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Highlights 

 The protonation effect on the excited state dynamics is investigated 

 Two pyrimidine chromophores, bearing the A-(π-D)2 and A-(π-D)3 structure, are used  

 Time resolved fluorescence spectroscopy (fs and ns) is employed 

 Protonation using three different acids, CSA, TFA and AcOH is studied 

 The dynamics of the neutral chromophores become faster upon protonation with AcOH 

 

Abstract 

The effect of protonation on the photophysics and especially on the excited state dynamics of two 

pyrimidine chromophores, bearing the A-(π-D)2 and A-(π-D)3 structure, is studied by means of fs-

ps and ns time resolved fluorescence spectroscopy. Three different acids, namely 

camphorsulphonic (CSA), acetic (AcOH) and trifluoroacetic acid (TFA) were used. The 

chromophores bear the pyrimidine electron deficient heterocycle as electron-withdrawing group, 

used as protonation site, as well as diphenylamino electron donors. Protonation is revealed 

through the emergence of red-shifted absorption and fluorescence bands accompanied  by a 
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quenching of the fluorescence of the neutral molecules. Time-resolved dynamics reveal that 

protonation with CSA and TFA do not influence the excited state lifetime of the chromophores 

pointing to a static quenching process. On the other hand, the lifetime is decreased upon 

protonation with AcOH. Further investigation based on the Stern-Volmer plots showed that 

addition of AcOH  leads to both dynamic and static quenching.  

 

Keywords: Pyrimidine chromophores, protonation, dynamics, fluorescence spectroscopy.  

 

 

 

 

1. Introduction 

Organic fluorophores are important materials not only for their highly efficient fluorescence in the 

visible part of the spectrum, for use in lighting and imaging, but also because their fluorescence 

properties are highly dependent on the environmental conditions providing us with a sensitive and 

nondestructive way of sensing. The development of organic chromophores with suitable 

functional groups, capable of reacting physically or chemically with their environment and 

reporting these reactions through their fluorescence properties, via a remote access, is of 

tremendous scientific and technological interest. External impulses such as a change in polarity,1-4 

viscosity,5-8 pH,9-14 or the presence of metal ions15-22 can be transduced through fluorescence and 

become perceptible by naked eye. 

More specifically, organic chromophores with nitrogen containing heterocycles such as 

pyridines,23-28 pyridazines,23,29,30pyrimidines23,31-34 and pyrazines23,35-37 are susceptible to 

protonation, resulting in new species with bathochromically shifted spectra. These heterocycles 

constitute electron accepting groups in D-π-A structures which result in efficient Intramolecular 

Charge Transfer (ICT) and are potential candidates for application in optoelectronics, sensors and 

non-linear optics.38-49 Protonation strengthens their electron accepting ability, enhancing the ICT. 

In some cases, protonation is also used in order to prepare white light emitting materials to be 
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used in lighting and displays by simultaneously utilizing the fluorescence of the neutral and 

protonated species.23,50-57 It has been reported that energy transfer from the higher energy neutral 

to the lower energy protonated species takes place.50,52,55  Partial energy transfer, where the 

fluorescence of the neutral species is not totally quenched and both species emit light, can result in 

white light emission.50 This method is of great importance, since white light is achieved by a 

single emitter existing simultaneously in two forms with supplementary emitting colors, while 

emission tunability can be simply achieved by altering the protonation conditions by employing 

different amounts of acid. Typically, in various other methods, white light emission is achieved by 

incorporating different chromophores, either chemically linked or self-assembled, having 

supplementary colors.58-61 Notably, the biggest challenge towards this goal, is the careful choice of 

chromophores paying attention on their energetics as well as their mixing conditions. By means of 

protonation, the laborious procedures for mixing of several chromophores with different 

fluorescent colors to produce white light is not required. 

However, although white light emission upon protonation from chromophores containing 

azaheterocycles has been achieved and white organic light emitting diodes (WOLEDs) have been 

obtained using this strategy, the fundamental photophysical properties of these systems have been 

mainly studied by steady state spectroscopy while less attention has been given in their excited 

state dynamics.62 Such a study is crucial towards understanding the nature of the interactions 

among the neutral and protonated species as well as among the solute and different acids.  

