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ABSTRACT 

Inhibiting the protein-protein interaction (PPI) between the transcription factor Nrf2 and its repressor protein 

Keap1 has emerged as a promising strategy to target oxidative stress in diseases, including CNS disorders. Nu-

merous non-covalent small-molecule Keap1-Nrf2 PPI inhibitors have been reported to date, but many feature 

suboptimal physicochemical properties for permeating the blood-brain barrier, while others contain problem-

atic structural moieties. Here, we present the first side-by-side assessment of all reported Keap1-Nrf2 PPI inhib-

itor classes using fluorescence polarization (FP), thermal shift assay (TSA), and surface plasmon resonance 

(SPR)—and further evaluate the compounds in an NQO1 induction cell assay and in counter tests for non-
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specific activities. Surprisingly, half of the compounds were inactive or deviated substantially from reported 

activities, while we confirm the cross-assay activities for others. Through this study, we have identified the 

most promising Keap1-Nrf2 inhibitors that can serve as pharmacological probes or starting points for develop-

ing CNS active Keap1 inhibitors. 
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INTRODUCTION 

The nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor is a principal regulator of the cellular 

defense system against oxidative stress, promoting the transcription of an expansive set of antioxidant and 

cytoprotective enzymes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), and 

glutathione S-transferase for combating reactive oxidants and electrophilic species.1-3 Under quiescent condi-

tions, Nrf2 is kept at low concentrations by the cytosolic repressor protein Kelch-like ECH-associated protein 1 

(Keap1), which associates with the Nrf2-ECH homology 2 (Neh2) domain of Nrf2 to facilitate cullin 3 (Cul3) me-

diated polyubiquitination and proteasomal degradation of Nrf2.2, 4 Structurally, Keap1 consists of a broad com-

plex, tramtrack, and bric-à-brac (BTB) domain, an intervening region (IVR), and a Kelch domain. It has been 

proposed that a Keap1 homodimer, via its two Kelch domains, binds a single Nrf2 peptide at a high-affinity 

ETGE-site and low-affinity DLG-site contained in the Neh2 domain. This creates a fixed spatial alignment of Nrf2 

that allows polyubiquitination by the BTB domain-docked Cul3 to take place.5-8 Under oxidative or electrophilic 

assault, specific sensor cysteine residues on the IVR and/or BTB domains of Keap1 are modified to disrupt this 

oligomeric Nrf2-Keap1-Cul3 complex, thus prohibiting polyubiquitination.5, 9, 10 In combination with de novo 

synthesis, Nrf2 then accumulates and translocates into the nucleus to transactivate a large assembly of antioxi-

dant response element (ARE)-dependent enzymes that can reestablish redox homeostasis.1, 11, 12  

 Nrf2 upregulation by Keap1 inhibition has been proposed as a potential therapeutic strategy to target 

oxidative stress-involved pathologies.10, 13-15 Importantly, Nrf2 activation by genetic knock-out studies and 

pharmacological Keap1 inhibition has shown encouraging neuroprotective effects in animal models of cerebral 

ischemia, hemorrhagic stroke, traumatic brain injury, and chronic neurodegenerative disorders.16-20 

An increasingly prevalent strategy to upregulate Nrf2 is to competitively disrupt the protein-protein inter-

action (PPI) between the Keap1 Kelch domain and the Nrf2 Neh2 peptide motifs.21, 22 Early research focused on 

developing truncated peptide inhibitors containing the high-affinity ETGE-sequence of the Neh2 domain e.g. 

9mer peptides 1 and 2 with submicromolar binding affinities to the Keap1 Kelch domain (Figure 1A).23, 24 Alt-

hough recent research has attempted to address their inherent shortcomings by e.g. macrocyclization,25 pep-
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tide inhibitors generally suffer from low cellular permeability, stability, and activity. The Keap1-Nrf2 interaction 

stands out from classical PPIs by having a relatively small interaction surface (550–780 Å2) and concave binding 

pocket.7 Furthermore, the pocket features five interconnected epitopes (P1–P5), of which at least P1, P4, and 

P5 are considered hot spots for ligand-binding (Figure 1B).22, 26, 27 
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Figure 1. (A) Structure and activities of all known non-covalent small-molecule Keap1-Nrf2 PPI inhibitors (for 

inhibitors from larger SAR-studies only representative compounds are shown) and representative peptide in-

hibitors. 1 and 2: Inoyama et al.28, Hancock et al.24; 3: Hu et al.29, Jnoff et al.30, Bresciani et al.31, PubChem32; 4: 

Marcotte et al.33, Jiang et al.22, Jain et al.34, Zhuang et al.35; 5: Jiang et al.22; Jain et al.34; Bresciani et al.31; 6: Jain 

et al.34; 7:  Winkel et al.36, Szill et al.37; 8: Yasuda et al.38; 9: Davies et al.27; 10: Callahan et al.39; 11: Marcotte et 

al.33; 12: Bertrand et al.40; 13: Kazantsev et al.41; 14: Satoh et al.42; 15: Shimozono et al.43; 16:  Xu et al.44; 17: 

Ghorab et al.45; 18: Sun et al.46; 19-21: Zhuang et al.35 Comp. SPR: Competitive SPR. BLI: Bio-layer interferome-

try. ITC: Isothermal titration calorimetry. 2D-FIDA: Two-dimensional fluorescence intensity distribution analysis. 

CD: Concentration inducing a two-fold increase in response. (B) X-ray structures of the Keap1 Kelch domain in 

complex with 1 (left, purple, PDB code 1X2R), 7 (middle, turquoise, PDB code 5CGJ), and 9 (right, violet, PDB 

code 5FNU). The sub-pockets P1–P5 have been indicated for the Kelch domain in complex with 1. Figures were 

made in PyMOL. 

 

Several non-covalent small-molecule Keap1 inhibitors have been reported, many of which exhibit promis-

ing in vitro binding affinities to Keap1, are able to displace Neh2 peptides in competition assays, and/or have 

demonstrated downstream cellular effects (Figure 1A).22, 24, 27-46 Additionally, a number of inhibitors (3, 4, 6, 7, 

9, 11, and 14) have been confirmed by X-ray crystallography to bind the Kelch domain (see examples in Figure 

1B).10 However, since the Kelch binding pocket is still rather large compared to classical enzyme or receptor 

pockets and contains multiple arginine residues (Figure 1B), bulky ligands featuring carboxylic acids have been 

enriched in medicinal chemistry programs.26 These features generally result in poor cell permeability and might 

explain the discrepancy between binding affinity and cell activity observed for e.g. compound 5.22, 27  In relation 

to CNS drug discovery, large molecular weight (> 470 Da), large topological polar surface area (tPSA > 90 Å), 

numerous hydrogen bond donors (HBD > 2), and the presence of carboxylic acid groups generally impede 

blood-brain barrier (BBB) penetration.47, 48 The CNS permeability has been experimentally tested on a few 
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Keap1 inhibitors (3 and 13) but with discouraging results,30, 41 and based on their low CNS multiparameter op-

timization (CNS MPO) scores,47, 48 the other reported inhibitors would not be expected to pass the BBB either.10  

One strategy for addressing the issues listed above is to optimize known Keap1 inhibitors for cell and CNS 

activity. To facilitate such efforts, we found it crucial to verify the medicinal chemistry data of the reported 

inhibitors. In general, concerns have been raised on the low reproducibility in chemical as well as biological 

research,49-51 and specifically, we suspect some of the compounds identified in biochemical assays without 

confirmatory biophysical binding data are artifacts. Indeed, some of the inhibitors seen in Figure 1A contain 

pan-assay interference compounds (PAINS) substructures or other problematic structural elements that make 

them unattractive in drug development.52, 53 Yet, uncritical use of PAINS substructure filters is fraught with risk 

and might inappropriately exclude a viable starting point for optimization.54  

In this comparative assessment study, we carefully scrutinize the scientific data on all known small-

molecule Keap1 inhibitor classes that we are aware of (3–21, Figure 1A). We describe the challenges and re-

producibility issues in synthesizing relevant inhibitors, and we establish whether the inhibitors bind to the 

Keap1 Kelch domain using the three orthogonal assays, fluorescence polarization (FP), thermal shift assay 

(TSA), and surface plasmon resonance (SPR). We also evaluate the compounds in an NQO1 induction cell assay. 

This allows for a direct side-by-side comparison of the inhibitors, which have otherwise been tested in various 

assays and different laboratories. Finally, we tested the compounds for common liabilities such as covalent 

reactivity, redox activity, and aggregation. Hereby, we elucidate which of the published Keap1 inhibitors can 

serve as reliable control compounds in future research, and we identify those most suitable as starting points 

for further drug discovery efforts, including development of CNS active Keap1 inhibitors. 
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RESULTS  

Selection and synthesis of known small-molecule Keap1-Nrf2 PPI inhibitors.  

Based on a recent literature investigation,10 we commenced this study by including all the small-molecules we 

know of and that have been reported to non-covalently inhibit the Keap1-Nrf2 PPI in competitive assays (FP or 

2D-FIDA) (3–12 and 18–21) or to directly bind the Kelch domain in biophysical assays (SPR) (13–15). For larger 

compound series, we chose the most potent or well-characterized inhibitors as representatives. We also in-

cluded compounds 16 and 17, which show downstream Nrf2-dependent gene activation,44, 45 but for which 

direct inhibition or binding data have not been provided.10 Compound 16 was interesting due to its high CNS 

drug-likeness (CNS MPO scores ~5) and structural similarity with 12, while compound 17 was included due to 

its high reported cellular activity and since non-covalent binding to the Kelch domain has been suggested by 

molecular docking.45 Finally, the two well-characterized peptides 1 and 2 were included as controls, leading to 

a total list of 21 compounds (Figure 1A).  

The 21 compounds were either purchased (1, 2, 13, 15, and 18–21) or synthesized, generally following 

previously reported procedures.22, 27, 29, 34, 36, 38-40, 42, 44, 45, 55-58 Compounds 9, 12, 14, and 16 were generated with 

no or only small changes from literature protocols and in acceptable yields (Supporting Information Scheme 

S1-4), while the syntheses of 3, 4–8, 10, 11, and 17 were more challenging, as described next.  

The previously reported asymmetric protocol30 for synthesizing the active (SRS)-stereoisomer 3 was at-

tempted but found laborious. The synthesis is lengthy (11 steps) and includes synthetic steps, such as a reduc-

tion of an aromatic ketone and an N-benzyl deprotection step, which were difficult in our hands. We found the 

initially reported non-enantioselective procedure29 with an end-stage resolution by chiral HPLC to be a more 

feasible route giving higher yields (7% vs. < 0.1% overall yield) in fewer steps (5 steps, Scheme 1). Achieving the 

correct (SRS)-stereoisomer 3 was confirmed by testing the biological activities of all four isolated stereoiso-

mers, since 3 was reported to be at least a 100-fold more active than the other three isomers.29  
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Scheme 1. Synthesis of compound 3a 

 

aConditions: (a) 2-phenylethan-1-amine, POCl3, MeCN, RT, 85 °C, 46%; (b) NaBH3CN, 4 M HCl in 1,4-dioxane, 

MeOH, RT, 1 h, 76%; (c) (3aR,7aS)-hexahydroisobenzofuran-1,3-dione, p-Xylene, 50 °C, 1 h, RT, 24 h, yield ND; 

(d) flash silica chromatography; (e) chiral separation on Chiralcel OD, 19% over step c–e.  

 

The family of 1,4-diaminonaphthalene compounds 4–8 were synthesized divergently from a common 4-

nitronaphthalen-1-amine intermediate 29 following previously reported procedures (Scheme 2).22, 34, 36, 38, 56  A 

key issue with these syntheses lies in the poor stability of the 1,4-diamino intermediates 30 and 33, which were 

observed to rapidly degrade, presumably through oxidation; this might explain the reproducibility issues in 

terms of yields, i.e. the previously reported yield for the synthesis of 4 (64%) could not be replicated here (13–

23%), which also applies for compound 7 (overall yield of 15% vs. literature yield of 35%). To minimize degrada-

tion of the intermediates 30 and 33, workup of the reactions were carried out relatively quickly, purifications or 

characterizations were not performed and the following reactions conducted immediately after isolation of the 

compound.  
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Scheme 2. Synthesis of compounds 4–8a  

 

aConditions: (a) NH2OH·HCl, KOH, EtOH/MeOH, 60 °C, 2 h, 55%; (b) Pd/C, H2 (1 atm, balloon), EtOH, RT, 2 h, 

yield ND; (c) 4-methoxybenzenesulfonyl chloride, pyridine, toluene, 100 °C, 2 h, 13–23% over 2 steps; (d) ethyl 

bromoacetate, K2CO3, DMF, RT, 3 h, 90%; (e) NaOH, MeOH/H2O, 65 °C, 3 h, 67%; (f) 2-bromoacetamide, K2CO3, 

DMF, RT, 5 days, 29%; (g) t-BuONO, CuBr2, TBAB, camphorsulfonic acid, MeCN, 60 °C, 24 h, 83%; (h) (S)-

pyrrolidine-3-carboxylic acid, CuI, K2CO3, DMF, Ar, 150 °C, 24 h, 96%; (i) Pd/C, H2 (2 bar), MeOH, EtOAc, H-Cube 

Mini PlusTM, RT, 1.0 mL/min, yield ND; (j) 2,3,5,6-tetramethylbenzene-1-sulfonyl chloride, pyridine, DCM, RT, 

16 h, 16% over two steps; (k) 4-ethoxybenzenesulfonyl chloride, pyridine, DCM, RT, 25 min, 48%; (l) ceric am-

monium nitrate, MeCN, RT, 18 min, 89%; (m) ethyl acetoacetate, Et3N, toluene, RT, 2 h, 48%; (n) NH2OH·HCl, 

AcOH, H2O, 80 °C, 2 h, 47%.  

 

Compound 10 was synthesized according to the reported procedure39, 57 with some adjustments (Scheme 

3). The synthetic route relies on a central Suzuki-Miyaura cross-coupling between an enol triflate 38 and an aryl 
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boronate ester building block 41 as the crucial carbon skeleton-building step. Synthesis of the enol triflate using 

the one-step NaHMDS-mediated enolization/PhNTf2-induced trapping procedure reported in the patent appli-

cation39 was not efficient in our hands, giving low yield (43% vs. 88% reported in literature39) and significant by-

product formation. We found that using a freshly-made LiHMDS as an alternative base gave a cleaner reaction 

and excellent yield (quantitative). The converging SM reaction step between 38 and 41 gave several well-

known by-products, including the boronic acid, aryl boronate homo-coupling product and protodeboronation 

product, but could still afford the desired cross-coupling product 42 in good yield (69% vs. 33% reported in 

literature39). Catalytic hydrogenation to deprotect the carboxylic acid and reduce the alkene double bond dia-

stereoselectively furnished only the cis-cyclohexane 43 in accordance with literature;39 this was revealed by 

nuclear Overhauser effect (NOE) NMR (Supporting Information Figure S1). This facial selectivity can be ex-

plained by a steric directing effect of the carboxybenzyl group. The cyclohexane carboxylic acid of 43 was finally 

coupled with 2-butylpyrrolidine and the pyrazole carboxylic acid deprotected to give 10 as a mixture of four 

stereoisomers. Attempted separation of the two diastereoisomers by preparative HPLC was unsuccessful. In 

the patent application, purification by HPLC is reported to give two different fractions, each containing all four 

stereoisomers in slightly different proportions, of which one was directly tested as a mixture.39 Having this lit-

erature result as a reference point, we did not proceed with further purification of 10. 

 

Scheme 3. Synthesis of compound 10a 

aConditions: (a) Cs2CO3, TMS-CN, H2O/1,4-dioxane, 100 °C, 2 h, 82%; (b) 12 M aq. HCl, 80 °C, 45 min, 44%; (c) 

BnBr, DBU, MeCN, RT, 1 h, 50%; (d) LiHMDS, PhNTf2, THF, Ar, -78 °C–RT, 16 h, quantitative; (e) DMF-dimethyl 

acetal, MW, 130 °C, 15 min (telescoping); (f) 3-bromophenylhydrazine·HCl, Et3N, EtOH, RT, 18 h, quantitative; 
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(g) B2pin2, Pd(dppf)Cl2, KOAc, 1,4-dioxane, reflux, 4 h, 76%; (h) Pd(PPh3)4, Na2CO3, EtOH/H2O/toluene, Ar, reflux, 

3 h, 69%; (i) Pd/C, H2 (1 atm, balloon), EtOH, RT, 24 h, quantitative; (j) 2-butylpyrrolidine hydrochloride, HATU, 

DIPEA, DCM, RT, 18 h, 44%; (k) NaOH, i-PrOH/H2O, RT, 72 h, 41%.    

 

The synthesis of 11 has previously not been reported. The synthesis was carried out by utilizing 5-bromo-

1,3-dimethyluracil 44 as the central building block (Scheme 4). A microwave-assisted nucleophilic aromatic 

substitution (SNAr) procedure by Fang et al.59 was employed to obtain the sulfide intermediate 45. Following 

oxidation to sulfone 46, the 1,3-dimethyluracil core was converted into thiouracil 47 upon treatment with thio-

urea under basic conditions, employing a procedure by Hirota et al.60 Finally, an end-stage alkylation with alkyl 

bromide 49 (obtained from treating 2-trifluoromethylaniline 48 with bromoacetyl bromide) gave target mole-

cule 11.    

 

Scheme 4. Synthesis of compound 11a 

aConditions: (a) Sodium 2,4-dimethylbenzenethiolate, NMP, MW, 130 °C, 10 min, 62%; (b) mCPBA, DCM, 0 °C–

RT, 3 h, 71%; (c) (NH2)2CS, NaOEt, EtOH, Ar, 100 °C (pressure vial), 16 h, 40%; (d) 2-bromoacetyl bromide, Et3N, 

1,4-dioxane, N2, 0 °C–RT, 2 h, 89%; (e) Et3N, DMF, 80 °C, 1.5 h, 55%.   

 

The previously described one-step procedure by Ghorab et al. for synthesizing the quinazoline compound 

17 by simply refluxing 50 and 51 in DMF for 24 h45 was futile in our hands with no observed cyclization of the 

intermediate SNAr product 52. Instead, we conceived a two-step procedure (Scheme 5) consisting firstly of a 

condensation of 50 and 51 by refluxing in neat acetic acid followed by an acetic anhydride-mediated ring-
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closure to afford the target molecule in a good overall yield (75%) comparable to what was reported for the 

one-step procedure (69%).45  

 

Scheme 5. Synthesis of compound 17a 

 

aConditions: (a) AcOH, reflux 1 h, 91%; (b) Ac2O, reflux, 1 h, 82%. 

 

All compounds were thoroughly quality controlled by LC-MS and NMR, and the DMSO-d6 stocks were con-

centration-determined by quantitative 1D 1H NMR (qHNMR) prior to assaying and checked for stability by LC-

MS during or after testing. 

 

Inhibition activity in competitive FP assay.  

