional Gaussian random

variable, we have only to evaluate (2π)−N/2AN

∫
r> 1

2
σNNα−1/2+1/p−sλ

rN−1e−r
2/2 dr

to estimate the probability of the event (17), where AN is the area
of the (N − 1)-dimensional unit hyperball. So, the probability of the
event (17) is bounded by

CeCN log(σNN
α−1/2+1/p−sλ)−cσ2

NN
2α−1+2/p−2sλ2

for some C, c > 0
Now we choose κ > 0 such that 2α− 1 + 2/p− 2s > 1 +κ and take

σN = cN−κ + (M/N)α−1/2+1/p−s for N > M and obtain∑
N>M

CeCN log(σNN
α−1/2+1/p−sλ)−cσ2

NN
2α−1+2/p−2sλ2 ≤ e−c0M2α−1+2/pλ2 .

Gathering the above:

P
[
ω
∣∣ ∥∥∑

n∈Z

gn(ω)

〈n〉α
einx

∥∥
Bsp(T)

> λ,
(∑
n∈Z

|gn(ω)|2

〈n〉2α
)1/2

< B
]

≤ e−c0M2α−1+2/p−2sλ2 (18)

The power of the exponential on the right side of (18) must be
greater than λr and so it follows that

λr < CB
− 2α−1+2/p−2s

1/2−1/p+s λ
2α−1+2/p−2s
1/2−1/p+s

+2
(19)

for large λ > 0. This inequality (19) is satisfied if r < 8αp
p−2+2ps or if

r = 8αp
p−2+2ps and B is sufficiently small. �

We finally have the following lemma concerning the global well-
posedness of the Cauchy problem (1)-(2) and the convergence property
of solutions of the truncated equations (3), (4).
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Lemma 2.4 Let s ≥ 0 and let u0 ∈ Hs(T). Then, there exist the
unique global solutions u, uN ∈ C(R;Hs(T)) of (1)-(2) and (3)-(4),
with u0,N = PNu0, respectively such that

sup
t∈[−T,T ]

‖u(t)‖Hs + ‖u‖
X
s,1/2
T

≤ C‖u0‖Hs , T > 0, (20)

‖u(t)‖L2 = ‖u0‖L2 , t ∈ R, (21)

sup
t∈[−T,T ]

‖uN (t)‖Hs + ‖uN‖Xs,1/2
T

≤ C‖u0‖Hs , T > 0, (22)

‖uN (t)‖L2 = ‖PNu0‖L2 , t ∈ R, (23)

where C is a positive constant dependent only on ‖u0‖L2 and T . Fur-
thermore, for any T > 0,

sup
t∈[−T,T ]

‖u(t)− uN (t)‖Hs + ‖u− uN‖Xs,1/2
T

−→ 0 (N →∞). (24)

The proof of Lemma 2.4 follows from the Strichartz estimate and
the contraction argument (see, e.g., [16, Theorem 1.1 on page 1708]
for the global existence of solution and [3, Lemma 2.27 on page 8] for
the latter assertion of Lemma 2.4).

3 Proof of Theorem 1.1

We prove Theorem 1.1 using Theorem 1.2, whose proof is given below.
We need to bound uniformly in N the expression given in (5) by an
expression which it is integrable. This is the content of Lemma 3.1
below. The conclusion follows since we obtain that the transported
truncated Gaussian measure has a strictly positive density with re-
spect to the truncated gaussian measure.

We first note that∫ T

0

(
i(|u|2u)(−r, ·), D2αu(−r, ·)

)
dr (25)

= Im

∫ T

0

(
(|u|2u)(−r, ·), D2αu(−r, ·)

)
dr (26)

= Im

∫ T

0

(
(|u|2 − 1

π
‖u‖2L2(T))u(−r, ·), D2αu(−r, ·)

)
dr.