Very recently, our groups has studied the effect of protonation with acetic acid on the optical 

properties of pyridine-based chromophores, revealing a quenching of the neutral species 

fluorescence which was accompanied by a decrease of their excited state lifetime.62 In this work, 

the effect of protonation on the photophysical properties of two pyrimidine-based chromophores is 

addressed focusing on the excited state dynamics. For this reason time resolved fluorescence 

spectroscopy in the fs-ps and ps-ns timescales has been employed. The chromophores adopt the 

A-(π-D)2 and A-(π-D)3 topology where the diphenylamino fragment is used as electron donating 

group. The effect of protonation has been studied by using three acids namely camphorsulphonic 
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(CSA), trifluoroacetic (TFA) and acetic acid (AcOH) revealing different effects in the excited 

state dynamics of the chromophores.  

 

2. Experimental 

2.1. Materials 

The chromophores under study are shown in figure 1. They bear pyrimidine electron accepting 

group and diphenylamino electron donors. C2 adopts a pseudo-quadrupolar geometry of A-(π-D)2 

type while C3 has geometry of the type A-(π-D)3. The synthesis of these compounds has been 

described previously.63,64  

 

Figure 1. Chemical structures of the herein studied pyrimidine molecules. 

 

2.2. Steady state spectroscopy 

A Jasco V-650 UV-Vis and a Horiba Fluoromax spectrophotometer have been used for the 

detection of the absorption and fluorescence spectra of the samples in solutions respectively.  

 

2.3. Time resolved spectroscopy 

The excited state dynamics has been studied in CHCl3 solutions of the pyrimidines, with or 

without protonation, in the fs-ps and ns timescale. Initially, a femtosecond time resolved 

upconversion (FU) system, described in details in the past has been used.65,66 The FU system is 

based on a Ti:Sapphire femtosecond laser (80 fs pulse duration, 80 MHz repetition frequency, 800 

nm) which, after passing through a Second Harmonic Generator (SHG) crystal, is frequency 

doubled at 400 nm and is used for the excitation of the samples. The excitation power was below 
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2 mW while the samples were continuously rotating to avoid thermal effects. The Instrument's 

Response Function (IRF) was ~250 fs.  

The ns dynamics have been detected via a Time Correlated Single Photon Counting (TCSPC) 

technique, based on a Fluotime 200 spectrometer (Picoquant).67  The samples were excited by a ps 

diode laser emitting 60 ps pulses at 400 nm. The system's IRF was ~80 ps. The optical density of 

the samples was ~ 0.1 at the excitation wavelength. Fitting of the ns dynamics has been made by a 

single or bi-exponential function after taking into account the systems' IRF. The quality of the 

fitting was judged by reducing the χ2 parameter and by visually inspecting the residuals. The 

excitation wavelength used at both techniques, as will be shown below, lays at the absorption 

band of the neutral molecules.  

 

3. Results and discussion 

3.1. Steady State spectroscopy 

The absorption spectra of C2 in CHCl3 (10-5M) upon titration with CSA (pKa = 1.2), TFA (pKa = 

0.3) and AcOH (pKa = 4.8) are shown in figure 2. As shown before, the protonation occurs on one 

of the nitrogen atoms of the pyrimidine ring which plays the role as a monobasic compound (pKa 

 1.1).23,56,63,64 After protonation of the first nitrogen atom, the basicity of the second one is 

decreased. This is because of the attractive inductive effect of the resulting quaternary nitrogen 

(pKa for the second nitrogen~ 6.3).  
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Figure 2. Absorption spectra of C2 in CHCl3 (10-5M) after addition of (a) CSA, (b) TFA and (c) 

AcOH. 