FP is one of the most widespread fluorescence-based technique employed to identify modulators of PPIs61 and 

is also the most commonly used assay for Keap1-Nrf2 PPI inhibitors;26 indeed, most of the compounds shown in 

Figure 1A have been tested in an FP assay.22, 24, 27, 28, 30, 34-38, 40, 46, 62 Here, we established the FP assay using both 

Cy5 and FAM as fluorophores attached N-terminally to a 9mer peptide-moiety of Nrf2 with the sequence 

LDEETGEFL-NH2. Although fluorescein has been used mostly to label Nrf2 peptides, readouts with red-shifted 

fluorophores such as Cy5 are generally more advantageous in terms of reducing the occurrence of fluorescence 

interferences.63, 64 The resulting peptide probes (here designated Cy5-Nrf2 and FAM-Nrf2) gave Kd values of 

7.5–13.6 nM when saturated by Keap1 (Supporting Information Figure S2A–C), which are similar to literature 

values (e.g. 11.4 nM reported by Inoyama et al. for Cy5-LDEETGEFL-NH2 and 51.0 nM reported by Hancock et 

al. for the comparable peptide probe FAM-LDEETGEFLP-OH).24, 28 
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Compounds 1–11 all showed robust inhibition (Figure 2A) with Ki values correlating with literature (Figure 

1 vs. Table 1).22, 24, 27, 28, 30, 34, 36, 37, 39 Only compounds 8 and 11 showed some deviations from the literature (Ki = 

0.0021 µM vs. IC50 = 0.20 µM38 and Ki = 2.8 µM vs. IC50 = 118 µM33, respectively). For compound 8, this differ-

ence can be explained by a high protein-to-probe concentration ratio in the reported FP assay (250 nM Keap1 

to 10 nM probe) compared to our conditions (14 nM Keap1 to 3 nM probe); this is despite using the same pep-

tide probe.38 Thus, considering the affinity of the probe, such conditions would give rise to a significantly higher 

IC50 value than the Ki.38, 65 In fact, using the reported protein and probe concentrations and assuming a Kd of 

10 nM for the probe, a Ki ≈ 2 nM can be calculated from their measured IC50 value of 0.20 µM, which is in line 

with our result. For compound 11, the IC50 value was derived from a different assay (2D-FIDA)33 and might 

therefore not be comparable with our result. Another source of error could be ligand concentrations, but no-

ticeably, we here applied qHNMR to accurately quantify our stocks.   

 

Figure 2. Results from the competitive FP assay. Concentration-response curves for compounds 1–11 (A) and 

12–21 (B) using the Cy5-Nrf2 probe. (C) Concentration-response curves for compounds 12 and 18–21 using the 
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FAM-Nrf2 probe and (D) the total fluorescence intensity (FLINT) measured in these experiments. Representa-

tive curves of ≥ 3 individual measurements are here shown (as means of duplicates ± SEM). 

 

Table 1.  Activities of known small-molecule Keap1 inhibitors by FP (Cy5-Nrf2 probe), TSA, and SPR.a 

Compound FP (Ki/μM) TSA (EC50/μM) TSA (∆Tm-max/◦C) SPR (Kd/μM) 

1  0.54 ± 0.009 25 ± 1 9.4 ± 0.2 4.2 ± 0.5 
2  0.051 ± 0.0002 13 ± 0.6 14 ± 0.1 0.74 ± 0.3 
3  0.56 ± 0.03 26 ± 1 12 ± 0.2 2.4 ± 1.0 
4  0.25 ± 0.02 5.8 ± 0.4 4.2 ± 0.3 0.37 ± 0.09 
5  0.0061 ± 0.0002 5.9 ± 0.6 22 ± 0.4 0.32 ± 0.07 
6 0.053 ± 0.002 12 ± 2 8.1 ± 0.1 0.19± 0.03c 
7  0.048 ± 0.002 13 ± 2 18 ± 0.4 0.47 ± 0.04 
8  0.0021 ± 0.0001 7.2 ± 1 28 ± 0.3 0.026d,e 
9  ~0.001b 1.9 ± 0.2 25 ± 0.3 0.0014d,e 
10  0.013 ± 0.0002 10 ± 1 19 ± 0.3 0.019d,e 
11  2.8 ± 0.040 110 ± 8 15 ± 0.5 51 ± 20 
12  NA (≤ 100)  NA (≤ 100)  NA (≤ 354) 
13  NA (≤ 77) NA (≤ 77)  > 300 
14  NA (≤ 800) NA (≤ 800)  NA (≤ 582) 
15  NA (≤ 800) NA (≤ 800)  NA (≤ 452) 
16  NA (≤ 800) 0.2-0.5 °C (200-800)  > 120  
17  NA (≤ 99) NA (≤ 99)  NA (≤ 50) 
18 NA (≤ 49) NA (≤ 49)  NA (≤ 14) 
19  ~280 (≤ 286) 0.2-0.5 °C (18-72)  > 150 
20  ~71 (≤ 50) NA (≤ 50)  > 500 
21 NA (≤ 200) NA (≤ 25)  NA (≤ 286) 

aKi (FP; Cy5-Nrf2 probe), EC50 (TSA), and Kd (SPR) from steady state affinity analysis of SPR sensorgrams shown 

as mean ± SEM; based on at least three individual measurements unless otherwise stated. NA: No activity. 

Maximum concentration tested is seen in parenthesis: Test concentrations of compounds 12, 13, 17, and 18 

were limited by solubility-issues. For 16 and 19, EC50 could not be determined, but a ∆Tm of 0.2–0.5 °C were 

found in the respective concentration ranges. Test concentrations of 19 were limited in FP by low stock con-

centration due to low amount available from vendor, and further limited in TSA by a sudden drop in fluores-

cence. Test concentrations of 20 and 21 were limited by increasing FP values at higher concentrations, and by 

a sudden drop in fluorescence (20) or auto-fluorescence (21) in TSA. bThe affinity was too high to calculate an 

exact Ki, but IC50 value was 0.008 μM (~2-fold lower than 8). cBased on only two measurements. dBased on 

only one measurement. eOne concentration injection or OneStep gradient injection sensorgrams were fitted 

to a kinetic 1:1 model. 
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To check that the inhibition curves were not due to fluorescence artifacts (e.g. auto-fluorescence or chem-

ical quenching of probe63) the total fluorescence intensity (FLINT) values were monitored and found stable for 

compounds 1–11 (Supporting Information Figure S2D) as expected for genuine inhibitors that do not disturb 

the fluorescence of the probe. Also, flat FP curves were seen when Keap1 was omitted from the assay (Sup-

porting Information Figure S2E), which further validates that the concentration-dependent reduction in FP 

signal in the presence of Keap1 (Figure 2A) was due to inhibition of the Keap1-Nrf2 interaction.  

Compounds 12–18 and 21 did not show any inhibition in the FP assay, while 19 and 20 only gave a weak 

signal (Figure 2B and Table 1). As these compounds were tested in higher concentrations than compounds 1–

11, a DMSO concentration of 8% was used instead of 4% as for 1–11. Under these conditions, compounds 12, 

13, 17, and 18 still had solubility issues, and thus their test concentrations had to be reduced to less than 

800 μM (Table 1). The maximum test concentration of 19 was limited to 286 μM due to low availability of the 

compound, while compounds 20 and 21 showed increasing (artifactual) FP values at higher concentrations. 

Still, all compounds were tested at concentrations relevant for assessing their potential inhibitory activity (Ta-

ble 1). Within these concentrations, the FLINT was flat (Supporting Information Figure S2F) and hence did not 

indicate any inner filter effects that would disturb the fluorescence-based (Cy5) FP measurements. Compound 

20 was found unstable in assay buffer, as purity was reduced to 80% compared to > 98% of the original DMSO 

stock, with a main impurity corresponding in mass to a dehydration product. 

Compounds 12 and 18–21 have all demonstrated activity in FP assays in literature with suggested affinity 

values of 7–15 μM (Figure 1A).35, 40, 46, 62 However, in our hands only compounds 19 and 20 demonstrated some 

inhibition with Ki values around 280 and 71 μM, respectively, which is 10–24-fold higher than published Ki val-

ues of 15 and 3–7 μM, respectively,35, 62 while 12, 18, and 21 were completely inactive. To investigate this dis-

crepancy, a series of follow-up experiments were conducted. First, we tested if an apparent inhibition of 12 

and 18–21 in the FP assay requires the use of a fluorescein-based probe, and thus we repeated the assay using 

FAM-Nrf2. Again, compound 12 showed no inhibition, nor any sign of fluorescence interference as evidenced 

by the flat FLINT (Figure 2C–D). Compound 18 was not measurable in this assay, as both FP and FLINT dramati-
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cally increased with increasing concentrations. Compound 19 showed no activity when using the FAM-Nrf2 

probe (Figure 2C), in contrast to the apparently weak inhibition seen in the Cy5-Nrf2-based FP assay (Figure 2B 

and Table 1). Compound 20 gave an apparent IC50 value of ~100 μM (IC50 and the corresponding Ki value were 

uncertain as inhibition did not go to baseline) and a stable FLINT throughout the concentration-response test 

(Figure 2C–D). Finally, 21 was inactive up to 50 μM and could not be assessed with the FAM-probe at higher 

concentrations due to increasing FP and FLINT values (Figure 2C–D). Similar data were obtained for 12 and 18–

21 when the reducing agent tris(2-carboxyethyl)phosphine (TCEP) was excluded from the assay buffer (Sup-

porting Information Figure S2G), and when mimicking the published assay conditions for 12,40 18,46 or 19–2135 

with respect to e.g. exact assay buffer, DMSO concentrations, incubation times, and fluorescent probe (Sup-

porting Information Figure S3).  

Overall, 1–11 potently inhibited the Nrf2 peptide probe and Keap1 Kelch domain interaction, in accord-

ance with literature. For 12–21, no convincing activity was seen in FP, which is in opposition to reported data. 

 

Stabilization activity in TSA. 

In the TSA, ligand binding is indicated by an increase in resistance to the temperature-dependent unfolding of 

the protein, quantified as an increase in the melting temperature (Tm) relative to that obtained in the absence 

of ligand.66 TSA has previously been employed to characterize the inhibitors 3 and 19–21.29, 32, 35, 62 Here, we 

employed TSA to measure the Tm values induced by the compounds at varying concentrations (9 points) to 

assess or confirm their ability to bind and stabilize the Keap1 Kelch domain (Figure 3 and Supporting Infor-

mation Figure S4).  
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Figure 3. Concentration-dependent stabilization of the Keap1 Kelch domain by compounds 1–21 in the TSA. (A) 

Concentration-∆Tm-max curves for compounds 1–11. (B) Concentration-∆Tm-max curves for compounds 12–21. 

Average curves of ≥ 3 individual measurements are here shown (as means ± SEM). 

 

Compounds 1–11 all show strong stabilization of the Kelch domain (∆Tm-max  of 4–28 °C) in a concentra-

tion-dependent manner (Figure 3 and Table 1).  Comparing the results of the TSA with those obtained from our 

FP assay, some correlation can be seen for the strongly binding compounds (low Ki values), e.g. compounds 5, 

8, and 9, exhibiting correspondingly low EC50 and high ∆Tm-max values in TSA (Table 1). However, 1, 3, and 11 

have fairly high ∆Tm-max values (9–15 °C) relative to their medium affinities (Ki values of 0.5–2.8 µM). This lack 

of correlation between FP and TSA might be because ligand-induced thermal shifts are not only dependent on 

ligand affinity but potentially also specific contributions of enthalpy and entropy to binding and on the extent 

to which the ligand stabilizes the denatured state of the protein.66-68  

Compound 3 has previously been reported with a ∆Tm-max of 1.3 °C, but was only titrated up to 38 µM,29, 

32 while we test it up to 100 µM. Still, our data suggests a ∆Tm of 7.5 °C at 38 µM (Figure 3A); a deviation that 

might be explained by differences in buffer and/or protein/dye concentrations. Unfortunately, the specific 

conditions used in the literature TSA were not reported.  

Compounds 12–15, 17, 18, 20, and 21 did not show any significant concentration-dependent stabilization 

of the Kelch domain, while 16 and 19 showed only weak stabilization (Figure 3 and Supporting Information S4). 

Testing of 12, 13, 17, and 18 was limited by solubility issues as also found in the FP assay, but no significant 
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thermal shifts were detected up to 100, 77, 99, and 49 µM, respectively (Table 1). Compounds 19–21 showed 

sudden changes in fluorescence, i.e. the fluorescence promptly and significantly dropped at concentrations > 

200 µM for compound 19 and at ≥ 100 µM for compound 20, indicating fluorescence quenching or protein 

degradation, while the fluorescence increased for 21, suggesting auto-fluorescence (Supporting Information 

Figure S4). Compounds 19–21 have demonstrated thermal shifts in literature, but all showed negative ∆Tm 

values (-2, -5, and -1 °C, respectively).35  

To summarize, the TSA showed compounds 1–11 to potently stabilize Keap1 Kelch domain, while no signif-

icant or comparable activity was seen for 12–21; this aligns with and confirms the FP results.  

  

Binding activity in SPR assay.  

To characterize direct binding between the Keap1 Kelch domain and compounds 1–21, SPR was applied. The 

Kelch domain was immobilized covalently to a biosensor chip, and the compounds were injected in two-fold 

dilution series. Binding curves for compounds 1–7 and 11 showed concentration dependent binding responses, 

approaching or reaching saturation for the highest concentrations injected (Figure 4). Dissociation constants 

(Kd) for these compounds could be derived by steady state affinity analysis, where the SPR responses at equilib-

rium (Req), observed at the end of compound injection, were plotted against the injected concentrations and 

fitted to a Langmuir (1:1) binding isotherm model (Figure 4 and Table 1). Also, binding to the Kelch domain was 

confirmed for compounds 8–10, which showed a very slow dissociation from immobilized protein, indicative of 

very strong binding. Regeneration conditions to abrogate compound binding to protein between analyte injec-

tions (so the response would return to baseline between analyte injections) could not be established for 8–10. 

Thus, affinity analysis from dose-response experiments were not achievable for these. Instead, compounds 8–

10 were injected either by single concentration injection or by a gradient OneStep injection (Figure 5),69, 70 and 

the SPR curves were globally fitted to a simple 1:1 kinetic interaction model from where dissociation constants 

(Kd) in the low nanomolar range were derived (Figure 5 and Table 1).  
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Figure 4. SPR sensorgrams of compounds 1–7 and 11 interacting with immobilized Keap1 Kelch domain. (A–H) 

Compounds 1–7 and 11 were injected in two-fold serial dilutions (7–8 concentrations) over immobilized Kelch 

domain (left panels). Sensorgrams are blank injection and reference surface subtracted. Right panels display 

plots of equilibrium binding responses at the end of the analyte injections from sensorgrams in left panels 

against analyte concentration. Steady state equilibrium dissociation constants (Kd) from curves fitted to a 1:1 

model are presented in Table 1. 

 

 

Figure 5. SPR sensorgrams of compounds 8–10 interacting with immobilized Keap1 Kelch domain. (A) Com-

pound 8 was injected in one concentration (660 nM) over immobilized Kelch domain. Kinetic fit of the sensor-

gram to a 1:1 Langmuir model was performed (red line), and the rate constants ka and kd were calculated to 

1.73 x 105 M-1s-1 and 4.43 x 10-3 s-1, respectively. (B) Compound 9 was injected by OneStep gradient injection up 
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to 500 nM over immobilized Kelch domain. Kinetic fit of the sensorgram to a 1:1 Langmuir model was per-

formed (red line) and the rate constants ka and kd were calculated to 1.1 x 106 M-1s-1 and 1.58 x 10-3 s-1, respec-

tively. (C) Compound 10 was injected by OneStep gradient injection up to 1 µM over immobilized Kelch do-

main. Kinetic fit of the sensorgram to a 1:1 Langmuir model was performed (red line), and the rate constants ka 

and kd were found to be 1.16 x 105 M-1s-1 and 2.26 x 10-3 s-1, respectively. Sensorgrams are blank injection and 

reference surface subtracted. Dissociation constants (Kd) from kinetic fits of sensorgrams are presented in Ta-

ble 1.  

 

The SPR sensorgrams of compounds 12, 14, 15, 17, and 18 revealed no binding to the Kelch domain, while 

some response was seen for 13, 16, and 19–21 at the tested concentrations (Supporting Information Figure 

S5A–I and Table 1). However, 13 and 16 bound only very weakly to the domain; further, the shape of the sen-

sorgrams of 19–21 indicated non-specific binding, by either showing a disproportional increase in response 

level with concentration, a response not reaching steady-state phase, or lack of binding saturation.  

Compounds 3–6 and 13–15 have previously been described to show binding to Keap1 by SPR (Figure 

1A).29, 31, 34 For compound 3, the determined Kd of 2.4 μM (Table 1) was in similar range of the reported Kd val-

ues of 1 μM29 and 0.8 μM31. The SPR determined affinity (Kd) of 4 was similar to the Ki value determined by FP 

(Table 1), although lower than the Kd reported in literature.34 Compounds 5 and 6 showed Kd values of 20–

44 nM by SPR in earlier reports (Figure 1A),31, 34 which are similar to our FP Ki values, but several fold lower 

than our SPR Kd values (Table 1); still, 5 and 6 are here confirmed by SPR to be potent binders. Compound 13 

was previously found to bind to the Kelch domain with a Kd of 22.8 µM based on injections of three concentra-

tions in an SPR experiment not reaching binding saturation.41 In our hands, 13 only showed weak binding re-

sponses when tested up to 307 µM. The reported SPR data for 14 showed very weak responses (≤ 5 RU) not 

approaching binding saturation level when tested up to 100 µM; thus, Kd in this previous study was estimated 

to be higher than 100 µM.42 Here, no binding was observed for 14 to the Kelch domain, even when tested at 

concentrations up to 582 µM. Compound 15 was reported to show a dose dependent SPR sensorgram when 
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tested up to 100 µM.43 However, the SPR sensorgram published, shows only very weak SPR responses for 50 

and 100 µM injections (≤ 5 RU).43 We were not able to confirm any binding in our study when testing 15 up to a 

concentration of 452 µM.  

Compounds 7–11 have not previously been investigated by SPR. Compound 7 gave a Kd of 0.47 μM, there-

by confirming the nanomolar affinity seen in FP (Figure 1A36 and Table 1). Compounds 8–10 showed the high-

est affinities among the tested compounds in our FP assay (Ki values of 1–13 nM). This was confirmed by the 

single concentration SPR experiments (Kd values of 1.4–26 nM; Table 1) and is in line with the reported affinity 

values of 1–200 nM based on FP or ITC (Figure 1A).27, 38, 39 For 11, we experienced an 18-fold discrepancy in the 

FP Ki value and SPR Kd value (Table 1). This is likely explained by 11 binding 2:1 with the Kelch domain, as ob-

served by native LC-MS and X-ray crystallography,33 which would lead to a lower apparent affinity in SPR meas-

uring direct binding, but not in FP if the initial binding event leads to displacement of the peptide probe. No-

ticeably, in SPR we see a ~2-fold higher Rmax for 11 compared to other active compounds (Figure 4), which sup-

ports the suggested 2:1 stoichiometry of 11 binding to the Kelch domain. 

In conclusion, compounds 1–11 showed direct binding to the Keap1 Kelch domain by SPR, thereby con-

firming our own FP and TSA results as well as the literature reports. On the other hand, SPR did not reveal any 

clear interaction with the Kelch domain for 12–21, as also seen by FP and TSA.  

 

Cell activity in NQO1 induction assay.  