Instead of the left hand side of (26), we estimate the right hand side of
(26), because the deduction of the squared L2 norm removes resonant
frequencies.
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For k = k1 − k2 + k3, we define a phase function Φ as follows

Φ(k, k1, k2, k3) = (τ + k3 − βk2)− (τ1 + k31 − βk21)

−(τ2 + k32 + βk22)− (τ3 + k33 − βk23)

= 3(k1 − k2)(−k2 + k3)(k3 + k1 − 2β/3), (27)

where τ = τ1 + τ2 + τ3.

Lemma 3.1 Let α ∈ (1/2, 1]. We put s = α− 1/2− ε for sufficiently
small ε > 0. Then,∣∣∣Im ∫ T

0

∑
k∈Z

∑
k=k1−k2+k3

(k1−k2)(−k2+k3)6=0

e−irΦ(k,k1,k2,k3)

× v̂(−r, k1)¯̂v(−r, k2)v̂(−r, k3)〈k〉2α ¯̂v(−r, k) dr
∣∣∣

≤ C
(
‖u0‖L2(T), T

)
‖u0‖3Hs , (28)

where v̂(t, k) = eit(k
3−αk2)û(t, k). Furthermore, by F (u), we denote the

functional: u 7→ R on the left side of (28), where u is a solution of
(1)-(2). Let (uN )N be a sequence of solutions to (3)-(4) with u0,N =
PNu0. Then, F (uN ) satisfies the same bound (28) and F (uN ) −→
F (u) as N →∞.

Remark 3.1 (i) In the summation of the left hand side of (28), the
restriction (k1 − k2)(−k2 + k3) 6= 0 comes from the deduction of the
squared L2 norm on the right hand side of (26). The left hand side of
(28) is in fact equal to the right hand side of (26).

(ii) Lemma 3.1 implies the smoothing effect of the quadrilinear
form associated with the nonlinear interaction of (1), since s = α −
1/2 − ε. The smoothing type estimate has been investigated by many
authors for various nonlinear dispersive equations (see, e.g., [26] for
modified KdV, [1] and [7] for KdV, [8] and [23] for NLS and [17] for
equation (1)). The smoothing type estimate is also applied to other
problems, for example, the unconditional uniqueness of solution (see,
e.g., [14] and [18] for modified KdV and [11] for NLS).

Proof of Lemma 3.1. We show inequality (28). We define

M = max
{∣∣τ + k3 − βk2

∣∣, ∣∣τ1 + k31 − βk21
∣∣,∣∣τ2 + k32 + βk22

∣∣, ∣∣τ3 + k33 − βk23
∣∣}.

Assume that

|k3 + k1| & |k|. (29)
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Since we have

1

2
|k1 − k2|+

1

2
| − k2 + k3|+

1

2
|k3 + k1| ≥ |k1 − k2 + k3| = |k|,

then, by the identity (27), for k ∈ Z with |k| large, we have

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k||k1 − k2|| − k2 + k3|. (30)

We follow the proof of Lemma 2.4 in [17] (see also [20, §2.2. Nonlin-
ear estimate: part 1]). Let T be an arbitrarily fixed positive constant.
The function f(x) is defined as follows.

f̂(k) := −2Im

∫ 0

−T

(29)∑
k=k1−k2+k3

(k1−k2)(−k2+k3) 6=0

eirΦ(k,k1,k2,k3) (31)

× v̂(r, k1)¯̂v(r, k2)v̂(r, k3)〈k〉2α ¯̂v(r, k) dr,

where
∑(29) denotes the sum over the region such that (29) is satisfied.

By symmetry, the left hand side of (28) is bounded by
∑

k∈Z |f̂(k)|
plus two other similar terms.