 

C2 in CHCl3 exhibits two absorption peaks at 436 nm and ~ 300 nm. Titration with CSA 

decreases the intensity of these absorption bands while a new red-shifted band emerges with a 
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peak at 566 nm attributed to the protonated species (Figure 2a).23 In addition, a second low-

intensity absorption band at 350 nm appears. Two isosbestic points at 370 and 470 nm exist, 

clearly pointing to the existence of two distinct species i.e. the neutral and the acid generated 

protonated molecules. The absorption spectra upon addition of TFA, resemble those with CSA, 

with clear isosbestic points at 370 and 470 nm (Figure 2b). However, due to the important 

difference of pKa between pyrimidine and AcOH, a large amount of this acid is necessary to 

protonate the pyrimidine ring. The behavior upon titration with AcOH is therefore slightly 

different (Figure 2c).  First, the low intensity band at 350 nm is not obvious. Second, a new red-

shifted absorption band appears at 560 nm, but its intensity is small and as a consequence no clear 

isosbestic point exists.  

The corresponding spectra for C3 are shown in figure S1 where it is obvious that the behavior is 

similar to that of C2, but the changes are more pronounced. In CHCl3, C3 exhibits an absorption 

peak at 414 nm, while after addition of only 0.067 eq. of CSA, this absorption band becomes 

negligible and the new red-shifted band, due to the protonated species, dominates the absorption. 

The above also apply for TFA. After addition of AcOH, the changes are again more significant 

compared to C2. The new absorption band at 530 nm, although not as intense as after adding 

CSA, is enhanced compared to C2.  

Figure 3 presents the fluorescence spectra of C2, upon addition of acid, taken after excitation at 

the isosbestic point, in order to eliminate the changes in fluorescence due to the decrease in 

absorption intensity. Upon addition of CSA, the intensity of the main band at 540 nm decreases 

i.e. the fluorescence of the neutral species is quenched (Figure 3a). Gradually, a second 

bathochromically shifted band at 690-700 nm emerges due to the protonated molecules while an 

isoemissive point is obvious at 655 nm. The intensity of the emission of protonated molecules 

seems to saturate after addition of 1.67 eq. The spectral behavior upon addition of TFA and AcOH 

is similar while in contrast to CSA, no isoemissive point exists and the red-shifted emission 

decreases upon adding high amounts of acid, probably due to an increase of polarity (Figures 3b 

and 3c). Finally, figure 4 shows the 2D fluorescence maps of C2 in CHCl3 with 1 eq. CSA, 71.103 

eq. of AcOH and 6.7 eq. of TFA respectively. The 2D maps show that upon excitation at 
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approximately 440 nm, both emission bands are revealed covering almost the whole visible 

spectrum. For excitation at longer wavelengths, the single emission of the protonated species is 

only observed, which, for the case of CSA, is more intense than that of the neutral species. For the 

case of AcOH, the emission of the protonated species is not observed upon excitation at 

wavelengths longer than 500 nm. This is due to its very low intensity compared to the 

fluorescence of the neutral species. If the excitation wavelength is scanned from 460 nm to 600 

nm and after increasing the slits of the spectrometer, the low intensity fluorescence band of the 

protonated species is revealed (figure S2).  
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Figure 3. Fluorescence spectra of C2 in CHCl3 (10-5M) after addition of (a) CSA, (b) TFA and (c) 

AcOH. Excitation at 470 nm (isosbestic point of the absorption spectra). 
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Figure 4. 2D fluorescence maps for C2 in CHCl3 (10-5M) with (a) 1 eq. CSA, (b) 6.7 eq. TFA and 

(c) 71.103 eq. AcOH. 

 

Figure S3 displays the fluorescence spectra of C3 upon protonation with CSA, TFA and AcOH 

while figure S4 presents the 2D spectra. The main conclusion is that, clearly, the fluorescence 

intensity of the protonated species for C3 is much lower than for C2.  