To evaluate the downstream cellular activities of the compounds, we tested their ability to induce NQO1 en-

zyme activity at varying concentrations (1, 5, and 10 µM) in Hepa1c1c7 murine hepatoma cells using sul-

foraphane (SFN) as a positive control.71 The peptide controls 1 and 2 were inactive, likely because of the inher-

ently limited physicochemical properties of peptides for permeating biological membranes, which also corre-

lates with the low cellular effect seen for other Neh2-derived peptides.25 The small-molecules confirmed to be 

genuine Keap1-Nrf2 PPI inhibitors (3–11) in our binding assays modestly to strongly induced NQO1 specific 

enzyme activity in a dose-responsive manner, with exception of compounds 6 and 11 (Figure 6A). Compound 6 
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did not show any statistically significant NQO1 induction, despite its strong binding to the Kelch domain (e.g. 3 

and 4 exhibit weaker affinities in FP and SPR, but did induce NQO1 activity). This could be due to the lower 

cLogP and higher polar surface area featured by 6 relative to compounds 3 and 4,10 which might decrease its 

passive diffusion across the cell membrane. Compound 5 also has a high polar surface area relative to 4, but its 

high affinity towards the Kelch domain is likely to compensate for this, hence resulting in a cell-active com-

pound. The functional Nrf2 activation of 6 has not previously been reported, while 3–5 have shown activity in 

ARE-inducing cell assays.22, 29, 33 For compound 11, the lack of cell activity may be explained by its relatively 

weak binding activity as observed in FP, TSA, and SPR. In literature, 11 showed no activity in an ARE-driven lu-

ciferase reporter cell-based assay.33 Compounds 7–10 were among the strongest binding ligands in our FP, TSA, 

and SPR assays and were also potent NQO1 inducers, comparable to or exceeding SFN. These results are in line 

with literature, where 7–10 have all demonstrated activity in NQO1-based or ARE-driven cell assays.27, 36, 38, 39    
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Figure 6. NQO1 fold induction at 1, 5, and 10 µM of compounds 1–11 (A) and 12–17, 19–21 (B) relative to the 

positive control SFN (10 µM) shown as mean ± SEM; based on at least four individual measurements. Statistical 

significance of differences relative to DMSO is indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001; Stu-

dent's two-tailed, unpaired t-test.  

 

Compound 12 potently and concentration-dependently induced NQO1 activity (Figure 6B), which is con-

sistent with the high cellular potency demonstrated previously in an analogous NQO1 induction assay (a 4-fold 

induction at 10 µM was reported).40 However, this result is inconsistent with our binding assays, where we see 
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no binding to the Keap1 Kelch domain or inhibition of its interaction with Nrf2 for compound 12. A growing 

body of literature has revealed a multitude of regulatory switches through which the activity of Nrf2 can be 

modulated independently of Keap1.14, 72 We recognize that compound 12 has been shown to be able to disrupt 

the low-affinity DLG-Keap1 interaction to form an open state complex in a FRET-based assay in live cells;40 

however, this does not necessitate direct binding to the Keap1 Kelch domain, and the existence of an open 

state conformation of the Keap1-Nrf2 complex has also been associated with multiple modes of regulation.9                                                                                                                                                                                                                                                 

Thus, it remains a possibility that the confirmed potent NQO1 induction exhibited by 12 is not dependent on 

binding to the Keap1 Kelch domain. 

Compound 13 induced NQO1 activity to a similar level as SFN, which is consistent with literature results 

(concentration to give a two-fold increase in response (CD) = 1.3 µM).41 As for 12, this contradicts our binding 

assay results, where no binding to the Kelch domain was observed in relevant concentrations; thus, again Kelch 

binding-independent Nrf2 regulation must explain the cellular activity as also discussed below.  

Compounds 14 and 15 did not show any statistically significant increase in NQO1 activity, while 16 only 

exhibited weak induction at 10 µM; this correlates with the inactivity or only very weak activity seen in our 

binding assays. The cellular activity has not previously been demonstrated for 14, but 15 and 16 have both 

shown modest activities in luciferase-based cell assays (CD = 1.36 µM and 2.5 µM, respectively).43, 44 We note 

that different assay conditions, including different cell lines, were used in the literature for assessing the cellu-

lar activities of 15 and 16 compared to what was used here.  

Compound 17 was inactive in our binding assays and correspondingly showed no increase in NQO1 activi-

ty. However, this contradicts the literature, since the compound has been reported to potently induce NQO1 in 

Hepa1c1c7 cells (CD = 0.07 µM).45 We cannot readily account for this discrepancy, and unfortunately only 

scarce information has been reported about the details of the previously used assay, preventing cross-

examination for potential differences and identification of an underlying cause. We note that a positive control 

(e.g. SFN) appears not to have been employed in the literature assay.45 We also note that compound 17 had 

very limited aqueous solubility and therefore had to be assayed with 1.0% DMSO.  
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Compound 18 was tested up to 10 µM without observing any NQO1 induction relative to DMSO (data not 

shown). However, due to the low solubility of 18, a relatively high DMSO concentration (1.4%) was applied to 

reach 10 µM of 18 in the assay, but under these conditions SFN was not active. Also, when testing a lower con-

centration of 18 (0.9 µM) at a DMSO concentration of 0.13%, where SFN was active, no activity was observed 

(data not shown). Compound 18 has previously been shown to activate Nrf2 in an ARE-driven luciferase-based 

cell assay with a 10-fold induction at 200 µM and without cytotoxic activity.46 We speculate however, whether 

the literature cellular activity could in fact be artifactual, since structurally, compound 18 bears much resem-

blance to known classes of urea- and hydrazine-based luciferase enzyme inhibitors, which are able to confound 

readings from gene reporter assays.73   

Compounds 19–21 did not show any significant NQO1 induction, correlating with the unobserved or un-

convincing activities seen in our binding assays. Cellular activities of 19 and 21 have not hitherto been demon-

strated, while compound 20 has previously been reported to elevate mRNA levels of NQO1;35 however, the 

induction was weak and it was not shown whether it was statistically significant relative to the blank control.  

In conclusion, our NQO1 induction assay confirms the cellular potencies of the compounds also estab-

lished to bind Keap1 Kelch domain, i.e. compounds 3–5 and 7–10, while the weak or non-binding compounds 

14–21 correspondingly showed no or only weak increase in NQO1 activity. Outliers from this correlation in-

clude the peptides 1 and 2 and compounds 6 and 11, where improper physicochemical properties might be a 

possible reason for their cellular inactivity. Other aberrations include compounds 12 and 13 that show modest 

to strong NQO1 induction despite not showing any activity in our binding assays, wherefore we suggest these 

cellular effects are due to mechanisms independent from binding to the Keap1 Kelch domain. 

 

Counter assays for covalent reactivity, redox cycling, and aggregations.  

We next tested the 21 compounds for common liabilities, which can cause false-positive signals in biochemical 

assays.53 First, we evaluated the compounds for covalent reactivity since several of these contain electrophilic 
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functional groups, which could potentially react with protein amino acid residues, especially cysteines. In sepa-

rate experiments, we incubated the compounds at 2–800 µM under our binding assay conditions with 2 µM  

Keap1 Kelch domain and with 1 mM glutathione (GSH) as a cysteine residue surrogate, respectively.74, 75 Poten-

tial covalent binding was assessed by LC-MS  or UPLC-MS. The known covalent modifier, SFN, was employed as 

a positive control in both experiments,  which as expected showed clear adduct formation with both the Keap1 

Kelch domain at ≥ 20 µM and with GSH at 500 µM (Supporting Information Figure S6 and S7A). However, SFN 

was not active in the FP assay (Supporting Information Figure S8B), demonstrating that this assay is generally 

not sensitive to covalent modifiers. Interestingly, incubation of the Keap1 Kelch domain with compounds 11, 

13, 19, and 20 all resulted in significant changes of the mass spectrum of the protein (Supporting Information 

Figure S6A). For 11, 13, and 20 distinct mass adducts were formed at 800, 200 and 20 µM, respectively, and 

these could be attributed to the nucleophilic displacement of labile thiolate moieties in their structures by pro-

tein cysteines (Figure 7A). For compound 19, strong perturbation of the mass spectrum was observed at 

800 µM with the apparent disappearance of mass signals, indicating protein denaturation or degradation. This 

phenomenon was also observed at 200 µM of 13 (Supporting Information Figure S6A) and 20 (not shown). For 

compound 20, covalent reactivity was further observed in the incubation experiment with GSH with detection 

of a clear adduct formation (Supporting Information Figure S7B), while this was not seen for 11, 13, and 19. 

This discrepancy might be explained by the known effect of the protein microenvironment, including solvent 

exposure and local pH, on the reactivity of cysteine thiols.76, 77  
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Figure 7. (A) Covalent reactivity of compounds 11, 13, and 20 towards the Keap1 Kelch domain as assessed by 

LC-MS. All compounds were incubated with 2 µM protein at various concentrations/stoichiometries (1:1, 10:1, 

100:1, and 400:1). Shown are deconvoluted mass spectra for the Kelch domain incubated with 11 at 800 uM 

(no adduct formation seen at lower concentrations), with 13 at 200 uM, and with 20 at 20 uM (no adduct for-

mation seen at lower concentrations, protein signal disappearance seen at higher concentrations). The raw 

charge envelope spectra can be found in the Supporting Information Figure S6A. The proposed reactions oc-

curring are shown to the right. (B) Redox activity of 13 as measured by H2O2 generation in presence of 1 mM 

TCEP and in comparison with known redox-active 3-methyltoxoflavin and externally added H2O2. Representa-

tive curves of two individual measurements are shown as means of duplicates ± SEM. (C) FP concentration-

response curves for 4 and 6 without (wo) detergent or with (w) various concentrations of Tween20/Triton X-

100. Representative curves of two individual measurements (wo Triton/Tween20, w 0.005% Tween20, and w 
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0.01% Triton X-100) or one measurement (w 0.02 and 0.05% % Triton X-100) are shown as means of duplicates 

± SEM. 

 

 Redox cycling compounds (RCCs) generate H2O2 in the presence of strong reducing agents like TCEP and 

DTT, which can affect proteins and lead to false readouts.53, 78-81 As we have TCEP in our standard assay buffer, 

we tested if 1–21 produced H2O2 using an assay based on oxidation of phenol red by H2O2 catalyzed by horse-

radish peroxidase.81 Interestingly, compound 13 gave a clear TCEP-dependent response starting at 77 µM, with 

absorbance values about 2–3-fold lower than corresponding concentrations of pure H2O2 added as a positive 

control. Compared to the control compound 3-methyltoxoflavin, 13 was ~20-fold less potent (Figure 7B). The 

remaining compounds did not give any signal (Supporting Information Figure S8A). 3-Methyltoxoflavin and 

H2O2 showed no activity in the FP assay (Supporting Information Figure S8B); thus this assay is not sensitive to 

RCCs. 

 Aggregate-forming compounds are typically much more potent without presence of detergent and can 

thereby be identified by performing the biochemical assay with and without 0.01% Triton X-100.82, 83 Here, we 

observed no difference for 1–3, 5, 7–11, and 19–20 in the FP assay with 0.01% or without Triton X-100 (Sup-

porting Information Figure S8C) or when compared to our usual assay conditions using 0.005% Tween20 (Fig. 

2). Compound 12-18 and 21 were inactive without Triton X-100 and were therefore not tested further. Benzyl 

benzoate and clotrimazole were inactive in our FP assay both with and without detergent (Supporting Infor-

mation Figure S8B), indicating that our FP assay is robust to typical promiscuous aggregators.84 Compound 4 

and 6, however, were both 2–4-fold more potent without detergent than with (0.01/0.02/0.05% Triton X-100 

and 0.005% Tween20 gave similar results) (Figure 7C). 

 

DISCUSSION AND CONCLUSIONS 

Nrf2 activation through disruption of the Keap1-Nrf2 PPI has been recognized as a promising strategy to com-

bat oxidative stress in peripheral as well as CNS diseases, such as stroke and neurodegenerative disorders. Alt-
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hough our artillery of direct small-molecule Keap1-Nrf2 PPI inhibitors has grown significantly throughout the 

years, many of these compounds feature physicochemical properties inappropriate for passing the BBB. How-

ever, further optimization might address this problem. Other reported inhibitors contain potentially problemat-

ic substructural motifs or have only been scarcely characterized.  In order to rid the literature of problematic 

compounds, investigate the reproducibility of their synthesis and reported activities, and allow selection of the 

most promising starting points for lead optimization we have here performed an extensive comparative as-

sessment study of all reported non-covalent small-molecule Keap1-Nrf2 PPI inhibitor classes that we are aware 

of (Figure 1A). 

Initially, compounds 3–12, 14, 16, and 17 were synthesized, generally following reported procedures. Ad-

justments and attention to procedural details were necessary to obtain 3, 4–8, and 10 in reasonable yields, and 

new procedures were developed for 11 and 17.  

To evaluate the binding efficiency and cellular potency of the obtained compounds 3–21, we tested them 

together with two positive peptide controls 1 and 2 in our triad of orthogonal binding assays, FP, TSA, and SPR, 

and further in a cellular NQO1 induction assay. To our surprise, we were not able to demonstrate convincing 

binding activity of half of the compounds, i.e. 12–21. By careful use of control experiments, we revealed com-

pounds 18, 19, and 21 to exert fluorescence interfering activities, which for 19 and 21 correlates with the inclu-

sion of PAINS moieties in their structure.10, 52 Although we did detect weak inhibition for compound 19 and 20 

in our FP assay, the binding efficiency was unsteady across different assay conditions. Importantly, we ob-

served stability issues of 20 during QC by LC-MS subsequent to assaying; furthermore, the compound formed a 

covalent adduct with GSH and, as 19, severely distorted the mass spectrum of Keap1 indicating various forms 

of reactivity or deteriorations of the protein. We recognize that SAR has been conducted around the scaffold of 

20 to produce modestly potent compounds.62 However, our observations, and the fact that degradation under 

assay conditions, protein-adduct formations, and even protein denaturation have been reported in literature 

for similar 4-hydroxyarylsulfonamides,75 raise serious concerns for the utility of this particular chemotype in 

drug discovery.  
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For compounds 16 and 17, binding to Keap1 Kelch domain has only been hypothesized,44, 45 and we here 

provide evidence that they do not bind the domain or inhibit the Keap1-Nrf2 PPI at relevant concentrations. 

However strikingly, we were able to reproduce the modest cellular NQO1 induction potency of compound 16, 

and our results thus suggest that 16 is able to induce NQO1 through a pathway independent of binding to the 

Keap1 Kelch domain.   

For compound 12, there is a discrepancy between the reported low micromolar inhibition in FP (IC50 = 

7.1 µM)40 and the inactivity seen in our FP assay. Even when replicating the exact assay conditions detailed in 

literature to exclude any confounding effects (e.g. different fluorescent probes, buffers, DMSO concentrations, 

or incubation time) we did not observe any inhibition. Furthermore, our TSA and SPR assay confirm this result 

with no observed binding. Of note, we have carefully checked the purity and compound identity of the DMSO-

stock by NMR and LC-MS and quantified our stocks by qHNMR. We therefore question that this compound can 

inhibit the Keap1-Nrf2 PPI via binding to the Keap1 Kelch domain, and perhaps pathways independent of Keap1 

or Keap1 Kelch binding are affected, giving rise to the cellular induction of NQO1 observed in literature40 and 

by us.  

Compounds 13–15 have previously been biophysically characterized by SPR to bind the Keap1 Kelch do-

main,41-43 but we did not observe any activity for these in any of our binding assays. However, it is worth notic-

ing that 14 and 15 have only been reported with weak millimolar binding affinity and very low response units in 

the SPR sensograms.42, 43 We realize that X-ray structures of 14 in complex with the Kelch domain have been 

reported; however, multiple binding modes had been identified, and these appeared not to represent solution-

phase binding based on molecular dynamics simulation.42 Furthermore, the high sensitivity of X-ray crystallog-

raphy can allow even weak ligands (e.g. fragments and salts) to bind. For compound 13, we highlight that the 

literature SPR affinity appears only to have been calculated based on sensorgrams from three concentrations, 

where binding saturation seems not to be have been reached.41 As for 12, 13 was active in the NQO1 cell assay 

despite not showing any activity in the binding assays (FP, TSA, and SPR). Perhaps, this cellular effect is related 

to its apparent capability of producing H2O2, as observed in our redox counter test. Although, the concentra-
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tions used in the NQO1 cell assay (1–10 μM) are much lower than the concentrations where we see redox-

activity (≥77 µM), the cells could be sensitive to lower levels of H2O2, and incubation times are also longer in 

the cells. Also, by LC-MS we observed that 13 reacted with the Keap1 Kelch domain, presumably at the cysteine 

side chains. Such reactivity was also suggested in the patent application of 13 based on SAR studies and a cellu-

lar experiment where GSH pre-incubation lead to reduced potency of 13,41 and correlates with the thiol-

reactivity observed for structurally similar compounds.75 Such mechanism of actions would reconcile our bind-

ing assay data with the results of the cellular assay, since electrophilic modulators of Keap1 canonically react 

with cysteine residues in the IVR and BTB domains of Keap1,14 which would not be detected in our Kelch do-

main-based binding assays.  

Our observation that compounds able to induce NQO1 in the cell do not necessarily show binding to the 

Keap1 Kelch domain (as seen for 12, 13, and 16) highlights the crucial deficiency of characterizing compounds 

solely based on cellular activities. The NQO1 induction assay—like many other cellular assays—is prone to give 

positive readouts that are not a consequence of engagement with the target of interest; e.g. progesterone is 

known to upregulate NQO1 without activating the Nrf2 pathway.85 To confirm on-target activity, testing in both 

multiple orthogonal binding assays as well as several cell/in vivo assays are needed; e.g. by monitoring the 

gene or protein expression of other relevant downstream targets of the Nrf2 pathway, by measuring the nucle-

ar translocation of Nrf2, or by directly imaging Keap1-Nrf2 interaction in cells.26 

Compounds 3–11 are all well-characterized in the literature, and here we confirm that they are genuine 

reversible binders of the Keap1 Kelch domain that can inhibit the Keap1-Nrf2 PPI. Compound 11 did react cova-

lently to the Keap1 Kelch domain, however, this was only seen at high compound concentrations (800 μM), and 

also SPR data indicated reversible binding. Together with our robust FP and TSA data, as well as X-ray and na-

tive LC-MS data from literature,33 a reversible binding mechanism seems to be prevailing for 11. Hence, both 

compounds 3 and 11 could constitute reliable positive controls, featuring modest micromolar affinities and 

good aqueous solubilities—properties suitable for setting up assays for screening low-potent compounds such 

as fragments.  
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For compounds 4 and 6, a 2–4-fold higher IC50 value was seen in FP when detergent was present com-

pared to when absent. This relatively small shift in potency could be related to the aqueous kinetic solubility, 

which for 4 and 6 was recently shown to be much lower than less hydrophobic analogues in the series, e.g. 

compound 5.86 Overall, 4 and 6 have been shown by X-ray crystallography to bind in the Keap1 Kelch binding 

pocket, and they give saturable and dose-dependent responses in SPR; thus we consider 4 and 6 to be genuine 

Keap1 binders. However, to minimize aggregation formations and increase precision when measuring, it is ad-

visable to include detergent in the assay, also for these compounds. 

Compounds 5 and 7–10 are all high-affinity and cell active compounds without any apparent chemical lia-

bilities, such as covalent binding, redox activity, or aggregation properties. More extensive profiling of com-

pounds 5 and 7–10 might be needed in order to further prioritize in between these, e.g. by assessing their se-

lectivity towards the Keap1 Kelch domain, which has thus far only been demonstrated for compounds 7 and 

9.27, 36 Off-target activities cannot be excluded for compounds 5, 8, and 10, based on our or literature in 

vitro/cellular data. However, based on their physicochemical properties, including CNS MPO scores, we pro-

pose 7 and 10 as the most suitable compounds thus far to be subjected to further SAR studies aiming at devel-

oping CNS active Keap1 inhibitors.  