Integration by parts yields

f̂(k) = 2Im

[ (29)∑
k=k1−k2+k3

(k1−k2)(−k2+k3)6=0

(iΦ)−1〈k〉2α (32)

×
(
û(−T, k1)¯̂u(−T, k2)û(−T, k3)¯̂u(−T, k)− û0(k1)¯̂u0(k2)û0(k3)¯̂u0(k)

)
+

∫ 0

−T

(29)∑
k=k1−k2+k3

(k1−k2)(−k2+k3)6=0

(iΦ)−1〈k〉2α

×
( ∑
k1=k11−k12+k13

û(r, k11)¯̂u(r, k12)û(r, k13)
)

× ¯̂u(r, k2)û(r, k3)¯̂u(r, k) dr

]
+ other similar terms.

For the solution u, we define a function u such that u(r) = u(r) on
[−T, 0] and u(r) = 0 (r < −T or r > 0). For simplicity, we also denote
the function u by u. Let s = α − 1/2− ε for sufficiently small ε > 0.

12



We set

A =
∑
k∈Z
〈k〉2α

∣∣∣ (29)∑
k=k1−k2+k3

(k1−k2)(−k2+k3) 6=0

(iΦ)−1

× û(−T, k1)¯̂u(−T, k2)û(−T, k3)¯̂u(−T, k)
∣∣∣,

B =
∑
k∈Z
〈k〉2α

∣∣∣∫ 0

−T

(29)∑
k=k1+k2+k3

(k1+k2)(k2+k3) 6=0

(iΦ)−1

×
∑

k1=k11+k12+k13

û(r, k11)¯̂u(r, k12)û(r, k13)

× ¯̂u(r, k2)û(r, k3)¯̂u(r, k) dr
∣∣∣.

We only show the estimates of these two typical terms A and B for the
proof of Lemma 3.1, since the other terms can be similarly estimated.

We first estimate A. We put s = α− 1/2− ε for sufficiently small
ε > 0. Let ŵ(t, k) = 〈k〉s|û(t, k)|. We may assume that

|k| & max{|k1|, |k2|, |k3|}.

Otherwise, more than one of k1, k2 and k3 are much larger than |k|.
Suppose that |k1| and |k2| are much larger than |k| and that |k3| has
the same size as |k| or the size less than |k|. In this case, (27) implies
that |Φ| & |k1||k2||k1 − k2| & |k|2|k1 − k2|. Suppose that the three of
|k1|, |k2| and |k3| are much larger than |k|. In that case, we have

|k1 − k2| ∼ |k3|, | − k2 + k3| ∼ |k1|, |k3 + k1 − 2α/3| ∼ |k2|,

since k = k1−k2+k3. Therefore, (27) implies that |Φ| & |k1||k2||k3| &
|k|3. Accordingly, these cases are easier to treat. By symmetry we may
assume that |k1| . |k2| . |k3|. Now we have the following three cases.

(Case 1) |k3| � |k2|, |k1|,
(Case 2) |k3| ∼ |k2| � |k1|,
(Case 3) |k3| ∼ |k2| ∼ |k1|.

We first consider Case 1. We note that in Case 1, we have by (30)

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k|2|k1 − k2|. (33)

We have by (33), the change of variables k′1 = k1−k2 and the Schwarz

13



inequality

A ≤ C
∑
k

∑
|k1|.|k|

〈k1 − k2〉−1〈k〉−1+2ε

×
∑

k−k1=−k2+k3
|k3|.|k|

|û(k1)||û(k2)| ŵ(k3)ŵ(k)

≤ C
∑
k′1

〈k′1〉−2+2ε sup
k′1∈Z

(∑
k2

|û(k′1 − k2)| |û(k2)|
)

× sup
k′1∈Z

(∑
k

ŵ(k − k′1)ŵ(k)
)

≤ C
(∑
k′1

〈k′1〉−2+2ε
)(∑

k

|û(k)|2
)(∑

k

ŵ(k)2
)

≤ C‖u(−T )‖2L2‖u(−T )‖2Hs ≤ C
(
‖u0‖L2(T), T

)
‖u0‖2Hs ,

by Lemma 2.4. We have omitted the dependance on T in the first
lines of the computation.