 

3.2. Time resolved spectroscopy 

Next, in order to shed more light in the interaction of the acid with the solute molecules, the 

fluorescence dynamics has been studied by means of the FU method. Note that for these 
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experiments, excitation was made at 400 nm and not at the isosbestic point. This is, however, not 

important since in time resolved experiments we are only interested in the change of dynamics 

and not in the absolute intensity of the fluorescence. Figure 5 shows the early dynamics of the 

neutral species i.e. detected at the main fluorescence band. It is observed that CSA does not 

change the initial dynamics (figures 5a and 5b) for both molecules. Similar results are obtained for 

TFA (figure 5c and 5d).  On the other hand, the addition of AcOH results in a rapid decay, which 

mainly takes place within the first 20 ps after excitation (figures 5e and 5f). These results clearly 

constitute the first indication that AcOH interacts differently with the solutes compared to CSA 

and TFA. However, due to the short temporal range of the FU measurements, the effect of the 

acids on the excited state lifetime cannot be determined. Therefore, the dynamics were also 

detected in the ns timescale.  
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Figure 5. FU dynamics of C2 and C3 in CHCl3 detected at the peak of the neutral emission band, 

upon addition of various amounts of CSA (a) and (b), of TFA (c) and (d) and of AcOH (e) and (f). 

Note that the FU dynamics become faster upon addition of AcOH while they remain unchanged 

upon addition of CSA and TFA. The excitation wavelength was 400 nm. 

 

The ns decays have been measured for both the neutral and the protonated species i.e. at the 520-

540 and 670-700 nm bands. Figures 6 and 7 show the results for C2 upon addition of CSA and 

AcOH respectively while Figure S5 shows the results for C2 with TFA. More specifically, in 

figure 6a, it is observed that the decays of the neutral species at 540 nm do not change with the 

addition of acid. Fitting of these decays, resulted in a single exponential process with a lifetime of 
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2.3 ns (Table 1) which is attributed, therefore, to the lifetime of the neutral C2 molecules in 

CHCl3. The fact that the lifetime does not change upon addition of CSA means that interactions of 

the neutral C2 molecules with the acid molecules in the excited state are excluded.  
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Figure 6. Fluorescence dynamics in the ns timescale for C2 in CHCl3 with different amounts of 

CSA detected at (a) 540 nm (main fluorescence band) and (b) 700 nm (fluorescence band of the 

protonated species). Note that the lifetime of the neutral species is not changed upon addition of 

CSA. The excitation wavelength was 400 nm. 

 

 
Detection 

wavelength 

Acid (eq.) A1 τ1 (ns) A2 τ2 (ns) τavg (ns) 

540 nm 0    1 2.29 2.29 

0.033    1 2.3 2.3 

0.167    1 2.29 2.29 

0.33    1 2.29 2.29 

0.67    1 2.29 2.29 

1.33    1 2.3 2.3 

2.00    1 2.3 2.3 

2.33    1 2.3 2.3 

700 nm 0.033    1 2.34 2.34 

0.167    1 2.32 2.32 

0.33    1 2.29 2.29 

0.67  0.35 0.97 0.65 2.35 1.87 

1.33  0.57 0.89 0.43 2.27 1.48 

2.00  0.72 0.89 0.28 2.21 1.27 

2.33  0.74 0.9 0.26 2.19 1.23 

Table 1. Parameters of the nanosecond fluorescence dynamics for C2 in CHCl3 with different 

amounts of CSA detected at 540 nm (main fluorescence band) and 700 nm (fluorescence band of 

the protonated species). The excitation wavelength was 400 nm. 

 

 

Besides, the decays at 700 nm i.e. where the protonated species emit, are single exponential for 

small amounts of acid, with a lifetime of ~ 2.3 ns, meaning that the neutral and protonated species 
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have the same lifetime. Note that excitation is made at 400 nm and thus, the neutral molecules are 

mainly excited in the time resolved experiments. Therefore, the fluorescence from the protonated 

species originates by an energy transfer mechanism.62 However, the decays become faster for 

CSA addition above 0.67 eq. (figure 6b), becoming bi-exponential with a short lifetime of 0.9 ns, 

whose amplitude increases by increasing the quantity of acid and a second component of 2.2-2.3 

ns which is similar to the lifetime of the protonated species (Table 1). The short component of ~ 

0.9 ns can be considered therefore as a quenching mechanism and can be ascribed to the stronger 

electron accepting ability of the protonated pyrimidine groups leading to enhanced ICT. 