 

In conclusion, this study constitutes the first side-by-side assessment of all major chemotypes of reported 

non-covalent small-molecule Keap1-Nrf2 PPI inhibitors. Based on our data, we question the legitimacy of a 

substantial proportion of the compounds (12–21) described in the literature and encourage researchers to 

critically reevaluate the use of these and only conclude on pharmacological mechanisms supported by orthog-

onal biochemical and biological assays. Furthermore, we demonstrated cross-assay activities for 1–11 and 

thereby identified the most promising genuine Keap1-binders with properties that warrant their use as phar-

macological tool compounds or starting points for development of drug-like and potentially CNS active Keap1-

Nrf2 PPI inhibitors.  
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EXPERIMENTAL SECTION 

Chemistry. General Procedures. All chemicals used for synthesis were obtained from commercial suppliers 

and used without prior purification. 1H NMR, 13C NMR, and 2D-NMR spectra were recorded using either a 

600 MHz Bruker Avance III HD instrument equipped with a cryogenically cooled 5 mm dual probe or a 400 MHz 

Bruker Avance III instrument equipped with a 5 mm broad band probe. Samples were dissolved in either 

DMSO-d6 (VWR Chemicals, 99.80% D) or CDCl3 (Cambridge Isotope Laboratories, Inc., 99.8% D) and analyzed at 

300 K. TLC analyses were performed using TLC silica gel 60 F254 aluminum plates (Merck). LC-MS mass spectra 

were obtained with an Agilent 6410 Triple Quadrupole Mass Spectrometer instrument using electron spray 

ionization (ESI) coupled to an Agilent 1200 HPLC system (LC-MS) with a C18 reverse phase column (Zorbax 

Eclipse XBD-C18, 4.6 mm × 50 mm), autosampler and diode array detector, using a linear gradient of the binary 

solvent system of buffer A (milliQ H2O:MeCN:formic acid, 95:5:0.1 v/v%) to buffer B (milliQ H2O:MeCN:formic 

acid, 5:95:0.043 v/v%) with a flow rate of 1 mL⁄min. During LC-MS analysis, evaporative light scattering (ELS) 

traces were obtained with a Sedere Sedex 85 Light Scattering Detector. Normal phase column chromatography 

was carried out using prepacked RediSep Rf silica flash cartridges on a CombiFlash® Rf+ apparatus. Preparative 

reverse phase HPLC was performed using an Agilent 1200 series HPLC preparative system with an Agilent 

Zorbax 300-SB-C18 column (21.2 × 250 mm). Microwave-assisted synthesis was carried out using a Biotage® 

Initiator+ apparatus. All final compounds showed ≥95% purity by NM  and LC-MS as further described below. 

 

Stock preparation, quality control, and quantification. The compounds were accurately weighed (± 

0.01 mg) and dissolved in 600 µL DMSO-d6 (VWR Chemicals, 99.80% D) to make approximately 10 mM stock 

solutions. In cases of solubility issues, the suspension was filtered using 0.22 µM filters to obtain the highest 

possible stock concentration. The stock solutions were stored at -60 °C before assaying. The stock solutions 

were quality controlled by 1H NMR and 13C NMR (and COSY, HSQC, and/or NOE NMR in relevant cases) and LC-

MS to confirm their identity and purity (> 95% by total ion current (TIC), UV214, and UV254, > 95 mol% by 1H NMR 

but excluding solvent residues). The NMR spectra can be found in the Supporting Information. The exact stock 
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concentrations were determined by qHNMR, using DMSO2 (Sigma Aldrich, cat. no. 41867, 99.96% pure by mass 

fraction) as an internal standard. 140 µL DMSO-d6 stock was diluted with 10 µL of a DMSO2 stock with a known 

concentration (CIS = 45.79 mM) and transferred to 3 mm standard NMR tubes. NMR spectra were acquired at a 

spectrometer frequency of 600 MHz, with 30° angle of rotation pulse, collecting 16 scans and converting the 

FID to 65536 number of data points, with a 12 kHz spectral width and recycle delay of 1.0 sec. The FIDs were 

zero-filled to twice the number of data points and exponentially multiplied with a line broadening factor of 

0.3 Hz. Spectra were processed by integrating the signal of the internal standard (δ 2.99 ppm, s) and normaliz-

ing it to the number of protons (6H). All pure and assignable proton signals of the target analyte were then 

integrated, and the integrals normalized to the number of protons giving rise to the signal. The integral of the 

analyte (Inta) was then calculated by taking the average of all normalized analyte integrals. The concentration 

of the stocks (CA) were finally determined using the following equation: CA [mM] = Inta × CIS × (10 µL / 150 µL) × 

(150 µL / 140 µL).   

 

(1S,2R)-2-((S)-1-((1,3-Dioxoisoindolin-2-yl)methyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclohex-

ane-1-carboxylic acid (3). Compound 3 was purified according to previously described procedure55 with no 

deviations. Starting from crude 24, 3 was obtained as a white solid (0.012 g, 0.027 mmol, 19 % starting from 

0.14 mmol 23). LC-MS: MS (ESI) m/z 447.3 [M+1]+, tR = 3.34 min. 1H NMR (600 MHz, DMSO-d6) δ 11.70 (s, 1H), 

7.38–7.13 (m, 4H), 5.85 (dd, J = 11.3, 3.7 Hz, 1H), 4.00 (dd, J = 14.2, 11.4 Hz, 1H), 3.92 (dd, J = 14.6, 5.0 Hz, 1H), 

3.81 (dd, J = 14.3, 3.8 Hz, 1H), 3.61 (ddd, J = 14.1, 12.1, 3.8 Hz, 1H), 3.28 (td, J = 5.4, 2.9 Hz, 1H), 2.91 (ddd, J = 

17.0, 12.0, 5.4 Hz, 1H), 2.81 (dt, J = 15.8, 2.9 Hz, 1H), 2.23 (dt, J = 11.6, 4.7 Hz, 1H), 1.82 (qd, J = 12.7, 4.0 Hz, 

1H), 1.55 (dt, J = 13.0, 4.2 Hz, 1H), 1.49 (dd, J = 13.3, 3.3 Hz, 1H), 1.36 (ddt, J = 14.6, 13.2, 4.2 Hz, 1H), 1.32–1.20 

(m, 1H), 1.01–0.89 (m, 1H), 0.88–0.78 (m, 1H), 0.23 (q, J = 12.9 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) δ 175.34, 

174.08, 168.11, 135.43, 134.87, 134.23, 131.98, 129.64, 127.64, 127.47, 126.80, 123.55, 49.87, 42.75, 41.09, 

39.39, 36.53, 29.06, 27.56, 24.96, 24.30, 20.98. 
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N,N'-(naphthalene-1,4-diyl)bis(4-methoxybenzenesulfonamide) (4). The compound was synthesized ac-

cording to previously described procedure22 with minor deviations. To a solution of 30 (0.10 g, 0.63 mmol, 

1.0 equiv) in toluene (10 mL) was added pyridine (0.15 mL, 1.90 mmol, 3.0 equiv) and 4-

methoxybenzenesulfonyl chloride (0.30 g, 1.43 mmol, 2.3 equiv). The reaction mixture was stirred under nitro-

gen at 100 °C for 3 h, until TLC (EtOAc:heptane 1:1, Rf 0.23) showed complete conversion. The reaction mixture 

was then cooled to RT and the solvent removed by evaporation in vacuo. The residue was re-dissolved in EtOAc 

(40 mL), and the solution washed with water (2 x 50 mL) and 2 M HCl (2 x 50 mL), dried over Na2SO4, and con-

centrated to dryness in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 0-100% gradi-

ent) to furnish 4 as a slight yellow-colored powder (0.042 g, 0.084 mmol, 13%). In a larger scale synthesis 

(8.0 mmol), 4 was obtained in 23% yield. LC-MS: MS (ESI) m/z 497.2 [M+1]+, tR = 4.87–4.97 min. 1H NMR 

(DMSO-d6) δ 10.01 (s, 2H), 7.98–7.94 (m, 2H), 7.57–7.53 (m, 4H), 7.41–7.37 (m, 2H), 7.01 (s, 2H), 7.00–6.97 (m, 

4H), 3.78 (s, 6H). 13C NMR (DMSO-d6) δ 162.30, 131.45, 131.03, 130.02, 128.85, 126.05, 123.33, 122.65, 114.18, 

55.58.  

2,2'-(naphthalene-1,4-diylbis(((4-methoxyphenyl)sulfonyl)azanediyl))diacetic acid (5). The compound 

was synthesized according to previously described procedure22 in two steps with minor deviations. For step 1, a 

solution of 4 (0.30 g, 0.60 mmol, 1.0 equiv) in DMF (5.0 mL) was added K2CO3 (0.33 g, 2.41 mmol, 4.0 equiv) 

followed by ethyl bromoacetate (0.22 mL, 2.01 mmol, 3.3 equiv). The reaction mixture was stirred at RT for 3 h 

until LC-MS showed complete conversion. The reaction mixture was then partitioned between EtOAc (40 mL) 

and water (30 mL), the aq. phase extracted with EtOAc (2 x 30 mL), the combined organic phases washed with 

sat. brine (2 x 30 mL), and concentrated to dryness in vacuo. The crude was purified by flash chromatography 

(heptane:EtOAc, 0–100% gradient) to furnish diethyl 2,2'-(naphthalene-1,4-diylbis(((4-methoxyphenyl)sul-

fonyl)azanediyl))diacetate (5-I1)  as a brown crystalline solid (0.36 g, 0.54 mmol, 90%). 1H NMR (DMSO-d6) δ 

8.30 (dd, J = 6.5, 3.3 Hz, 1H), 8.18 (dd, J = 6.5, 3.3 Hz, 1H), 7.65–7.53 (m, 6H), 7.19–7.06 (m, 4H), 7.05 (d, J = 

2.1 Hz, 1H), 6.86 (s, 1H), 4.59–4.37 (m, 4H), 4.09–3.94 (m, 4H), 3.89 (s, 3H), 3.84 (s, 3H), 1.12–1.01 (m, 6H). For 

step 2,  to a solution of NaOH (1.50 g, 37.0 mmol, 100 equiv) in MeOH (10 mL) and water (10 mL) was added 5-
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I1 (0.25 g, 0.37 mmol, 1.0 equiv). The reaction mixture was stirred at 65 °C for 3 h (at least until a clear solution 

was obtained). The reaction mixture was adjusted to pH 2 with 2 M HCl, and the precipitate filtered, washed 

with water (10 mL), and dried in vacuo to furnish 5 as a light-brown solid (0.15 g, 0.24 mmol, 67%). LC-MS: MS 

(ESI) m/z 613.2 [M-1]-, 1227.2 [2M-1]-, tR = 4.61 min. 1H NMR (DMSO-d6) δ 12.78 (s, 2H), 8.29 (dd, J = 6.5, 

3.3 Hz, 1H), 8.17 (dd, J = 6.6, 3.3 Hz, 1H), 7.57 (m, 6H), 7.18–6.98 (m, 5H), 6.89 (s, 1H), 4.40 (m, 4H), 3.86 (d, J = 

19.7 Hz, 6H). 13C NMR (DMSO-d6) δ 169.83, 162.86, 137.03, 132.94, 130.07, 129.85, 129.53, 128.99, 126.58, 

126.28, 124.63, 114.25, 55.72, 53.20, 39.84. 

2,2'-(naphthalene-1,4-diylbis(((4-methoxyphenyl)sulfonyl)azanediyl))diacetamide (6). The compound 

was synthesized according to previously described procedure34 with minor deviations. To a solution of 4 

(0.100 g, 0.20 mmol, 1.0 equiv) in dry DMF (2.0 mL) was added K2CO3 (0.083 g, 0.60 mmol, 3.0 equiv) followed 

by 2-bromoacetamide (0.12 g, 0.90 mmol, 4.5 equiv). The reaction mixture was stirred at RT for 5 days until LC-

MS showed complete conversion. The reaction mixture was then quenched with water (25 mL), acidified to 

pH 5 with 2 M HCl, extracted with EtOAc (3 x 25 mL), and the combined organic phases concentrated to dry-

ness in vacuo. The crude was purified by preparative HPLC (buffer A  H2O:MeCN:TFA 95:5:0.1, buffer B 

H2O:MeCN:TFA 5:95:0.1, 0–50% gradient) to furnish 6 as a white crystalline solid (0.035 g, 0.057 mmol, 29%). 

LC-MS: MS (ESI) m/z 1225.3 [2M+1]+, tR = 4.10 min. 1H NMR (DMSO-d6) δ 8.29 (dd, J = 6.6, 3.3 Hz, 1H), 8.18 (dd, 

J = 6.5, 3.3 Hz, 1H), 7.65–7.49 (m, 6H), 7.29 (d, J = 18.3 Hz, 2H), 7.19–6.87 (m, 7H), 6.82 (s, 1H), 4.38–4.11 (m, 

4H), 3.86 (d, J = 20.7 Hz, 6H). 13C NMR (DMSO-d6) δ 168.91, 162.94, 137.03, 133.13, 133.01, 130.34, 130.11, 

129.57, 129.18, 126.66, 126.49, 126.14, 124.83, 124.69, 118.21, 114.33, 114.27, 79.22, 67.14, 55.85, 55.82, 

54.96, 54.15, 54.03. 

(S)-1-(4-((2,3,5,6-tetramethylphenyl)sulfonamido)naphthalen-1-yl)pyrrolidine-3-carboxylic acid (7). The 

compound was synthesized according to previously described procedure36 with some deviations. To a solution 

of 33 (0.097 g, 0.38 mmol assumed, 1.0 equiv) in DCM (2.0 mL) was added pyridine (0.032 mL, 0.40 mmol, 

1.05 equiv) and 2,3,5,6-tetramethylbenzene-sulfonyl chloride (0.093 g, 0.40 mmol, 1.05 equiv), and the reac-

tion mixture stirred at RT for 16 h. The reaction mixture was then diluted with water (3 mL), the pH adjusted to 
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2 with 2 M HCl and the compound extracted with DCM (3 x 10 mL). The combined organic phases were dried 

over Na2SO4, filtered, and concentrated to dryness in vacuo. The crude was purified by preparative HPLC (buff-

er A H2O:MeCN:TFA 95:5:0.1, buffer B H2O:MeCN:TFA 5:95:0.1, 0–100% gradient) to furnish 7 as a blue solid 

(0.027 g, 0.060 mmol, 16% over two steps). LC-MS: MS (ESI) m/z 453.2 [M+1]+, tR = 3.50 min. 1H NMR (600 MHz, 

DMSO-d6) δ 9.77 (s, 1H), 8.13 (dd, J = 8.0, 1.8 Hz, 1H), 8.04 (dt, J = 9.1, 1.7 Hz, 1H), 7.44 (tt, J = 8.3, 5.8 Hz, 2H), 

7.18 (s, 1H), 6.94–6.82 (m, 2H), 3.50 (under water peak), 3.32 (dd, J = 9.5, 7.8 Hz, 1H), 3.24 (tq, J = 5.8, 3.3, 

2.9 Hz, 2H), 3.16 (tt, J = 8.2, 6.1 Hz, 1H), 2.21 (m, 14H). 13C NMR (151 MHz, DMSO-d6) δ 145.85, 139.20, 135.29, 

135.02, 134.66, 134.62, 131.88, 127.94, 125.71, 125.09, 124.85, 124.25, 123.83, 111.49, 55.04, 51.62, 41.88, 

27.73, 20.42, 17.80. 

5-((4-ethoxyphenyl)sulfonamido)-1-((4-ethoxyphenyl)sulfonyl)-N-hydroxy-1H-benzo[g]indole-3-carbox-

amide (8). The compound was synthesized in two steps according to previously described procedure38 with 

minor deviations. For step 1, a solution of 35 (0.20 g, 0.38 mmol, 1.0 equiv) in dry toluene (10 mL) were added 

ethyl acetoacetate (0.049 mL, 0.38 mmol, 1.0 equiv) and Et3N (0.20 mL, 1.42 mmol, 3.7 equiv). The reaction 

mixture was stirred at RT for 2 h, until TLC (heptane:EtOAc 1:1, Rf 0.22) showed complete reaction. The reac-

tion mixture was then added 10% aq. HCl (10 mL), extracted with EtOAc (2 x 10 mL), the combined organic 

phases washed with sat. brine (10 mL), dried over Na2SO4, and concentrated to dryness in vacuo. The crude 

was purified by flash chromatography (heptane:EtOAc, 0–45% gradient) to furnish ethyl 2-(1,4-bis((4-

ethoxyphenyl)sulfonamido)naphthalen-2-yl)-3-oxobutanoate (8-I1) as a light-brown solid (0.12 g, 0.18 mmol, 

48%). LC-MS: MS (ESI) m/z 653.2 [M-1]-, tR = 3.47–3.74 min. For step 2, a solution of 8-I1 (0.050 g, 0.076 mmol, 

1.0 equiv) in AcOH (1.5 mL) was added a solution of hydroxylamine hydrochloride (0.032 g, 0.97 mmol, 

12 equiv) in water (0.5 mL) and the reaction mixture stirred at 80 °C for 2 h, until LC-MS showed complete reac-

tion. The reaction mixture was then added water (5 mL), the precipitate collected by filtration, and dried in 

vacuo to furnish the pure product as a light-brown solid (0.022 g, 0.035 mmol, 47%). LC-MS: MS (ESI) m/z 622.2 

[M-1]-, 1245.4 [2M-1]-, tR = 3.4-4.1 min (broad peak). 1H NMR (DMSO-d6) δ 10.09 (s, 1H), 9.42 (s, 1H), 8.36 (d, J 

= 8.5 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.64–7.56 (m, 2H), 7.52 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.45 (ddd, J = 8.2, 
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6.8, 1.3 Hz, 1H), 7.12–7.06 (m, 2H), 7.07–7.01 (m, 2H), 6.85 (s, 1H), 6.84–6.77 (m, 2H), 4.07 (qd, J = 6.9, 2.5 Hz, 

4H), 1.54 (s, 3H), 1.34 (dt, J = 23.0, 7.0 Hz, 6H). 13C NMR (DMSO-d6) δ 170.18, 161.72, 161.37, 157.68, 133.12, 

131.69, 131.01, 130.72, 128.96, 128.70, 128.03, 127.09, 126.19, 125.66, 125.56, 123.81, 122.95, 114.71, 

114.07, 92.25, 63.71, 63.64, 14.51, 14.38, 11.13. 

3-(7-methoxy-1-methyl-1H-benzo[d][1,2,3]triazol-5-yl)-3-(4-methyl-3-(((R)-4-methyl-1,1-dioxido-3,4-

dihydro-2H-benzo[b][1,4,5]oxathiazepin-2-yl)methyl)phenyl)propanoic acid (9). The compound was synthe-

sized in two steps according to previously described procedure27 with minor deviations. To a solution of 55 

(0.10 g, 0.28 mmol, 1.0 equiv) in THF (3.3 mL) was added 57 (0.09 g, 0.42 mmol, 1.5 equiv), PPh3 (0.15 g, 

0.56 mmol, 2.0 equiv), and a solution of diisopropyl azodicarboxylate (DIAD, 111.0 µL, 0.56 mmol, 2.0 equiv) in 

THF (1.1 mL). The resulting reaction mixture was stirred at RT for 30 min. The reaction mixture was then evapo-

rated in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 0–100% gradient) to afford 

methyl 3-(7-methoxy-1-methyl-1H-benz-o[d][1,2,3]triazol-5-yl)-3-(4-methyl-3-(((R)-4-methyl-1,1-dioxido-3,4-

dihydro-2H-benzo[b][1,4,5]oxathiazepin-2-yl)methyl)phenyl)propanoate (9-I1) (0.10 g, 0.18 mmol, 65%). To 9-

I1 (0.10 g, 0.18 mmol, 1.0 equiv) was added MeOH (3.3 mL) and then NaOH (2 M, 0.70 mL, 1.40 mmol, 

7.8 equiv). The reaction mixture was heated to 80°C for 40 min. The resulting reaction mixture was acidified 

with HCl (1 M) to pH 3, extracted with EtOAc (3 x 5 mL), washed with brine (5 mL), and  concentrated in vacuo. 