Case 2 is treated in the same way as above, since we have the
following inequality similar to (33).

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k|2| − k2 + k3|.

Now we consider Case 3. In this case, the worst subcase is that two of
|k1−k2|, |−k2 +k3| and |k3 +k1| are small and the other one is large.
For example, we suppose that |k3 + k1| � |k1 − k2|, | − k2 + k3|.
Then, we have

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k||k1 − k2|| − k2 + k3|. (34)

We choose ε > 0 such that 3ε ≤ s. Let now ẑ(t, k) = 〈k〉3ε|û(t, k)|.
We have by (34), the change of variables k′1 = k1−k2 and the Schwarz
inequality, omitting again the dependance on T :

A ≤ C
∑
k

∑
|k1|.|k|

〈k1 − k2〉−1−ε

×
∑

k−k1=−k2+k3
|k3|.|k|

|û(k1)| ẑ(k2)ŵ(k3)ŵ(k)

≤ C
∑
k′1

〈k′1〉−1−ε sup
k′1∈Z

(∑
k2

|û(k′1 − k2)| ẑ(k2)
)

× sup
k′1∈Z

(∑
k

ŵ(k − k′1)ŵ(k)
)
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≤ C
(∑
k′1

〈k′1〉−1−ε
)(∑

k

|û(k)|2
)1/2(∑

k

|ẑ(k)|2
)1/2(∑

k

|ŵ(k)|2
)

≤ C‖u(−T )‖L2‖u(−T )‖3Hs ≤ C
(
‖u0‖L2(T), T

)
‖u0‖3Hs(T).

We next estimate B. The integration interval (−T, 0) in the inte-
gral of B can be extended to R, since the support of u(r) is contained
in [−T, 0]. Let ṽ1(τ, k) = 〈k〉s|ũ(τ, k)| and ṽ2(τ, k) = 〈k〉−ε|ũ(τ, k)|.
Furthermore, we may assume that

|k| & max{|k1|, |k2|, |k3|, |k11|, |k12|, |k13|}

for almost the same reason as in the above proof for the estimate of
A. We begin with the proof for Case 1. We have by the Plancherel
theorem, inequality (33), Lemma 2.1 (9) with s = ε, (10) with p =
1/(2ε) and the L2 norm conservation

B ≤ C
∫
R5

∑
k

〈k〉−1+6ε
( ∑

k=k1−k2+k3
k1=k11−k12+k13

|k11|,|k12|,|k13|,|k2|,|k3|.|k|

ṽ2(τ1 − τ2, k11)ṽ2(τ2 − τ3, k12)

× ṽ2(τ3 − τ4, k13)
)
ṽ2(τ4 − τ5, k2)ṽ1(τ5, k3)〈k1 − k2〉−1

× ṽ1(τ1, k)
)
dτ1dτ2dτ3dτ4dτ5

≤C
∫
R

(
(D−1(v42), D−1+6ε(v21)

)
dr

≤C
∫
R
‖D−1(v42)‖L2(T)‖D−1+6ε(v21)‖L2(T) dr

≤C
∫
R
‖v42‖L1(T)‖v21‖L1(T) dr

≤C‖Dεv2‖4L4/(1−4ε)(R;L4(T))
‖v1‖2L1/(2ε)(R;L2(T))

≤C‖u‖2
Xs,1/2‖u‖4X0,1/2 ≤ C

(
‖u0‖L2(T), T

)
‖u0‖2Hs(T).

Here, at the fourth and the last inequalities, we have used the Sobolev
embedding and Lemma 2.4, respectively.

We next consider Case 2. In this case, we have

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k|2| − k2 + k3|,

which is similar to (33). Therefore, the proof for Case 2 is the same
as that for Case 1 and so we omit it.

We finally consider Case 3. In this case, the worst subcase is the
following.