According to the energy gap law, the excited state potential of the protonated low energy species 

with strong ICT, experiences conical intersections with the ground state energy potential leading 

to the decrease of lifetime and fluorescence quenching. This decrease of the average lifetime of 

the protonated species can be also correlated with the saturation of the fluorescence intensity upon 

increasing the amount of acid.  

Clearly, the behavior is different upon addition of AcOH (figure 7). The decays of the neutral 

species at 540 nm become significantly faster upon addition of AcOH pointing to an interaction 

among neutral C2 molecules and AcOH in the excited state. The lifetime decreases from 2.29 ns 

for 0 eq. to 0.89 ns for 118.103 eq. of AcOH acid (Table 2). Besides, the decays at 700 nm of the 

protonated species exhibit a similar behavior with the neutral ones, becoming faster with addition 

of AcOH. Figure S5 shows the ns decays for C2 after addition of 59.103 eq. of AcOH at various 

wavelengths across the neutral and protonated emission bands. The decays were found similar at 

all emission wavelengths showing negligible dependence on the detection wavelength. 
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Figure 7. Fluorescence dynamics in the ns timescale for C2 in CHCl3 with different amounts of 

AcOH detected at (a) 540 (main fluorescence band) and (b) 700 nm (fluorescence band of the 

protonated species). Note that the lifetime of the neutral species decreases upon addition of AcOH 

which is in contrast to the case for CSA and TFA. The excitation wavelength was 400 nm. 

 

Finally, adding of TFA does not lead to a decrease of the lifetime of the neutral species which is 

again found 2.2-2.3 ns (Figure S6 and Table S1). However, when the amount of TFA exceeds 

20.1 eq.  a second decay mechanism with longer lifetime emerges. Its lifetime varies from 3.7 to 

5.3 ns and its amplitude is less than 7 %. 

Detection 

wavelength 

Acid (eq.) A1 τ1 (ns) τavg (ns) 

540 nm 0 1 2.29 2.29 

5.9.103 1 1.93 1.93 

30.103  1 1.45 1.45 

59.103  1 1.19 1.19 

88.103  1 1.01 1.01 

118.103  1 0.89 0.89 

700 nm 5.9.103 1 1.87 1.87 

30.103  1 1.45 1.45 

59.103  1 1.19 1.19 

88.103  1 0.98 0.98 

118.103  1 0.86 0.86 

 

Table 2. Parameters of the nanosecond fluorescence dynamics for C2 in CHCl3 with different 

amounts of AcOH detected at 540 (main fluorescence band) and 700 nm (fluorescence band of the 

protonated species). The excitation wavelength was 400 nm. 

 

Based on the above findings and especially on the excited state dynamics, it is concluded that 

CSA and TFA acids quench the fluorescence of the neutral C2 molecules via a different 

mechanism than AcOH. In the case of CSA and TFA, where the lifetime is not changed, the 

quenching is static while in the case of AcOH where the lifetime decreases, a dynamic quenching 

takes place.68 However, in the latter case, static quenching also plays a role as will be discussed in 

the following.  

In order to more quantitatively study the dynamic quenching of C2 upon addition of AcOH, the 

Birks model69, 70 is applied. The corresponding kinetic scheme is shown in Figure S7. According 

to this, the neutral molecules decay towards the ground state by a rate constant 𝑘𝑁 and towards the 

protonated species by 𝑘𝑁𝑃. Thus, the total decay rate constant of the neutral molecules is given by  

 𝑋 = 𝑘𝑁 + 𝑘𝑁𝑃                                                              (1) 
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The corresponding rate constants for the protonated molecules are 𝑘𝑃 and 𝑘𝑃𝑁 respectively. The 

fluorescence intensity decays of the neutral and protonated molecules are given by: 

𝐼𝑁(𝑡) = 𝐴1𝑁𝑒𝑥𝑝(−𝜆1𝛮𝑡)+𝐴2𝑁𝑒𝑥𝑝(−𝜆2𝛮𝑡)                                         (2) 