The crude was first purified by preparative HPLC (buffer A H2O:MeCN:TFA 95:5:0.1, buffer B H2O:MeCN:TFA 

5:95:0.1, 0–100% gradient) followed by purification by flash chromatography (heptane:EtOAc, 0–100% gradi-

ent) to furnish 9 as a white solid (0.07 g, 0.13 mmol, 70%). LC-MS: MS (ESI) m/z 551.2 [M+1]+. 1H NMR 

(600 MHz, DMSO-d6) δ 12.10 (s, 1H), 7.77 (ddd, J = 7.8, 2.5, 1.7 Hz, 1H), 7.65 (tt, J = 7.6, 1.7 Hz, 1H), 7.44 (dd, J = 

7.1, 1.0 Hz, 1H), 7.36 (tdd, J = 7.6, 3.7, 2.2 Hz, 2H), 7.32–7.24 (m, 2H), 7.11 (d, J = 7.8 Hz, 1H), 6.91 (dd, J = 14.2, 

1.1 Hz, 1H), 4.50 (td, J = 7.9, 4.6 Hz, 1H), 4.46–4.35 (m, 2H), 4.33 (d, J = 4.0 Hz, 3H), 3.92 (d, J = 6.7 Hz, 3H), 3.81 

(d, J = 14.0 Hz, 1H), 3.61 (ddd, J = 15.4, 10.3, 5.3 Hz, 1H), 3.14–3.03 (m, 2H), 2.78 (ddd, J = 48.4, 15.3, 1.4 Hz, 

1H), 2.24 (d, J = 6.1 Hz, 3H), 1.14 (dd, J = 59.0, 6.4 Hz, 3H). 
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1-(3-((cis)-3-(2-Butylpyrrolidine-1-carbonyl)cyclohexyl)phenyl)-5-cyclopropyl-1H-pyrazole-4-carboxylic 

acid (10). The compound was synthesized in two steps according the previously described procedure39 with 

some deviations. For step 1, a solution of 43 (0.21 g, 0.54 mmol, 1.0 equiv) in dry DCM (4.0 mL) was added HA-

TU (0.25 g, 0.65 mmol, 1.20 equiv) and DIPEA (0.44 mL, 1.35 mmol, 2.50 equiv) at 0 °C. The solution was al-

lowed to stir at 0 °C for 30 min. Then, 2-butylpyrrolidine hydrochloride (0.11 g, 0.65 mmol, 1.2 equiv) was add-

ed and the reaction mixture allowed to stir at RT for 18 h, until LC-MS showed complete reaction. The reaction 

mixture was then diluted with DCM (20 mL), and the solution washed with sat. NaHCO3 (15 mL), dried over 

Na2SO4, filtered, and concentrated to dryness in vacuo. The crude was purified by flash chromatography (hep-

tane:EtOAc, 0–100% gradient) to furnish ethyl 1-(3-((1S,3R)-3-(2-butylpyrrolidine-1-

carbonyl)cyclohexyl)phenyl)-5-cyclopropyl-1H-pyrazole-4-carboxylate (10-I1)  as a colorless sticky oil (0.12 g, 

0.24 mmol, 44%). LC-MS: MS (ESI) m/z 492.3 [M+1]+, tR = 4.37 min. 1H NMR (400 MHz, DMSO-d6) δ 7.96 (s, 1H), 

7.51–7.42 (m, 2H), 7.39 (dq, J = 8.0, 1.6 Hz, 1H), 7.35 (ddt, J = 7.4, 2.9, 1.4 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.98–

3.80 (m, 1H), 3.55–3.43 (m, 2H), 2.72 (d, J = 11.9 Hz, 1H), 2.56 (s, 1H), 2.17–2.05 (m, 1H), 1.98–1.66 (m, 9H), 

1.70–1.34 (m, 4H), 1.30 (t, J = 7.1 Hz, 4H), 1.29–1.09 (m, 3H), 1.00–0.70 (m, 5H), 0.47 (dd, J = 5.9, 1.5 Hz, 2H). 

13C NMR (101 MHz, DMSO-d6) δ 172.64, 162.30, 147.92, 146.91, 141.40, 139.13, 128.84, 126.74, 123.64, 

122.82, 113.46, 59.52, 56.16, 45.91, 42.61, 42.51, 42.35, 41.97, 36.61, 35.66, 32.89, 32.39, 32.32, 28.56, 28.44, 

27.88, 25.25, 23.67, 22.17, 14.25, 13.95, 13.90, 8.12, 7.02. For step 2, a solution of 10-I1 (0.12 g, 0.24 mmol, 

1.0 equiv) in i-PrOH (4.0 mL) was added NaOH (1.2 mL 2 M aq. solution, 2.40 mmol, 10.0 equiv), and the reac-

tion mixture stirred at RT for 72 h, until LC-MS showed complete reaction. The reaction mixture was then dilut-

ed with EtOAc (15 mL) and washed with water (10 mL). The aq. phase was acidified with 1 M HCl and extracted 

with EtOAc (2 x 15 mL). The combined organic phases were dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude was purified by preparative HPLC (buffer A H2O:MeCN:TFA 95:5:0.1, buffer B H2O:MeCN:TFA 

5:95:0.1, 0–100% gradient) to furnish 10 as a white solid (0.045 g, 0.097 mmol, 41%). LC-MS: MS (ESI) m/z 

464.3 [M+1]+, 927.6 [2M+1]+, tR = 3.65–3.82 min. (two peaks). 1H NMR (600 MHz, DMSO-d6) δ 7.92 (s, 1H), 7.44 

(td, J = 7.5, 2.8 Hz, 2H), 7.41–7.37 (m, 1H), 7.35 (d, J = 6.6 Hz, 1H), 3.98–3.81 (m, 1H), 3.56–3.42 (m, 1H), 3.37–
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3.16 (m, 0H), 2.80–2.64 (m, 1H), 2.60–2.53 (m, 1H), 2.09 (td, J = 5.5, 2.8 Hz, 1H), 1.95–1.66 (m, 7H), 1.70–1.10 

(m, 8H), 0.94–0.76 (m, 5H), 0.51 (hept, J = 4.3, 3.9 Hz, 2H). 13C NMR (151 MHz, DMSO-d6) δ 163.86, 146.90, 

141.83, 139.27, 128.85, 126.68, 123.75, 122.93, 113.99, 56.20, 56.18, 45.93, 44.91, 42.61, 42.36, 42.10, 41.98, 

41.95, 41.86, 40.06, 36.63, 35.69, 32.89, 32.40, 32.32, 28.57, 28.46, 27.90, 27.58, 25.26, 23.68, 23.65, 22.19, 

22.15, 21.99, 13.92, 8.10, 7.04. 

2-((5-((2,4-dimethylphenyl)sulfonyl)-6-oxo-1,6-dihydropyrimidin-2-yl)thio)-N-(2-(trifluoromethyl)phen-

yl)acetamide (11). The compound was synthesized according to a previously described general procedure87 

with some deviations. A solution of 47 (0.12 g, 0.40 mmol, 1.00 equiv), 49 (0.15 g, 0.52 mmol, 1.30 equiv), and 

dry Et3N (0.33 mL, 2.40 mmol, 6.00 equiv) in dry DMF (2.0 mL) was stirred at 80 °C for 1.5 h, until LC-MS 

showed complete reaction. The reaction mixture was then cooled, followed by addition of 2 M HCl (10 mL), 

extraction with EtOAc (3 x 10 mL). The combined organic phases were washed with brine (2 x 10 mL), dried 

over Na2SO4, filtered and concentrated to dryness in vacuo. The crude was purified by flash chromatography 

(heptane:EtOAc, 0–100%) to furnish 11 as a brown solid (0.11 g, 0.22 mmol, 55%). LC-MS: MS (ESI) m/z 498.2 

[M+1]+, tR = 3.17 min. 1H NMR (600 MHz, DMSO-d6) δ 9.92 (s, 1H), 8.45 (s, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.73 (dd, 

J = 7.9, 1.5 Hz, 1H), 7.70–7.62 (m, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.22 (dd, J = 8.1, 1.7 Hz, 

1H), 7.17–7.07 (m, 1H), 4.08 (s, 2H), 2.37 (s, 3H), 2.32 (s, 3H). 13C NMR (151 MHz, DMSO-d6) δ 169.54, 167.12, 

155.58, 143.67, 136.69, 135.15, 135.07, 133.04, 132.64, 130.91, 129.26, 126.60, 126.56, 126.24, 126.20, 

124.38, 122.57, 120.75, 34.42, 20.79, 19.25. 

1-(3-iodophenyl)-4-(3-nitrophenyl)-1H-1,2,3-triazole (12). The compound was synthesized according to 

previously described procedure58 with minor deviations. In a microwave  vial was added a suspension of 58 

(0.040 g, 0.27 mmol, 1.00 equiv) in t-BuOH (1.1 mL). An aq. solution of CuSO4·5H2O (0.54 mL 4.12 mg/mL sol., 

0.0090 mmol, 0.033 equiv), an aq. solution of L-ascorbic acid (0.55 mL 8.7 mg/mL sol., 0.027 mmol, 0.10 equiv), 

and 59 (0.067 g, 0.27 mmol, 1.00 equiv) were then added. The vial was capped and the mixture subjected to 

microwave irradiation at 130 °C for 30 min (pre-stirring for 30 s), until TLC (heptane:EtOAc 1:1, Rf 0.66) showed 

complete reaction.  The reaction mixture was then diluted in water (5 mL), filtered, and the residue further 
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washed with water (2 x 5 mL) and then dried in vacuo. The residual solid on the filter paper/in the microwave 

vial was recovered by dissolution in DCM and the solution concentrated in vacuo to give a solid, which was 

pooled with the filtered crude. The crude was purified by flash chromatography (heptane:EtOAc, 0–40%) to 

furnish 12 as a light yellow powder (0.032 g, 0.082 mmol, 29%). LC-MS: MS (ESI) m/z 393.0 [M+1]+, tR = 

6.38 min. 1H NMR (400 MHz, DMSO-d6) δ 9.64 (s, 1H), 8.74 (t, J = 2.0 Hz, 1H), 8.39 (dt, J = 7.9, 1.2 Hz, 1H), 8.35 

(t, J = 1.9 Hz, 1H), 8.25 (ddd, J = 8.2, 2.4, 1.0 Hz, 1H), 8.03 (ddd, J = 8.1, 2.2, 0.9 Hz, 1H), 7.90 (dt, J = 7.9, 1.2 Hz, 

1H), 7.83 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 148.41, 145.38, 137.52, 

137.30, 131.84, 131.75, 131.34, 130.78, 128.05, 122.88, 121.15, 119.64, 119.33, 95.49. 

2-(3-((3-(5-(Furan-2-yl)-1,3,4-oxadiazol-2-yl)ureido)methyl)phenoxy)acetic acid (14). The compound was 

synthesized according to previously described procedure42 with minor deviations. To a solution of 61 (0.15 g, 

0.83 mmol, 1.34 equiv) and 62 (0.20 g, 0.62 mmol, 1.00 equiv) in MeCN (10 mL) was added DIPEA (0.24 mL, 

1.41 mmol, 2.27 equiv). The reaction mixture was stirred at 60 °C for 16 h, until TLC (DCM:MeOH:AcOH 20:4:1, 

Rf 0.45) showed complete reaction. The reaction mixture was then concentrated to dryness in vacuo. The crude 

was purified by purified by flash chromatography (heptane:EtOAc, 0–20%) to furnish 14 as a white solid (0.10 g, 

0.28 mmol, 31%). LC-MS: MS (ESI) m/z 359.2 [M+1]+, 717.2 [2M+1]+, tR = 2.33 min. 1H NMR (400 MHz, DMSO-

d6) δ 12.97 (s, 1H), 11.04 (s, 1H), 8.01 (d, J = 1.8 Hz, 1H), 7.98 (d, J = 6.0 Hz, 1H), 7.26 (t, J = 7.9 Hz, 1H), 7.18 (d, J 

= 3.5 Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.90 (t, J = 2.1 Hz, 1H), 6.80 (dd, J = 8.2, 2.7 Hz, 1H), 6.77 (dd, J = 3.6, 

1.8 Hz, 1H), 4.66 (s, 2H), 4.39 (d, J = 5.9 Hz, 2H). 13C NM  (101 MHz, DMSO) δ 170.59, 158.65, 158.33, 146.88, 

141.45, 138.87, 129.91, 120.30, 114.14, 113.79, 112.99, 112.92, 64.88, 43.48. 

3-(1H-benzo[d]imidazol-5-yl)-5-(4-fluorophenyl)-1,2,4-oxadiazole (16). The compound was synthesized 

according to a previously described procedure44 with some deviations. To a solution of 4-fluorobenzoic acid 

(0.25 g, 1.60 mmol, 1.00 equiv) in DMF (1.0 mL) was added carbonyldiimidazole (0.26 g, 1.60 mmol, 

1.00 equiv), and the solution was stirred at RT for 24 h. Then 64 (0.29 g, 1.60 mmol assumed, 1.00 equiv) was 

added and the reaction mixture stirred at 155 °C for 72 h, until LC-MS showed complete reaction. The reaction 

mixture was then concentrated in vacuo, redissolved in EtOAc (30 mL) and sat. NaHCO3 (30 mL). The aq. layer 
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was extracted with EtOAc (3 x 30 mL), and the combined organic layers dried over Na2SO4, filtered, and concen-

trated to dryness in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 0–100%) to fur-

nish 16 as a white solid (0.20 g, 0.71 mmol, 45%). LC-MS: MS (ESI) m/z 281.1 [M+1]+, tR = 2.43 min. 1H NMR 

(600 MHz, DMSO-d6) δ 12.77 (s, 1H), 8.40 (s, 1H), 8.38 (s, 1H), 8.32–8.25 (m, 3H), 7.95 (dd, J = 25.3, 8.4 Hz, 1H), 

7.84 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.56–7.48 (m, 2H). 13C NMR (151 MHz, DMSO-d6): 111.08, 

112.59, 116.86 (d, J = 22.4 Hz), 118.35, 119.33, 119.81, 119.99, 120.24 (d, J = 3.3 Hz), 121.33, 130.81 (d, J = 

9.5 Hz), 133.49, 135.65, 143.06, 143.92, 144.38, 145.32, 164.91 (d, J = 252.2 Hz), 168.98, 174.31. NB! The 

spectra are somewhat ambiguous and do not exactly fit with literature,44 which might due to a combination of 

tautomerism and use of different magnetic field strength. Adding TFA to the NMR sample (3.2 vol%) gives 

unambigious spectra: 1H NMR (400 MHz, DMSO-d6) δ 7.50–7.57 (m, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.96 (dd, J = 

8.4, 1.6 Hz, 1H), 8.27– 8.36 (m, 3H), 8.40 (s, 1H), 12.79 (s, 1H). This fits exactly with the literature spectrum.44  

13C NMR (151 MHz, DMSO-d6) δ 175.21, 168.12, 165.35 (d, J = 252.6 Hz), 142.93, 132.97, 131.31, 131.18 (d, J = 

9.6 Hz), 124.95, 124.13, 120.24 (d, J = 3.1 Hz), 117.18 (d, J = 22.6 Hz), 115.99, 113.93. A correct number of non-

equivalent carbons are found. 

6-Phenyl-8H-benzo[g]quinazolino[4,3-b]quinazolin-8-one (17). The compound was synthesized according 

to previously described general procedure.88 A solution of 52 (0.77 g, 1.97 mmol) in acetic anhydride (30 mL) 

was stirred at reflux for 1 h, until TLC (DCM:MeOH 5:1, Rf 1.00) showed complete reaction. The reaction mix-

ture was then cooled to RT before the suspension was filtered and the solid dried to furnish 17 as a yellow solid 

(0.60 g, 1.61 mmol, 82%). LC-MS: MS (ESI) m/z 374.2 [M+1]+, tR = 4.37 min. 1H NMR (400 MHz, DMSO-d6) δ 8.86 

(s, 1H), 8.72 (dd, J = 8.0, 1.5 Hz, 1H), 8.42 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.92–7.85 (m, 

1H), 7.83–7.78 (m, 1H), 7.77–7.69 (m, 2H), 7.69–7.60 (m, 3H), 7.53–7.44 (m, 3H). 13C NMR (151 MHz, DMSO–d6) 

δ 161.14, 150.57, 145.87, 142.58, 142.29, 137.75, 137.20, 134.18, 131.06, 129.91, 129.61, 129.56, 129.15, 

128.98, 128.27, 128.25, 128.03, 127.81, 126.82, 126.07, 124.40, 121.84, 120.57. 

2-((1,2,3,4-Tetrahydroisoquinolin-1-yl)methyl)isoindoline-1,3-dione (23). The compound was synthesized 

in two steps. For step 1, a previously described procedure55 was employed with no deviations. Starting from 2-
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(1,3-dioxoisoindolin-2-yl)acetic acid (4.00 g, 19.5 mmol), 2-((3,4-dihydroisoquinolin-1-yl)methyl)isoindoline-1,3-

dione (23-I1) was obtained as a light yellow solid  (2.6 g, 9.0 mmol, 46%). LC-MS: MS (ESI) m/z 291.3 [M+1]+, tR 

= 1.74 min. For step 2, a previously described procedure55 was employed with minor deviations. To a solution 

of 23-I1 (0.76 g, 2.6 mmol) in MeOH (8 mL) was added 4 M HCl in 1,4-dioxane (0.8 mL), and the mixture was 

stirred at RT for 30 min. The solvents were evaporated in vacuo, the solid obtained was re-dissolved in MeOH 

(5 mL) and treated with NaBH3CN (330.7 mg, 5.3 mmol). The reaction mixture was stirred at RT for 30 min. The 

mixture was then concentrated in vacuo and extracted with EtOAc (2 x 2.5 mL). The organic layers were com-

bined, washed with NaHCO3 (aq.), dried over Na2SO4, and the solvent removed in vacuo. The crude was purified 

by flash chromatography (heptane:EtOAc, 0–100% gradient) to furnish 23 as a white crystalline solid (0.58 g, 

2.0 mmol, 76%). LC-MS: MS (ESI) m/z 293.2 [M+1]+, tR = 1.54 min. 

(1S,2R)-2-(1-((1,3-Dioxoisoindolin-2-yl)methyl)-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)cyclohexane-

1-carboxylic acid (24). The compound was synthesized according to previously described procedure with no 

deviations.55 Starting from 23 (0.041 g, 0.14 mmol), 24 was obtained as a white solid (yield ND). LC-MS: MS 

(ESI) m/z 447.3 [M+1]+, tR = 3.34 min. 

4-nitronaphthalen-1-amine (29). The compound was synthesized according to previously described pro-

cedure22 with no deviations. Starting from 1-nitronaphthalene (6.0 g, 34.6 mmol), 29 was obtained as a golden-

yellow crystalline solid (3.59 g, 19.1 mmol, 55%). LC-MS: MS (ESI) m/z 189.1 [M+1]+, tR = 2.87 min. 1H NMR 

(DMSO-d6) δ 8.90 (d, J = 8.8 Hz, 1H), 8.39 (dd, J = 9.0, 1.9 Hz, 1H), 8.30 (d, J = 8.5 Hz, 1H), 7.74 (ddd, J = 6.8, 5.1, 

3.5 Hz, 1H), 7.61–7.49 (m, 3H), 6.68 (dd, J = 8.9, 1.9 Hz, 1H). 13C NMR (DMSO-d6) δ 153.64, 131.64, 130.37, 

130.34, 127.90, 124.93, 123.52, 123.35, 120.59, 105.29. 