∃c > 0; M ≥ 1

4
|Φ| ≥ c|k||k1 − k2|| − k2 + k3|, (35)

|k1 − k2|, | − k2 + k3| � |k|. (36)
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Without loss of generality, we may assume that |k11| ∼ |k|. Let ε be a
positive constant with α−1/2 > 9ε. We put ṽ1(τ, k) = 〈k〉s−ε|ũ(τ, k)|,
ṽ2(τ, k) = 〈k〉7ε|ũ(τ, k)| and ṽ3(τ, k) = 〈k〉−ε|ũ(τ, k)|. We first note
that

〈k1 − k2〉−1〈−k2 + k3〉−1 ≤ 〈k1 − k2〉−2 + 〈−k2 + k3〉−2.

Therefore, in the same way as in Case 1, we obtain by the Plancherel
theorem, inequality (33), Lemma 2.1 (9) with s = ε, (10) with p =
1/(2ε) and the L2 norm conservation

B ≤ C
∫
R5

∑
k

( ∑
k=k1−k2+k3

k1=k11−k12+k13
|k11|,|k12|,|k13|,|k2|,|k3|.|k|

(
〈k1 − k2〉−2 + 〈−k2 + k3〉−2

)

× ṽ2(τ1 − τ2, k11)ṽ3(τ2 − τ3, k12)ṽ3(τ3 − τ4, k13)
)

× ṽ3(τ4 − τ5, k2)ṽ1(τ5, k3)ṽ1(τ1, k)
)
dτ1dτ2dτ3dτ4dτ5

≤C
[∫

R

(
D−2(v2v

3
3), (v21)

)
dr +

∫
R

(
v2v

2
3v1, D

−2(v1v3)
)
dr
]

≤C
[∫

R
‖D−2(v2v33)‖L∞(T)‖v21‖L1(T) dr

+

∫
R
‖v2v23v1‖L1(T)‖D−2(v1v3)‖L∞(T) dr

]
≤C
[∫

R
‖v2v33‖L1(T)‖v1‖2L2(T) dr

+

∫
R
‖v2‖L4(T)‖v3‖2L4(T)‖v1‖L4(T)‖v1v3‖L1(T) dr

]
≤C
[
‖Dεv2‖L4/(1−4ε)(R;L4(T))‖D

εv3‖3L4/(1−4ε)(R;L4(T))
‖v1‖2L1/(2ε)(R;L2(T))

+‖Dεv2‖L4/(1−4ε)(R;L4(T))‖D
εv3‖2L4/(1−4ε)(R;L4(T))

‖Dεv1‖L4/(1−4ε)(R;L4(T))

× ‖v1‖L1/(2ε)(R;L2(T))‖v3‖L1/(2ε)(R;L2(T))

]
≤C‖u‖3

Xs,1/2‖u‖3X0,1/2 ≤ C
(
‖u0‖L2(T), T

)
‖u0‖3Hs(T).

Here, at the fourth, the last but one and the last inequalities, we have
used the Sobolev embedding, the fact that s > 8ε and Lemma 2.4,
respectively. Accordingly, the estimate of B is completed for all Cases
1–3. Thus, we have proved the estimates of A and B, which completes
the proof of inequality (28).

The same arguments can be used for the solutions of (3)-(4) and
prove that F (uN ) satisfies exactly the same bound as F (u). Finally,
we have ∣∣F (u)− F (uN )

∣∣ ≤ 4∑
j=1

Fj(u, uN ).
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Here, we define Fj as follows.

Fj =
∣∣∣Im ∫ T

0

∑
k∈Z

∑
k=k1−k2+k3

(k1−k2)(−k2+k3) 6=0

e−irΦ(k,k1,k2,k3)

× ŵj1(−r, k1) ¯̂wj2(−r, k2)ŵj3(−r, k3)〈k〉2α ¯̂wj4(−r, k) dr
∣∣∣,

where ŵjl(t, k) denotes one of the following three factors.

eit(k
3−αk2)û(t, k),

eit(k
3−αk2)ûN (t, k),

eit(k
3−αk2)(û(t, k)− ûN (t, k)),

and the last factor appears only onece for each Fj . In the same way
as above, we can obtain the following estimate.

|Fj(u, uN )| ≤ C
(
1 + ‖u‖C([−T,T ];Hs) + ‖uN‖C([−T,T ];Hs)

+‖u‖
X
s,1/2
T

+ ‖uN‖Xs,1/2
T

)5
×
(
‖u− uN‖C([−T,T ];Hs) + ‖u− uN‖Xs,1/2

T

)
.

This inequality and (24) in Lemma 2.4 imply F (uN ) −→ F (u) (N →
∞). �

Remark 3.2 In the definition of B, the sum over k11−k12+k13 = k1
includes frequencies with k11 − k12 = 0 or −k12 + k13 = 0, though the
sum over k1− k2 + k3 = k contains neither frequencies with k1− k2 =
0 nor frequences with −k2 + k3 = 0. This has no influence on the
estimate of B, because we do not use the modulation identity (27)
with respect to k11, k12 and k13 in the above-mentioned proof.

Remark 3.3 In [19], Oh , Sosoe and Tzvetkov show the quasi-invariance
of Gaussian measure µα transported by the forth order cubic NLS for
3/4 > α > 1/2. Their result can be proved by the same argument
as above, which gives a simpler proof. In [19], they use the infinite
iteration of normal form reduction. This requires that they infinitely
many times repeat the integration by parts and verify the convergence
of the resulting function series.

4 Proof of Theorem 1.2

In this section, we describe the proof of Theorem 1.2. Since (3) is
a finite dimensional ODE, we know that for all t ∈ R the mapping
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ΦN,t : u0,N 7→ u(t, u0,N ) is a C∞ diffeomorphism. It follows that the
transported measure µN,t,R equals the push forward of the truncated
gaussian measure νN,α,R = χ{‖u0,N‖L2(T)≤R}µN,α(du0,N ) by this dif-

feomorphism which has a density with respect to this measure - here,
µN,α is 2N + 1 dimensional marginal of µα. This density is given by
the change of variable formula:

fN (t, u0,N ) = det |DΦN,t(u0,N )|−1Gα,N (Φ−1N,t(u0,N ))G−1α,N (u0,N )

where Gα,N is the density of µN,α with respect to the 2N + 1 dimen-
sional Lebesgue measure. Note that we use the conservation of the L2

norm. The above formula shows that this density does not depend on
R and is smooth with respect to (t, u0,N ).

Classically, it satisfies an evolution equation and we find an explicit
form for this density. More precisely, for any t0 ∈ R, we may write
for a smooth function ϕ:

d

dt

∫
ϕ(u0,N )fN (t, u0,N )dνN,α,R(u0,N )

∣∣
t=t0

=
d

dt

∫
ϕ(uN (t, u0,N ))dνN,α,R(u0,N )

∣∣
t=t0

=
d

dt

∫
ϕ(uN (t+ t0, u0,N ))dνN,α,R(u0,N )

∣∣
t=0

=
d

dt

∫
ϕ(uN (t, u0,N ))fN (t0, u0,N )dνN,α,R(u0,N )

∣∣
t=0

.

On the other hand, by the chain rule:

d

dt

∫
ϕ(uN (t, u0,N )fN (t0, u0,N )dνN,α,R(u0,N )

∣∣
t=0

=

∫ (
∇u0,Nϕ(u0,N ),−i

(
i∂3x + β∂2x

)
u0,N − iPN

(
|u0,N |2u0,N

))
fN (t0, u0,N )dνN,α,R(u0,N ).

where ∇u0,N is gradient with respect to u0,N . We have

divu0,N (−i
(
i∂3x + β∂2x

)
u0,N − iPN

(
|u0,N |2u0,N

)
) = 0.