Naphthalene-1,4-diamine (30). The compound was synthesized according to previously described proce-

dure56 with minor deviations. To a solution of 29 (1.37 g, 7.14 mmol) in abs. EtOH (50 mL) was added 5 w/w% 

Pd/C (0.14 g, 10 w/w%). The flask was subjected to three vacuum-nitrogen cycles and then put under hydrogen 

atmosphere (1 atm, balloon). The reaction mixture was stirred under hydrogen for 2 h, until TLC (hep-

tane:EtOAc 1:1, Rf 0.17) showed complete conversion. The reaction mixture was then filtrated through a bed of 
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celite, and the filtrate concentrated in vacuo to furnish 30 as a green-brown crystalline solid. No further purifi-

cation or characterization was performed, and the next step carried out immediately after due to the rapid 

degradation of the diamine. 

1-bromo-4-nitronaphthalene (31). The compound was synthesized according to previously described gen-

eral procedure89 with minor deviations. To a solution of 29 (0.47 g, 2.5 mmol, 1.0 equiv) in MeCN (30 mL) were 

added CuBr2 (10 mg, 0.045 mmol, 0.02 equiv), camphorsulfonic acid (0.70 g, 3.0 mmol, 1.2 equiv), t-BuONO 

(0.36 mL, 3.0 mmol, 1.2 equiv), and TBAB (1.61 g, 5.0 mmol, 2.0 equiv). The reaction mixture was stirred at 60 

°C for 24 h, until TLC (heptane:EtOAc 1:1, Rf 0.82) showed complete reaction. The reaction mixture was then 

concentrated in vacuo, the residue re-dissolved in DCM (40 mL), the solution washed with water (40 mL) and 

sat. brine (40 mL), dried over Na2SO4 and concentrated to dryness in vacuo. The crude was purified by flash 

chromatography (heptane:EtOAc, 0–100% gradient) to furnish 31 as a red-brown solid (0.52 g, 2.1 mmol, 83%). 

1H NMR (400 MHz DMSO-d6) δ 8.38 (dddd, J = 11.3, 5.8, 3.2, 1.9 Hz, 2H), 8.22 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 8.2 

Hz, 1H), 7.95–7.86 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 131.63, 130.44, 129.44, 129.20, 128.55, 127.46, 

125.00, 124.17, 124.12, 123.04. 

(S)-1-(4-nitronaphthalen-1-yl)pyrrolidine-3-carboxylic acid (32). The compound was synthesized accord-

ing to previously described procedure36 with minor deviations. To a pressure vial were added 31 (0.10 g, 0.40 

mmol, 1.0 equiv), K2CO3 (0.16 g, 1.19 mmol, 3.0 equiv), (S)-pyrrolidine-3-carboxylic acid (0.090 g, 0.80 mmol, 

2.0 equiv), CuI (8 mg, 0.040 mmol, 0.1 equiv), and dry DMF (2.5 mL). The vial was capped, subjected to three 

vacuum-argon cycles, and the reaction mixture stirred at 150 °C for 24 h, until LC-MS showed complete reac-

tion. The reaction mixture was then cooled to RT, followed by addition of 1 M HCl (10 mL), extraction with DCM 

(3 x 15 mL), and the combined organic phases washed with sat. brine (10 mL), dried over Na2SO4, filtered, and 

concentrated to dryness in vacuo to furnish 32 as a yellow oil (0.11 g, 0.38 mmol, 96%). LC-MS: MS (ESI) m/z 

285.0 [M-1]-, 571.1 [2M-1]-, tR = 3.63 min. 

(S)-1-(4-aminonaphthalen-1-yl)pyrrolidine-3-carboxylic acid (33). The compound was synthesized accord-

ing to previously described procedure36 with some deviations. A solution of 32 (0.11 g, 0.38 mmol) in 
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MeOH/EtOAc (8 mL, 5:2) was subjected to hydrogenation using an H-Cube Mini PlusTM apparatus with a 10% 

Pd/C catalyst cartridge, pressure set at 2 bar, temperature set to RT, and flow rate set to 1.0 mL/min. LC-MS 

showed complete conversion in the output solution, which was then concentrated to dryness in vacuo to fur-

nish 33 as a yellow oil. LC-MS: MS (ESI) m/z 255.0 [M-1]-, tR = 1.75 min. No further purification or characteriza-

tion was performed, and the next step carried out immediately after due to the rapid degradation of the dia-

mine. 

N,N'-(naphthalene-1,4-diyl)bis(4-ethoxybenzenesulfonamide) (34).  The compound was synthesized ac-

cording to previously described procedure56  with minor deviations. To a solution of 30 (0.32 g, 2.02 mmol, 1.0 

equiv prepared freshly) in DCM (5.0 mL) was added pyridine (1.07 mL, 13.22 mmol, 6.5 equiv) followed by 4-

ethoxybenzenesulfonyl chloride (1.00 g, 4.53 mmol, 2.2 equiv). The reaction mixture was stirred at RT for 

10 min, until TLC (heptane:EtOAc 1:1, Rf 0.30) showed complete reaction. The reaction mixture was then acidi-

fied with 2 M HCl (10 mL), extracted with DCM (2 x 10 mL), the combined organic phases washed with sat. 

brine (2 x 15 mL), dried over Na2SO4, and concentrated to dryness in vacuo. The crude was purified by flash 

chromatography (heptane:EtOAc, 0–70% gradient) to furnish 34 as a pink solid (0.51 g, 0.97 mmol, 48%). 1H 

NMR (DMSO-d6) δ 10.00 (s, 2H), 8.01–7.90 (m, 2H), 7.61–7.48 (m, 4H), 7.39 (dt, J = 6.5, 3.1 Hz, 2H), 7.01 (s, 2H), 

6.98–6.91 (m, 4H), 4.04 (q, J = 7.0 Hz, 4H), 1.30 (t, J = 7.0 Hz, 6H). 13C NMR (DMSO-d6) δ 161.58, 131.21, 131.05, 

130.03, 128.86, 126.03, 123.33, 122.71, 114.52, 63.64, 14.35. 

N,N'-((1Z,4Z)-naphthalene-1,4-diylidene)bis(4-ethoxybenzenesulfonamide) (35). The compound was syn-

thesized according to previously described procedure56 with no deviations. Starting from 34 (0.10 g, 

0.19 mmol), 35 was obtained as a red-brown solid (0.089 g, 0.17 mmol, 89%). 1H NMR (Chloroform-d) δ 8.34 (s, 

2H), 8.24–8.13 (m, 2H), 8.07–7.91 (m, 4H), 7.66–7.54 (m, 2H), 7.08–6.97 (m, 4H), 4.13 (q, J = 7.0 Hz, 4H), 1.46 (t, 

J = 7.0 Hz, 6H). 13C NMR (Chloroform-d) δ 163.16, 161.37, 133.27, 132.88, 132.00, 130.60, 129.90, 126.95, 

114.88, 64.25, 14.76. 

Benzyl 3-oxocyclohexane-1-carboxylate (37). The compound was synthesized in three steps using previ-

ously described procedures39, 90 with some deviations. For step 1, a flask was purged with argon and then cy-
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clohex-2-en-1-one (2.3 mL, 24.0 mmol, 1.0 equiv), 1,4-dioxane (25 mL), and Cs2CO3 (0.039 g, 0.12 mmol, 

0.005 equiv) were added. The flask was charged with a condenser and the system sealed and purged with ar-

gon. Under argon was then added trimethylsilyl cyanide (4.6 mL, 36.0 mmol, 1.5 equiv) and water (1.7 mL, 

96.0 mmol, 4.0 equiv). The reaction mixture was stirred at 100 °C for 2 h, until TLC (heptane:EtOAc 1:1, Rf 0.31) 

showed complete reaction. The reaction mixture was then cooled to RT, followed by addition of excess water 

(25 mL. OBS! Formation of toxic HCN gas), extraction with EtOAc (5 x 50 mL). The combined organic phases 

were washed with sat. brine (50 mL), dried over Na2SO4, filtered, and concentrated to dryness in vacuo. The 

crude was purified by flash chromatography (heptane:EtOAc, 40–55% gradient) to furnish 3-oxocyclohexane-1-

carbonitrile (37-I1) as a slightly yellow oil (2.42 g, 19.6 mmol, 82%). 1H NMR (600 MHz, DMSO-d6) δ 3.38 (tdd, J 

= 8.3, 5.2, 3.9 Hz, 1H), 2.62 (dd, J = 14.5, 5.3 Hz, 1H), 2.54 (dd, J = 14.5, 8.3 Hz, 1H), 2.31 (t, J = 6.7 Hz, 2H), 2.03 

(ddt, J = 12.1, 8.0, 4.0 Hz, 1H), 1.96–1.85 (m, 2H), 1.85–1.76 (m, 1H). 13C NMR (151 MHz, DMSO-d6) δ 206.65, 

121.48, 42.50, 40.13, 27.71, 26.86, 23.16. For step 2, a solution of the 37-I1 (2.42 g, 19.6 mmol, 1.0 equiv) in 

12 M HCl (50.0 mL, 600.0 mmol, 30.6 equiv) was stirred at 80 °C for 45 min, until TLC (heptane:EtOAc:AcOH 

1:1:0.1, Rf 0.21) showed complete reaction. The reaction mixture was then diluted with water (50 mL), extract-

ed with EtOAc (5 x 100 mL), and the combined organic phases dried over Na2SO4, filtered, and concentrated to 

dryness in vacuo. The crude was purified by reverse-phase column chromatography using a C18 column on the 

CombiFlash (buffer A H2O:MeCN:TFA 95:5:0.1, buffer B H2O:MeCN:TFA 5:95:0.1, 0–10% gradient) to furnish 3-

oxocyclohexane-1-carboxylic acid (37-I2) as a white solid (1.24 g, 8.72 mmol, 44%). LC-MS: MS (ESI) m/z 141.1 

[M-1]-, 283.1 [2M-1]-, tR = 1.57 min. 1H NMR (600 MHz, DMSO-d6) δ 3.68 (s, 1H), 2.77 (tq, J = 9.4, 4.9, 4.4 Hz, 

1H), 2.44 (ddd, J = 14.6, 9.7, 1.3 Hz, 1H), 2.35 (ddt, J = 14.6, 5.1, 1.5 Hz, 1H), 2.29 (dddd, J = 15.8, 10.1, 5.8, 

1.3 Hz, 1H), 2.24–2.16 (m, 1H), 2.03–1.93 (m, 1H), 1.91–1.82 (m, 1H), 1.80–1.62 (m, 2H). 13C NMR (151 MHz, 

DMSO-d6) δ 208.89, 175.14, 42.65, 42.09, 40.30, 26.92, 23.58. For step 3, a solution of 37-I2 (1.24 g, 8.72 mmol, 

1.0 equiv) and benzyl bromide (1.14 mL, 9.59 mmol, 1.1 equiv) in dry MeCN (16 mL) was added DBU (1.30 mL, 

8.72 mmol, 1.0 equiv). The reaction mixture stirred at RT for 1 h, until TLC (heptane:EtOAc:AcOH 1:1:0.1, Rf 

0.59) showed complete reaction. The reaction mixture was then concentrated in vacuo, the residue re-
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dissolved in EtOAc (50 mL) and the solution washed with sat. NaHCO3 (30 mL), 1 M HCl (30 mL), and sat. brine 

(30 mL). The organic phase was dried over Na2SO4, filtered, and concentrated to dryness in vacuo. The crude 

was purified by flash chromatography (heptane:EtOAc, 20–40% gradient) to furnish 37 as a colorless oil (1.02 g, 

4.39 mmol, 50%). LC-MS: MS (ESI) m/z 233.1 [M+1]+, 255.1 [M+Na]+, tR = 3.13 min. 1H NMR (400 MHz, DMSO-

d6) δ 7.50–7.21 (m, 5H), 5.20–5.00 (m, 2H), 2.96 (dt, J = 9.4, 4.7 Hz, 1H), 2.52–2.50 (m, 1H), 2.40 (dd, J = 14.7, 

5.2 Hz, 1H), 2.31 (ddd, J = 15.2, 9.7, 5.6 Hz, 1H), 2.26–2.16 (m, 1H), 2.00 (dt, J = 13.2, 4.2 Hz, 1H), 1.91–1.75 (m, 

2H), 1.76–1.60 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 208.43, 173.32, 136.07, 128.42, 127.99, 127.77, 65.70, 

42.38, 41.93, 40.21, 26.83, 23.38. 

Benzyl 3-(((trifluoromethyl)sulfonyl)oxy)cyclohex-2-ene-1-carboxylate (38). The compound was synthe-

sized according the previously described procedure39 with some deviations. To a dry round-bottomed flask was 

added 37 (1.56 g, 6.72 mmol, 1.0 equiv), Tf2NPh (3.12 g, 8.74 mmol, 1.30 equiv), and dry degassed THF (70 mL). 

Under argon and at -78 °C was added dropwise over 10 min a freshly prepared solution of LiHMDS (20.0 mL 

0.44 M solution in hexane, 8.74 mmol, 1.30 equiv). The reaction mixture was stirred and allowed to warm to RT 

in the dry-ice bath over 16 h, until TLC (heptane:EtOAc 1:1, Rf 0.75) showed complete reaction. The reaction 

mixture was then quenched with water (10 mL) and concentrated in vacuo. The residue was re-dissolved in 

DCM (25 mL), washed with water (20 mL), sat. NaHCO3 (2 x 20 mL), sat. brine (20 mL), and the organic phase 

dried over Na2SO4, filtered, and concentrated to dryness in vacuo to yield 38 as a yellowish crystalline solid 

(2.44 g, 6.70 mmol,  quantitative). No further purification or characterization were performed. 

Ethyl 1-(3-bromophenyl)-5-cyclopropyl-1H-pyrazole-4-carboxylate (40). The compound was synthesized 

according to previously described procedure39 with no deviations. Starting from ethyl 3-cyclopropyl-3-

oxopropanoate (1.47 mL, 10.0 mmol, 1.0 equiv), DMF-dimethyl acetal (1.46 mL, 11.0 mmol, 1.1 equiv), and 3-

bromophenylhydrazine·HCl (2.24 g, 10.0 mmol), 40 was obtained as a dark red oil (3.35 g, 10.0 mmol, quantita-

tive). 1H NMR (400 MHz, Chloroform-d) δ 8.00 (s, 1H), 7.73 (t, J = 2.0 Hz, 1H), 7.55 (ddd, J = 8.0, 1.9, 1.1 Hz, 1H), 

7.49 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 2.00–1.90 (m, 1H), 1.37 (t, J = 



48 
 

7.1 Hz, 3H), 1.02–0.92 (m, 2H), 0.68–0.54 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 163.13, 147.52, 142.71, 

140.71, 131.43, 130.22, 128.55, 124.00, 122.47, 114.79, 77.36, 60.25, 14.55, 8.80, 7.43. 

Ethyl 5-cyclopropyl-1-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-pyrazole-4-carboxylate 

(41). The compound was synthesized according to previously described procedure39 with minor deviations. To a 

solution of 40 (3.35 g, 10.0 mmol, 1.0 equiv) in dry degassed 1,4-dioxane (50 mL) were added B2pin2 (2.79 g, 

11.0 mmol, 1.1 equiv), KOAc (1.96 g, 20.0 mmol, 2.0 equiv), and Pd(dppf)Cl2 (0.37 g, 0.50 mmol, 0.05 equiv). 

The reaction mixture was stirred under reflux for 4 h, until LC-MS showed complete reaction. The reaction mix-

ture was then concentrated in vacuo, the residue re-dissolved in EtOAc (50 mL) and the solution washed with 

water (2 x 40 mL) and sat. brine (40 mL), dried over Na2SO4, filtered, and concentrated to dryness in vacuo. The 

crude was purified by flash chromatography (heptane:EtOAc, 20–45% gradient) to furnish 41 as a dark green oil 

(2.90 g, 7.6 mmol, 76%). 1H NMR (400 MHz, DMSO-d6) δ 7.98 (s, 1H), 7.82–7.73 (m, 3H), 7.56 (td, J = 7.4, 1.2 Hz, 

1H), 4.25 (q, J = 7.1 Hz, 2H), 2.08 (tt, J = 8.6, 5.5 Hz, 1H), 1.31 (s, 12H), 0.92–0.77 (m, 3H), 0.53–0.40 (m, 2H). 13C 

NMR on crude (151 MHz, Chloroform-d) δ 163.47, 147.66, 142.67, 142.07, 135.66, 129.22, 125.74, 124.77, 

124.71, 114.77, 84.44, 60.68, 60.32, 25.22, 14.74, 14.41, 8.94, 8.75, 7.73. 

Ethyl 1-(5'-((benzyloxy)carbonyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-3-yl)-5-cyclopropyl-1H-pyrazole-4-

carboxylate (42). This previously unreported compound was synthesized according to previously described 

procedure39 with some deviations. A 50 mL two-necked flask charged with a condenser was purged with argon 

and then added to a solution of 38 (1.71 g, 4.47 mmol, 1.0 equiv), 41 (2.44 g, 6.70 mmol, 1.50 equiv), Na2CO3 

(4.47 mL 3 M aq. solution, 13.4 mmol, 3.0 equiv), and Pd(PPh3)4 (0.39 g, 0.33 mmol, 0.075 equiv) in tolu-

ene/abs. EtOH (26 mL, 10:3). The system was subjected to three vacuum-argon cycles again, and the reaction 

mixture then stirred at reflux under argon (balloon) for 3 h, until LC-MS showed complete reaction. The reac-

tion mixture was then diluted with EtOAc (70 mL), washed with water (1 x 40 mL and 1 x 20 mL), and sat. brine 

(20 mL), dried over Na2SO4, filtered, and concentrated to dryness in vacuo. The crude was purified by flash 

chromatography (heptane:EtOAc, 10–30% gradient) to furnish 42 as a greenish oil (1.44 g, 3.06 mmol, 69%). LC-

MS: MS (ESI) m/z 471.3 [M+1]+, tR = 4.34 min. 
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(cis)-3-(3-(5-cyclopropyl-4-(ethoxycarbonyl)-1H-pyrazol-1-yl)phenyl)cyclohexane-1-carboxylic acid (43). 

This previously unreported compound was synthesized according the previously described procedure39 with 

some deviations. To a solution of 42 (1.44 g, 3.06 mmol) in dry degassed EtOH (75 mL) was added 5% Pd/C 

(0.16 g, 11 w/w%). The flask was sealed and subjected to three vacuum-nitrogen cycles before hydrogen was 

introduced with a balloon. The reaction mixture was stirred under hydrogen (1 atm, balloon) at RT for 24 h, 

until TLC (heptane:EtOAc:AcOH 1:1:0.1, Rf 0.22) showed complete reaction. The reaction mixture was then 

filtered through a bed of celite and the filtrate concentrated to dryness in vacuo to furnish 43 as a slightly yel-

low sticky solid (1.17 g, 3.06 mmol, quantitative). LC-MS: MS (ESI) m/z 383.3 [M+1]+, tR = 3.51 min. 1H NMR 

(400 MHz, DMSO-d6) δ 7.96 (s, 1H), 7.52–7.27 (m, 4H), 4.24 (q, J = 7.1 Hz, 2H), 2.86–2.60 (m, 1H), 2.38 (tt, J = 

11.8, 3.3 Hz, 1H), 2.12 (tt, J = 8.6, 5.4 Hz, 1H), 2.02 (d, J = 12.4 Hz, 1H), 1.93 (d, J = 12.6 Hz, 1H), 1.84 (dt, J = 

16.2, 5.7 Hz, 2H), 1.45 (ddt, J = 34.8, 26.3, 13.2 Hz, 4H), 1.30 (t, J = 7.1 Hz, 3H), 0.93–0.71 (m, 2H), 0.58–0.34 (m, 

2H). 13C NMR (101 MHz, DMSO-d6) δ 176.35, 162.33, 147.78, 146.95, 141.42, 139.18, 128.90, 126.77, 123.64, 

122.90, 113.50, 59.54, 42.73, 42.41, 36.00, 32.80, 28.15, 25.32, 14.27, 8.16, 8.11, 7.03. ROESY (400 MHz, 

DMSO-d6): The observation of a cross-peak between H15 and H19, suggests a 1,3-diaxial relationship and thus a 

cis-configuration of the cyclohexane ring (Supporting Information Figure S1). 

5-((2,4-Dimethylphenyl)thio)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (45). This previously unreported 

compound was synthesized according to a previously described general procedure59 with minor deviations. To 

a solution of NaOH (0.80 g, 20.0 mmol, 1.0 equiv) in MeOH (20 mL) was added 2,4-dimethylbenzenethiol 

(2.71 mL, 20.0 mmol, 1.0 equiv). The reaction mixture was stirred at 80 °C for 1 h, after which the mixture was 

concentrated to dryness in vacuo to furnish the sodium thiolate (OBS! The thiol/thiolate is very foul-smelling). 

To a solution of 5-bromo-1,3-dimethyluracil (1.10 g, 5.0 mmol, 1.0 equiv) in NMP (15 mL) was added sodium 

2,4-dimethylbenzenethiolate (1.60 g, 10.0 mmol, 2.0 equiv, prepared above). The reaction mixture was stirred 

under microwave irradiation at 130 °C for 10 min, until TLC (heptane:EtOAc 1:1, Rf 0.40) showed complete re-

action. The reaction mixture was then acidified with 2 M HCl (15 mL) and extracted with DCM (2 x 20 mL). The 

combined organic phases were washed with sat. brine (20 mL), dried over Na2SO4, filtered, and concentrated to 
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dryness in vacuo. Water (20 mL) was then added to precipitate out the crude product, which was isolated by 

filtration. The crude was purified by purified by flash chromatography (heptane:EtOAc, 0–50%) to furnish 45 as 

a slightly yellow solid (0.86 g, 3.11 mmol, 62%). LC-MS: MS (ESI) m/z 277.2 [M+1]+, tR = 3.13 min. 

5-((2,4-Dimethylphenyl)sulfonyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (46). This previously unre-

ported compound was synthesized according to a previously described general procedure91 with some devia-

tions. To a solution of 45 (0.86 g, 3.11 mmol, 1.00 equiv) in DCM (30 mL) at 0 °C was added dropwise a solution 

of mCPBA (1.61 g, 9.33 mmol, 3.00 equiv) in DCM (15 mL). The reaction mixture was allowed to slowly reach RT 

over 3 h under stirring, until TLC (heptane:EtOAc 1:1, Rf 0.27) showed complete reaction. The reaction mixture 

was then quenched by addition of sat. aq. NaHCO3 (50 mL), and the organic phase washed with sat. aq. NaHCO3 

(50 mL) and 1 M NaOH (50 mL) and then dried over Na2SO4, filtered, and concentrated to dryness in vacuo to 

furnish 46 as a white crystalline solid (0.68 g, 2.21 mmol, 71%). LC-MS: MS (ESI) m/z 309.5 [M+1]+, tR = 

1.99 min. 

5-((2,4-Dimethylphenyl)sulfonyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one (47). The compound was syn-

thesized according to a previously described general procedure60 with some deviations. In a pressure vial 

charged with a freshly prepared NaOEt solution (5.0 mL 0.6 M solution in EtOH, 3.00 mmol, 3.0 equiv) were 

added 46 (0.31 g, 1.00 mmol, 1.0 equiv) and thiourea (0.23 g, 3.00 mmol, 1.0 equiv). The vial was capped, 

purged with argon, and the reaction mixture stirred at 100 °C for 16 h, until LC-MS showed complete reaction. 

The reaction mixture was then added 2 M HCl (~ 5 mL) to precipitate out the crude product, which was isolated 

by filtration and washed with water (10 mL) to furnish 47 as a slight yellow crystalline solid (0.12 g, 0.40 mmol, 

40%). LC-MS: MS (ESI) m/z 297.4 [M+1]+, tR = 1.81 min. 

2-Bromo-N-(2-(trifluoromethyl)phenyl)acetamide (49). The compound was synthesized according to a 

previously described procedure92 with some deviations. A solution of 2-(trifluoromethyl)aniline (0.63 mL, 

5.00 mmol, 1.0 equiv) and dry Et3N (2.09 mL, 15.0 mmol, 3.0 equiv) in dry 1,4-dioxane (10 mL) was purged with 

nitrogen, stirred, and cooled to 0 °C. Under nitrogen and at 0 °C was then dropwise added a solution of 2-

bromoacetyl bromide (1.31 mL, 15.0 mmol, 3.0 equiv) in dry 1,4-dioxane (10 mL). The reaction mixture was 
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stirred at RT for 2 h, until TLC (heptane:EtOAc 1:1, Rf 0.71) showed complete reaction. The reaction mixture 

was then poured into cold water (10 mL) and the resulting precipitate was filtered off, washed with water 

(10 mL), and oven-dried to furnish 49 as a brown solid (1.25 g, 4.43 mmol, 89%). LC-MS: MS (ESI) m/z 282.3, 

284.3 (Br signal) [M+1]+, tR = 2.04 min. 

3-((2-phenylquinazolin-4-yl)amino)-2-naphthoic acid (52). The compound was synthesized according to 

previously described general procedure.93 A solution of 4-chloro-2-phenylquinazoline (0.50 g, 2.1 mmol, 

1.0 equiv) and 3-amino-2-naphthoic acid (0.39 g, 2.1 mmol, 1.0 equiv) in AcOH (40 mL) was stirred at reflux for 

1 h, until TLC (DCM:MeOH 5:1, Rf 0.18) showed complete reaction. The reaction mixture was then cooled to RT 

before the suspension was filtered and the solid dried to furnish 52 as a yellow solid (0.74 g, 1.90 mmol, 91%). 

LC-MS: MS (ESI) m/z 392.2 [M+1]+, tR = 3.71 min. 1H NMR (600 MHz, DMSO-d6) δ 12.35 (s, 1H), 8.99 (s, 1H), 8.79 

(s, 1H), 8.52 (d, J = 8.0 Hz, 1H), 8.40 (d, J = 7.4 Hz, 2H), 8.17 (dd, J = 8.0, 2.9 Hz, 2H), 8.08 (t, J = 7.7 Hz, 1H), 8.04 

(d, J = 8.2 Hz, 1H), 7.86 (t, J = 7.6 Hz, 1H), 7.73 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.67–7.60 (m, 4H). 

5-Bromo-7-methoxy-1-methyl-1H-benzo[d][1,2,3]triazole (53). The compound was synthesized in five 

steps. For step 1, a previously described procedure27 was employed with no deviations. Starting from 2-amino-

3-nitrophenol (10.0 g, 64.9 mmol), 2-methoxy-6-nitroaniline (53-I1) was obtained as an orange solid (9.73 g, 

57.8 mmol, 89%). 1H NMR (600 MHz, Chloroform-d) δ 7.73 (dd, J = 8.9, 1.3 Hz, 1H), 6.88 (dd, J = 7.7, 1.2 Hz, 1H), 

6.61 (dd, J = 8.9, 7.8 Hz, 1H), 6.43 (s, 2H), 3.92 (s, 3H). 13C NMR (151 MHz, Chloroform-d) δ 148.30, 137.20, 

131.83, 117.52, 114.72, 113.44, 56.40. For step 2, a previously described procedure27 was employed with no 

deviations. Starting from 53-I1 (9.73 g, 57.8 mmol), 4-bromo-2-methoxy-6-nitroaniline (53-I2) was obtained as 

an orange solid (12.64 g, 51.2 mmol, 88%). 1H NMR (600 MHz, DMSO-d6) δ 7.71 (d, J = 2.1 Hz, 1H), 7.24 (s, 2H), 

7.20 (d, J = 2.1 Hz, 1H), 3.91 (s, 3H). For step 3, a previously described procedure27 was employed with no devi-

ations. Starting from 53-I2 (12.64 g, 51.2 mmol), 4-bromo-2-methoxy-N-methyl-6-nitroaniline (53-I3) was ob-

tained as an orange solid (8.67 g, 33.2 mmol, 65%). 1H NMR (400 MHz, DMSO-d6) δ 7.59 (d, J = 2.2 Hz, 1H), 7.23 

(s, 3H), 7.18 (d, J = 2.3 Hz, 1H), 3.91 (s, 2H), 3.87 (s, 3H), 2.86 (d, J = 5.4 Hz, 3H). For step 4, a previously de-

scribed procedure27 was employed with minor deviations. To a solution of 53-I3 (1.30 g, 5.0 mmol, 1.0 equiv) in 
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EtOH (25 mL) was added SnCl2.2H2O (4.49 g, 19.9 mmol, 4.0 equiv) and the reaction mixture was stirred at 75 °C 

for 2 h. Then the mixture was adjusted to pH 14 using 40% aq. NaOH, followed by addition of  water (150 mL), 

and extraction with EtOAc (3 x 100 mL). The combined organic layers were dried over Na2SO4 and concentrated 

in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 0–100% gradient) to furnish 4-

bromo-6-methoxy-N1-methylbenzene-1,2-diamine (53-I4) as an yellow solid (1.03 g, 4.6 mmol, 90%). 1H NMR 

(400 MHz, Chloroform-d) δ 6.54 (d, J = 2.0 Hz, 1H), 6.45 (d, J = 2.0 Hz, 1H), 4.11 (d, J = 67.7 Hz, 2H), 3.81 (s, 3H), 

2.70 (s, 3H), 0.07 (s, 3H). For step 5, a previously described procedure27 was followed with no deviations. Start-

ing from 53-I4 (1.03 g, 4.5 mmol), 53 was obtained as a brown solid (0.89 g, 3.7 mmol, 83%). 1H NMR (600 MHz, 

Chloroform-d) δ 7.76 (d, J = 1.3 Hz, 1H), 6.85 (d, J = 1.3 Hz, 1H), 4.44 (s, 3H), 3.99 (s, 3H). 

Methyl (E)-3-(7-methoxy-1-methyl-1H-benzo[d][1,2,3]triazol-5-yl)acrylate (54). The compound was syn-

thesized according to previously described procedure27 with minor deviations. To a solution of 53 (0.89 g, 

3.7 mmol, 1.0 equiv) in dry DMF (5 mL), methyl acrylate (1.66 mL, 18.4 mmol, 5.0 equiv),  DIPEA (1.59 mL, 

9.2 mmol, 2.5 equiv), and tri-o-phosphine (0.22 g, 0.74 mmol, 0.2 equiv) were added. Then Pd(OAc)2 (0.08 g, 

0.37 mmol, 0.1 equiv) was added. The reaction mixture was stirred at 95 °C for 4 h under an atmosphere of 

nitrogen. The reaction mixture was then poured into water (10 mL) and extracted with EtOAc (2 x 15 mL). The 

resulting organic phase was concentrated in vacuo. The crude was purified by flash chromatography (hep-

tane:EtOAc, 0–100% gradient) to furnish 54 as a brown solid (0.31 g, 1.25 mmol, 32%). 1H NMR (400 MHz, Chlo-

roform-d) δ 7.84–7.68 (m, 2H), 6.91 (d, J = 1.1 Hz, 1H), 6.45 (d, J = 15.9 Hz, 1H), 4.46 (s, 3H), 4.02 (s, 3H), 3.83 (s, 

3H). 

Methyl 3-(3-(hydroxymethyl)-4-methylphenyl)-3-(7-methoxy-1-methyl-1H-benzo[d][1,2,3]triazol-5-

yl)propanoate (55). The compound was synthesized according to previously described procedure27 with no 

deviations. Starting from 54 (0.15 g, 0.61 mmol), 55 was obtained as a white solid (0.10 g, 0.27 mmol, 46%). 1H 

NMR (400 MHz, Chloroform-d) δ 7.48 (s, 1H), 7.24 (s, 1H), 7.10 (d, J = 1.3 Hz, 2H), 6.62–6.54 (m, 1H), 4.67–4.63 

(m, 3H), 4.41 (s, 3H), 4.12 (q, J = 7.2 Hz, 1H), 3.91 (s, 3H), 3.11 (qd, J = 15.7, 7.8 Hz, 2H), 2.30 (s, 3H). 
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(R)-2-Fluoro-N-(2-hydroxypropyl)benzenesulfonamide (56). The compound was synthesized according to 

previously described procedure27 with minor deviations. To a solution of (R)-1-aminopropan-2-ol (0.2 g, 

2.7 mmol, 1.0 equiv) in THF/water (1:1, 15 mL) was slowly added K2CO3 (0.1 g, 2.7 mmol, 1.0 equiv) and then 2-

fluorobenzenesulfonyl chloride (0.88 mL, 2.7 mmol, 1.0 equiv). The reaction mixture was stirred at RT for 66 h. 

The reaction mixture was then diluted with water (15 mL), extracted with EtOAc (3 x 15 mL), and the combined 

organic layers washed with brine (20 mL), dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

was purified by flash chromatography (heptane:EtOAc, 0–100% gradient) to furnish 56 as a red oil (0.66 g, 

2.8 mmol, quantitative). 1H NMR (600 MHz, Chloroform-d) δ 7.91 (td, J = 7.5, 1.8 Hz, 1H), 7.63–7.55 (m, 1H), 

7.29 (td, J = 7.7, 1.1 Hz, 1H), 7.22 (ddd, J = 10.3, 8.3, 1.1 Hz, 1H), 5.19 (s, 1H), 3.94 (d, J = 8.0 Hz, 1H), 3.13 (d, J = 

12.9 Hz, 1H), 2.88–2.80 (m, 1H), 1.89 (s, 1H), 1.18 (d, J = 6.3 Hz, 3H). 

(R)-4-Methyl-3,4-dihydro-2H-benzo[b][1,4,5]oxathiazepine 1,1-dioxide (57). The compound was synthe-

sized according to previously described procedure27 with no deviations. Starting from 56 (0.66 g, 2.8 mmol), 57 

was obtained as a white solid (0.59 g, 2.8 mmol, quantitative). LC-MS: MS (ESI) m/z 236.0 [M+1]+. 1H NMR 

(400 MHz, Chloroform-d) δ 7.84 (dd, J = 7.8, 1.7 Hz, 1H), 7.46 (td, J = 7.8, 1.7 Hz, 1H), 7.23–7.12 (m, 2H), 4.68 (s, 

1H), 4.22–4.10 (m, 1H), 3.63 (dt, J = 15.0, 9.2 Hz, 1H), 3.42 (ddd, J = 15.1, 5.2, 2.2 Hz, 1H), 1.40 (d, J = 6.4 Hz, 

3H). 

1-ethynyl-3-nitrobenzene (58). The compound was synthesized in two steps according to previously de-

scribed procedure58 with some deviations. For step 1, a solution of 1-iodo-3-nitrobenzene (2.47 g, 9.90 mmol, 

1.0 equiv) in dry DMF (5.0 mL) and dry Et3N (10.0 mL) was degassed by bubbling through with nitrogen for 

20 min in a microwave vial. Then CuI (0.0075 g, 0.040 mmol, 0.004 equiv), Pd(PPh3)4 (0.13 g, 0.11 mmol, 

0.011 equiv), and TMS-acetylene (1.52 mL, 10.99 mmol, 1.11 equiv) were added. The vial was capped, subject-

ed to three vacuum-nitrogen cycles, and then subjected to microwave irradiation at 120 °C for 1 h (pre-stirring 

for 30 s), until TLC (heptane:EtOAc 1:1, Rf 0.87) showed complete reaction. The reaction mixture was then 

poured into aq. 1 M HCl (50 mL) and extracted with DCM (2 x 30 mL). The combined organic phases were 

washed with aq. 1 M HCl (50 mL) and sat. brine (50 mL), dried over Na2SO4, filtered, and concentrated to dry-
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ness in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 0–40%) to furnish trimethyl((3-

nitrophenyl)ethynyl)silane (58-I1) as a golden-brown oil (0.53 g, 2.42 mmol, 24%). 1H NMR (400 MHz, Chloro-

form-d) δ 8.30 (t, J = 1.9 Hz, 1H), 8.16 (ddd, J = 8.3, 2.3, 1.1 Hz, 1H), 7.75 (dt, J = 7.7, 1.3 Hz, 1H), 7.48 (t, J = 

8.0 Hz, 1H), 0.27 (s, 9H). 13C NMR (101 MHz, Chloroform-d) δ 148.18, 137.68, 129.37, 126.94, 125.14, 123.27, 

102.30, 97.79, -0.11. For step 2, to a solution of 58-I1 (0.53 g, 2.42 mmol, 1.0 equiv) in MeOH (25.0 mL) was 

added K2CO3 (0.60 g, 4.36 mmol, 1.80 equiv). The solution was stirred under nitrogen at RT for 22 h, until TLC 

(heptane:EtOAc 1:1, Rf 0.77) showed complete reaction. The reaction mixture was then concentrated in vacuo, 

the residue re-dissolved in EtOAc (15 mL), and the solution washed with water (10 mL), sat. brine (10 mL), dried 

over Na2SO4, filtered, and concentrated to dryness in vacuo to furnish 58 as a dark-brown oil (0.35 g, 

2.38 mmol, 97%). 1H NMR (400 MHz, Chloroform-d) δ 8.34 (t, J = 1.9 Hz, 1H), 8.20 (ddd, J = 8.3, 2.3, 1.1 Hz, 1H), 

7.79 (dt, J = 7.7, 1.3 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 3.22 (s, 1H). 13C NMR (101 MHz, Chloroform-d) δ 148.25, 

137.92, 129.54, 127.15, 124.09, 123.73, 81.25, 80.05. 

1-azido-3-iodobenzene (59). The compound was synthesized according to previously described proce-

dure58 with no deviations. Starting from 3-iodoaniline (0.275 mL, 2.28 mmol), 59 was obtained as a golden-

brown non-viscous oil (0.49 g, 2.00 mmol, 88%).  1H NMR (600 MHz, DMSO-d6) δ 7.55 (dt, J = 7.7, 1.3 Hz, 1H), 

7.46 (t, J = 1.9 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.14 (ddd, J = 8.1, 2.2, 1.1 Hz, 1H). 13C NMR (151 MHz, DMSO-d6) 

δ 140.94, 133.76, 131.67, 127.40, 118.69, 95.46. 

Ethyl 2-(3-cyanophenoxy)acetate (60). The compound was synthesized according to the previously de-

scribed procedure42 with some deviations. To a solution of 3-hydroxybenzonitrile (1.43 g, 12.0 mmol, 

1.00 equiv) in acetone (30 mL) were added K2CO3 (2.49 g, 18.0 mmol, 1.50 equiv) and ethyl 2-bromoacetate 

(1.86 mL, 16.8 mmol, 1.40 equiv). The reaction mixture was stirred at reflux for 2 h, until TLC (DCM:MeOH 20:1, 

Rf 0.96) showed complete reaction. The reaction mixture was then filtered, and the filtrate concentrated to 

dryness in vacuo. The crude was purified by flash chromatography (heptane:EtOAc, 5–25% gradient) to furnish 

60 as a colorless oil (1.00 g, 4.88 mmol, 41%). 1H NMR (600 MHz, DMSO-d6) δ 7.50 (dd, J = 8.4, 7.6 Hz, 1H), 

7.48–7.42 (m, 2H), 7.31 (ddd, J = 8.4, 2.8, 1.0 Hz, 1H), 4.89 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 1.22 (t, J = 7.1 Hz, 
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4H). 13C NM  (151 MHz, DMSO) δ 168.74, 158.26, 131.32, 125.62, 120.84, 118.98, 118.11, 112.67, 65.27, 61.24, 

14.47. 