This is a general property of Hamiltonian system, indeed we can write:

−i
(
i∂3x + β∂2x

)
u0,N − iPN

(
|u0,N |2u0,N

)
= J∇u0,NH(u0,N )

where H is the energy of the third order NLS equation and J is the an-
tisymmetric operator corresponding to the multiplication by i. Then
it suffices to write

divu0,N
(
J∇u0,NHN (u0,N )

)
= Tr(JD2HN (u0,N )),
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where D2HN is the Hessian of H. Since D2HN is symmetric and J
antisymmetric, we have by the properties of the trace:

Tr(JD2HN (u0,N )) = Tr(D2HN (u0,N )JT ) = −Tr(D2HN (u0,N )J) = −Tr(JD2HN (u0,N ))

so that this quantity vanishes.
Moreover

(D2αu0,N ,−i
(
i∂3x + β∂2x

)
u0,N ) = 0,

as easily seen by Parseval identity. Assume for the moment that ϕ
has compact support in the open ball of radius R, then by integration
by parts and the above two cancelations:

d

dt

∫
ϕ(u0,N )fN (t, u0,N )dνN,α,R(u0,N )

∣∣
t=t0

=

∫
ϕ(u0,N )

(
∇u0,N fN (t0, u0,N ), i

(
i∂3x + β∂2x

)
u0,N + iPN

(
|u0,N |2u0,N

))
dνN,α,R(u0,N )

−
∫
ϕ(u0,N )

(
D2αu0,N , iPN

(
|u0,N |2u0,N

))
fN (t0, u0,N )dνN,α,R(u0,N ).

We deduce that fN (t, u0,N ) satisfies the transport equation:

d

dt
fN (t, u0,N ) =

(
∇u0,N fN (t, u0,N ), i

(
i∂3x + β∂2x

)
u0,N + iPN

(
|u0,N |2u0,N

))
−
(
D2αu0,N , iPN

(
|u0,N |2u0,N

))
fN (t, u0,N ).

Note that since ∇u0,N fN (t, u0,N ) and D2αu0,N belong to the range
of the orthogonal projector PN , we could forget it in the expression
above.

Recalling that fN (0, ·) = 1, we have an explicit formula for the
density:

fN (t, u0,N ) = exp

(
−
∫ t

0

(
D2αuN (−r, u0,N ), i

(
|uN |2uN

)
(−r, u0,N )

)
dr

)
.

We extend fN (t, ·) to L2(T) by fN (t, u0) = fN (t, PNu0). Under our
assumption, the sequence (fN (t, ·))N is bounded in Lp(dµα). Up to a
subsequence, it converges weakly in Lp(dµα). By Lemmas 3.1, for any
u0, fN (t, u0) converges to

f(t, u0) = exp

(
−
∫ t

0

(
D2αu(−r, u0), i

(
|u|2u

)
(−r, u0)

)
dr

)
.

We deduce that f(t, ·) is the Lp(dµα) weak limit of fN (t, ·).
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Write now∫
ϕ(PNu0)fN (t, PNu0)χ{‖PNu0‖L2(T)≤R}µα(du0)

=

∫
ϕ(u0,N )fN (t, u0,N )dνN,α,R(u0,N )

=

∫
ϕ(uN (t, u0,N ))dνN,α,R(u0,N )

=

∫
ϕ(uN (t, PNu0))χ{‖PNu0‖L2(T)≤R}µα(du0).

By Lemmas 2.4 and 3.1, we may let N →∞ and obtain for ϕ contin-
uous and bounded on L2(T):∫
ϕ(u0)f(t, u0)χ{‖u0‖L2(T)≤R}µα(du0) =

∫
ϕ(u(t, u0))χ{‖u0‖L2(T)≤R}µα(du0).

The result follows.
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