2-(3-(Aminomethyl)phenoxy)acetic acid (61). The compound was synthesized in two steps according to 

previously described procedure42 with no deviations. For step 1, starting from 60 (2.18 g, 10.6 mmol, 

1.00 equiv), 2-(3-cyanophenoxy)acetic acid (61-I1) was obtained as a white solid (1.50 g, 8.50 mmol, 80%). 1H 

NMR (600 MHz, DMSO-d6) δ 13.17–13.00 (m, 1H), 7.52–7.47 (m, 1H), 7.45–7.40 (m, 2H), 7.29 (ddd, J = 8.4, 2.5, 

1.2 Hz, 1H), 4.79 (s, 2H). 13C NM  (151 MHz, DMSO) δ 170.18, 158.40, 131.29, 125.40, 120.77, 119.03, 118.05, 

112.61, 65.09. For step 2, starting from 61-I1 (1.00 g, 5.64 mmol), 61 was obtained as a white solid (0.92 g, 5.08 

mmol, 90%). 1H NMR (400 MHz, Methanol-d4) δ 7.22 (t, J = 7.8 Hz, 1H), 6.94–6.81 (m, 3H), 4.32 (s, 2H), 3.95 (s, 

2H). 

2,2,2-Trichloroethyl (5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)carbamate (62). The compound was synthesized 

according to previously described procedure42 with no deviations. Starting from 5-(furan-2-yl)-1,3,4-oxadiazol-

2-amine (0.50 g, 3.31 mmol, 1.00 equiv) and 2,2,2-trichloroethyl carbonochloridate (0.45 mL, 3.49 mmol, 

1.05 equiv), 62 was obtained as a white solid (0.28 g, 0.86 mmol, 26%). LC-MS: MS (ESI) m/z 326.3, 328.3, 

330.3, 332.5 [M+1]+ (due to Cl isotopes), tR = 2.08. 1H NMR (600 MHz, DMSO-d6) δ 12.30 (s, 1H), 8.03 (d, J = 

1.7 Hz, 1H), 7.24 (d, J = 3.5 Hz, 1H), 6.78 (dd, J = 3.5, 1.8 Hz, 1H), 5.02 (s, 2H). 

1H-benzo[d]imidazole-5-carbonitrile (63). The compound was synthesized according to a previously de-

scribed procedure44 with no deviations. Starting from 3,4-diaminobenzonitrile (0.13 g, 1.00 mmol), 63 was ob-

tained (0.12 g, 0.85 mmol, 85%). LC-MS: MS (ESI) m/z 144.2 [M+1]+, tR = 1.37 min. 

N-hydroxy-1H-benzo[d]imidazole-5-carboximidamide (64). The compound was synthesized according to 

a previously described procedure44 with some deviations. To a solution of 63 (0.38 g, 2.65 mmol, 1.00 equiv) in 

abs. EtOH (50 mL) was added a solution of NH2OH (0.44 mL of 50 w/w% aq. solution, 5.31 mmol, 2.00 equiv). 

The reaction mixture was stirred at reflux for 72 h, until LC-MS showed complete reaction. The reaction mix-

ture was then concentrated to dryness in vacuo to furnish 64, used for further synthesis without purification. 

LC-MS: MS (ESI) m/z 177.3 [M+1]+, tR = 0.48 min. 
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Expression and purification of the Keap1 Kelch domain. The recombinant His-tagged human Kelch do-

main (residue 321-609, UniProt Q14145) was cloned into a pRSET A and expressed in E. coli BL21 (DE3) pLysS. 

Keap1 was grown in a pre-culture of 50 mL LB media supplemented with 1% glucose and 100 µg/mL ampicillin 

overnight (ON) at 37 ˚C to an approximate OD600 of ~1.0. The pre-culture was transferred to 1 L LB-medium 

supplemented with 1% glucose and 100 µg/mL ampicillin and grown at 37 ˚C /180 rpm to an approximate OD600 

of ~0.5, before induction with isopropyl β-D-1-thiogalactopyranoside (IPTG) (final concentration of 0.5-1 mM) 

ON at 15 ˚C/180 rpm. Cells were harvested by centrifugation at 4,000 x g for 30 min. The cells were re-

suspended in lysis buffer (50 mM HEPES pH 7.5, cOmplete™ Protease Inhibitor Cocktail (1 tablet/50 mL of buff-

er), 25 µg/mL DNase, 40 mM Mg2SO4, 150 mM NaCl, 5 mM imidazole, 5% glycerol, 0.5% TritonX-100, 3 mM 

DTT, 1 mg/mL Lysozyme) and lysed using a cell disruptor at 26 KPsi in 4 ˚C. The cell lysate was spun down at 

35,000 x g for 1 h at 4 ˚C. The supernatant was filtered on a 0.45 µm filter and loaded onto a 5 mL HisTrap HP 

column (GE Healthcare). The column was washed with 5 column volumes of HisTrap binding buffer (50 mM 

HEPES pH 7.5, 150 mM NaCl, 10 mM imidazole, 3 mM DTT) followed by eluting the protein using a gradient of 

HisTrap elution buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 1 M imidazole, 3 mM DTT). The protein was eluted 

between 5 and 10% elution buffer and concentrated to 5 mL. The protein was loaded onto a Superdex 75 

16/600 column (GE Healthcare), equilibrated with SEC buffer (25 mM HEPES pH 7.5, 150 mM NaCl, 1 mM TCEP) 

with a flow rate at 1 mL/min, and was eluted at 65 mL. Protein was concentrated to 12 mg/mL and stored at -

80 °C. The protein was analyzed on SDS page for purity, and the concentration was measured by absorbance 

(Nanodrop) using a molar extinction coefficient calculated based on amino acid sequence. The exact molecular 

weight of purified Keap1 was confirmed by LC-MS.  

 

Peptides and fluorescent peptide probes. Peptides 1 (LDEETGEFL-OH), 2 (Ac-LDEETGEFL-OH), and the 

FITC-Nrf2 peptide probe (FITC-β-DEETGEF-OH; β = beta-alanine) were purchased from Biomatik (Canada). The 

FAM-Nrf2 (5(6)-FAM-LDEETGEFL-NH2) and Cy5-Nrf2 (Cy5-LDEETGEFL-NH2) peptide probes were synthesized in-

house by solid-phase peptide synthesis as previously described,94-96 starting from a Rink amide MBHA resin 
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preloaded with Fmoc-Leu. The FAM-Nrf2 probe was generated by coupling 5(6)-carboxyfluorescein (5(6)-FAM) 

to the N-terminal amino group of the Fmoc-deprotected and resin-attached LDEETGEFL peptide using HATU as 

coupling reagent and collidine as base (resin/FAM/HATU/collidine: 0.25/0.5/0.5/0.75 mmol; in 2 mL DMF), 

followed by cleavage from the resin by treatment with trifluoroacetic acid (TFA)/water/triisopropylsilane (TIPS) 

(90/5/5) for 2 h, evaporation in vacuo, cold ether precipitation, and HPLC purification. The Cy5-Nrf2 probe was 

synthesized by coupling Sulfo-Cy5-NHS ester (Lumiprobe, Germany) to the N-terminal amino group of the pep-

tide LDEETGEFL-NH2 in solution followed by HPLC purification. The reaction was performed in a 1:1.15 molar 

ratio of peptide (1.29 mg) and dye in PBS buffer (pH 8.4) with 10% DMSO for 3 h at room temperature. All final 

peptides (both purchased and in-house synthesized) were characterized for purity (> 98%) by LC-MS (mass, 

UV214, UV254, ELS). 

 

Fluorescence polarization (FP) assay. The binding affinities between fluorescent peptide probes (Cy5-

Nrf2, FAM-Nrf2, FITC-Nrf2) and the Keap1 Kelch domain were determined as Kd values by saturation binding 

experiments, where increasing concentrations of Keap1 Kelch (0-300 nM) were added to a fixed concentration 

of peptide probe (3 nM). The assay was performed in a 1×HBSTET buffer (10 mM HEPES, 150 mM NaCl, 0.005% 

Tween20, 3 mM EDTA, 1 mM TCEP, pH = 7.4) using black flat-bottom 384-well plates (Corning Life Sciences, 

NY), a volume of 30 μL/well, and a final DMSO concentration of 4% or 8%. The assay plate was spun-down to 

ascertain proper mixing and removal of potential air bubbles and incubated for 10-15 min at room temperature 

before measuring the FP levels on a Safire2 plate-reader (Tecan, Männedorf, Switzerland). The g-factor was 

adjusted at each experiment so that a series of three blank wells containing probe but no Keap1 Kelch defined 

the baseline FP value. The Cy5-Nrf2, FAM-Nrf2, and FITC-Nrf2 probes were measured at excitation/emission 

values of 635/670 nm, 470/525 nm, and 470/535 nm, respectively. The FP values were fitted to the one-site 

specific binding equation: Y = Bmax × X/(Kd + X), with Bmax being the maximal FP value, X the Keap1 Kelch con-

centration, and Y the variable FP values. The Kd values were derived from the resulting binding saturation curve 

as being equal to the Keap1 Kelch concentration, where the curve is half-saturated. The affinities between non-
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fluorescent Keap1 inhibitors (small-molecules and peptides) and Keap1 Kelch were determined as Ki values in a 

heterologous competition FP binding assay. This was done by adding increasing concentration of test com-

pound (2-fold serial dilutions, 12 concentrations tested per inhibition curve as duplicates) to a fixed concentra-

tion of Keap1 Kelch (14 nM when tested with the Cy5/FAM probes; 50 nM when tested with the FITC probe) 

and peptide probe (3 nM) in the same HBSTET buffer and conditions as described above (final DMSO concen-

trations were 4% and 8%, when testing compounds 1–11 and 12–21, respectively). In the counter tests for ag-

gregation, Tween20 was either omitted from the assay buffer or replaced with 0.01%, 0.02%, or 0.05% Triton 

X-100. FP values were fitted to the equation Y = Bottom + (Top - Bottom)/[1 + (10HillSlope*(LogIC50-X))], where X is 

the logarithmic value of compound concentration. Hereby, the IC50 value was obtained, which together with 

the Kd value and probe and Keap1 Kelch concentrations was used to calculate the theoretical competitive inhi-

bition constant, the Ki value.65 All Kd and Ki values are shown as mean ± SEM (standard error of mean) and are 

based on at least three individual measurements. 

 

Thermal Shift Assay (TSA). Melting curves of Keap1 with and without the presence of compounds were 

determined by TSA using the Sypro Orange dye (Life Technologies), a Stratagene Mx3005P RT-PCR apparatus 

(Agilent Technologies, Waldbronn, Germany), and clear non-skirted 96-well PCR-plates. Keap1 Kelch (final con-

centration: 0.1 mg/mL; 3 μM) and Sypro Orange (final concentration: 8x) were mixed with compounds tested in 

9 concentrations as 2-fold dilutions in assay buffer (10 mM HEPES, 150 mM NaCl, 0.005% Tween20, 3 mM 

EDTA, 1 mM TCEP, pH = 7.4), constant DMSO concentration of 4% (compounds 1–11) or 8% (compounds 12–

21), and final sample volume of 25 µL/well. Each compound was tested in duplicates in three to four independ-

ent experiments. On each plate, 12 wells of DMSO blanks and 12 wells of positive controls were included for 

reference. The plates were sealed and spun-down for 2 minutes at 500 x g, and measured from 25–95 °C in 70 

cycles with a 1 °C temperature increase per minute and fluorescence intensities measured at each cycle. The 

sigmoidal plot of the normalized fluorescence intensity values versus temperature were fitted to the Boltz-

mann equation Y = Bottom + (Top-Bottom)/(1+exp((Tm-X)/Slope)), where X is temperature in °C, whereby the 
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melting temperature (Tm), where 50% of protein is denatured, was determined. The difference in Tm (∆Tm) of 

each compound concentration compared to DMSO blanks were plotted as dose-response curves and fitted to 

the equation ∆Tm = ∆Tm-max × X/(EC50 + X), with ∆Tm-max being the maximal obtained Tm and X the compound 

concentration. The EC50 values were then derived from the resulting curve as being equal to the compound 

concentration resulting in a ∆Tm half that of ∆Tm-max. 

 

Surface plasmon resonance (SPR). SPR measurements were performed at 25 °C using a Pioneer FE in-

strument (PALL FortéBio). The Keap1 Kelch domain was covalently immobilized on biosensor chips by amine 

coupling up to a level between 4190-4300 RU, using a 10 mM NaOAc pH 5 immobilization buffer. A HBS-EP 

running buffer (20 mM HEPES, 300 mM NaCl, 1 mM EDTA, 0.005% Tween 20, 1 mM TCEP) supplemented with 

either 2% or 4% DMSO was used for the experiments. Micro calibration (low limit 1.5% or 3.5% and high limit 

3% or 4.5%, respectively) was performed for all SPR experiments to adjust for DMSO bulk effects. The com-

pounds were injected in 7–8 concentrations (two-fold serial dilution) or in a gradient using the OneStep injec-

tion at 30 µL/min flow rate over immobilized Keap1. When required (compounds binding with slow off rate), 

the surface was regenerated after each analyte injection using 1 M NaCl. The data were analyzed using Qdat 

Data Analysis Tool version 2.6.3.0 (PALL FortéBio). The sensorgrams were corrected for buffer effects and un-

specific binding to the chip matrix by subtraction of blank and reference surface (a blank flow cell channel acti-

vated by injection of EDC/NHS and inactivated by injection of ethanolamine). The dissociation constants (Kd) 

were estimated either by plotting responses at equilibrium (Req) against the injected concentration and curve 

fitted to a Langmuir (1:1) binding isotherm or by kinetic global fit of SPR sensorgrams to a simple 1:1 interac-

tion model. 

 

NAD(P)H quinone oxidoreductase 1 (NQO1 activity) in Hepa1c1c7 cells. Hepa1c1c7 cells (ECACC 

95090613) were seeded in tissue-culture coated 96-well plates at a density of 1.0 × 104 cells/well in 200 L 

culture medium consisting of minimum essential medium eagle—alpha modification (without nucleosides) 
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supplemented with 2 mM glutamine, 10% fetal bovine serum, 100 units/mL of penicillin and 100 g/mL of 

streptomycin. The cells were grown for 24 h in a humidified incubator at 37 C, 5% CO2. Compounds to be test-

ed as inducers were diluted into the culture medium in three different concentrations (1, 5, and 10 M) so that 

the final DMSO concentration was 0.1% (compounds 2–11, 14–16, 20, 21), 0.13% (compounds 1, 12, 13), 1.0% 

(compounds 17 and 19), and 1.4% (compound 18). The cells were then incubated for an additional 24 h. All 

compounds were tested in duplicates in four to seven independent experiments. Each plate included non-

enzymatic blanks and at least 8 control wells with cells fed with media containing indicated doses of DMSO. 

The compounds were evaluated along with the prototype Nrf2 inducing agent sulforaphane (SFN) as a positive 

control reference.40, 97 After the plates were exposed to test compounds, the culture medium was removed and 

the cells lysed by agitation on an orbital shaker (100 rpm) for 15 min at 25 C with 50 L per well of lysis buffer 

containing 0.1% Tween 20 in 2 mM EDTA, pH 7.5. Then, a complete enzyme reaction mixture was prepared 

with 25 mM Tris-HCl (pH 7.5), bovine serum albumin (0.067%), Tween 20 (0.01%), flavine adenine dinucleotide 

(5 M), glucose-6-phosphate (1 mM), NADP (30 M), MTT (0.03%), menadione (50 M), glucose-6-phosphate 

dehydrogenase (300 units) and water to a final volume of 150 mL, after which 200 l/well of the enzyme reac-

tion mixture was added. The reaction was arrested after 5 min at 25 C by the addition of 40 L/well stop solu-

tion (10% SDS). The plates were shaken for 5 s before the absorbance was monitored at 595 nm using a Safire2 

plate-reader (Tecan, Männedorf, Switzerland). The average absorbance values of the non-enzymatic blank (ly-

sis buffer, enzyme reaction mixture and stop solution) were subtracted from all other absorbance readings. 

Data for the untreated DMSO control were normalized as 1, and NQO1 activity induction (compound treat-

ed/DMSO control) was calculated. The presented results are expressed as the ratio of the NQO1 activity in cells 

from treated over positive control (SFN 10 M) wells.  

 

Covalent reactivity assay. Compounds were tested for reactivity towards GSH following a previously de-

scribed protocol.75 The compound stocks (1.0 equiv) were incubated at room temperature with GSH (2.0 equiv) 

in assay buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, pH = 7.4) with and without 1 mM TCEP. Final com-
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pound concentrations were 500 µM and incubation times were 10–30 min before analysis by UPLC-MS. UPLC-

MS spectra were obtained with a Waters ACQUITY QDa single quadrupole mass detector using ESI coupled to a 

Waters ACQUITY H-class UPLC system with a C18 reverse phase column (Acquity UPLC BEH C18, 2.1 mm × 

50 mm, 1.7 µm), a Sample Manager FTN and a TUV dual wavelength detector, using a linear gradient of the 

binary solvent system of buffer A (milliQ H2O:MeCN:formic acid, 95:5:0.1 v/v%) to buffer B (MeCN:formic acid, 

100:0.1 v/v%) from 0 to 100% B in 3.5 min, then 1 min at 100% B, maintaining a flow rate of 0.8 mL⁄min. Sam-

ple injection volume was 1 uL. The samples were monitored by TIC and UV. The spectra were analyzed using 

the Waters OpenLynx browser ver. 4.1. 

Compounds were tested for reactivity towards the Keap1 Kelch domain using a similar protocol. The com-

pound stocks (400 equiv) were incubated at room temperature with the Kelch domain (1.0 equiv) in the same 

assay buffer with 1 mM TCEP. Final compound concentrations were 800 µM. Compounds that showed reactivi-

ty or which significantly overlapped with protein signals in the LC-MS spectrum were also tested in 1, 10, and 

100 equiv (2, 20, and 200 µM). Incubation times were 1–3 h before analysis by LC-MS. LC-MS spectra were ob-

tained with the LC-MS system described above but here using a Poroshell C18 reverse phase column (Agilent, 

Poroshell, 300SB-C18, 2.1×75 mm) and a linear  gradient of the binary solvent system from 0 to 60% B over 

6 min. The samples were monitored by TIC, UV, and ELS. The spectra were analyzed using the Agilent Mas-

sHunter Qualitative Analysis software version B.01.03 and the protein mass spectra deconvoluted using the 

Agilent MassHunter Protein Deconvolution Software plugin.  

 

Redox activity assay. The assay was performed as described by Johnston et al.,81 except that 96-well 

plates and a final volume of 120 µL/well were used here. Compounds were tested as 2-fold serial dilutions (12 

concentrations) and a final constant DMSO concentration of 4% (compounds 1–11) or 8% (12–21). Hydrogen 

peroxide (31–1000 µM) and 3-methyltoxoflavin (0.2–400 µM) were used as positive controls. Hank’s Balanced 

Salt Solution (HBSS) from Sigma-Aldrich (cat# H9269) was used as assay buffer. After preparing the compound 

dilutions in HBSS supplemented with DMSO (40 µL/well), 40 µL of a HBSS containing 3 mM TCEP was added to 
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each well, followed by 15 min incubation at room temperature. Detection reagent was prepared by dissolving 

6 mg phenol red and 3.6 mg horseradish peroxidase (Sigma-Aldrich, cat# P2088-5KU) with 20 mL HBSS, and 

40 µL was added to each well followed by 45 min incubation at room temperature and assay quenching by 

addition of 10 µL NaOH (1 M) per well. Absorbance was measured at 610 nm using the Safire2 plate-reader. 

Absorbance values from blank wells (i.e. wells without redox-active compounds, but subjected to the protocol) 

were subtracted from the compounds’ absorbance values. For active compounds, a control test was done by 

omitting TCEP from the protocol and subtracting the resulting values from a parallel experiment with TCEP to 

account for potential background absorbance from compounds at 610 nm.  
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