𝐼𝑃(𝑡) = −𝐴1𝑃𝑒𝑥𝑝(−𝜆1𝑃𝑡)+𝐴2𝑃𝑒𝑥𝑝(−𝜆2𝑃𝑡)                                         (3) 

The parameters 𝐴1𝑁, 𝐴2𝑁, 𝜆1𝛮 and 𝜆2𝛮 are obtained by fitting the FU (Figure 5e) and ns 

dynamics (Figure 7a) of the neutral molecules respectively and are shown in Table 3. Upon fitting 

the FU results, the long lifetime obtained by the ns decays was used as a constant parameter. On 

the other hand, the rise part of 𝐼𝑃(𝑡) (first component of equation 3) cannot be determined since it 

was not possible to obtain FU measurements at the protonated emission band. Therefore the 

model will be only applied for the neutral species leading to the calculation of the rate coefficient 

for the formation of the protonated ones  𝑘𝑁𝑃. The decay parameter 𝑋 is experimentally 

determined and defined as:69,70 

𝑋 =
(𝐴1𝑁/𝐴2𝑁)∙𝜆1+𝜆2

𝐴1𝑁/𝐴2𝑁+1
                                                           (4) 

and the calculated results are also presented in Table 3. Finally, the 𝑘𝑁𝑃 is found following 

equation 1 where 𝑘𝑁 is calculated by the decay of C2 without acid.  

Acid (eq.) 𝐴1𝑁 𝜆1𝛮 (1012s-1) 𝐴2𝑁 𝜆2𝛮 (109s-1) 𝑋 (109s-1) 𝑘𝑁 (109s-1) 𝑘𝑁𝑃 (109s-1) 

59.103  0.24 0.14 0.76 0.84 34.6 0.44 34.16 

118.103  0.50 0.26 0.50 1.12 130 0.44 129.56 

Table 3. Kinetic parameters for C2 upon addition of AcOH, following the Birks model. 

The Stern-Volmer plots68 for C2 upon addition of CSA, TFA and AcOH are given in figure 8. 
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Figure 8. Stern Volmer plots for C2 in CHCl3 upon addition of (a) CSA, (b) TFA and (c) AcOH. 

F and F0 are the fluorescence intensities at the peak of the spectra after and before addition of 

acid. Similarly, τ and τ0 are the fluorescence lifetimes after and before addition of acid. 

Fitting the intensity Stern-Volmer plots in Figures 8a and 8b, with the well-known equation 
𝐹0

𝐹
=

1 + 𝐾𝑠[𝑄], where 𝐾𝑠 is the association constant for static quenching and [𝑄] the concentration of 

the quencher (here in eq.) we obtained 𝐾𝑠=1.8 eq.-1  for CSA and 𝐾𝑠=0.18 eq.-1 for TFA meaning 

that 50% of the fluorescence intensity is quenched when the acid concentration is 0.55 eq. for 

CSA and 5.55 eq. for TFA. However, in the case of CSA, the intensity quenching plot seems to 

deviate from linearity, possibly indicating higher order static quenching effects (for this reason the 

plot was fitted for acid concentration up to 1.3 eq.). The quenching process upon adding AcOH 

has a more complicated feature. The reduction of the fluorescence lifetime indicates the existence 

of a dynamic (diffusional) mechanism. However, the plots of 
𝐹0

𝐹
 and 

𝜏0

𝜏
 do not have the same slope 

as expected for a purely dynamic quenching. More specifically, the intensity quenching plot (
𝐹0

𝐹
 

vs. acid) has a higher slope than the lifetime quenching one (
𝜏0

𝜏
 vs. acid) and a slight nonlinear 

behavior (upward curvature). Therefore, the quenching process upon adding AcOH is a 

combination of both static (complex association) and dynamic (diffusional) mechanisms. 

Therefore, the fitting of the intensity quenching curve is made with the equation 
𝐹0

𝐹
=

(1 + 𝐾𝐷[𝑄])(1 + 𝐾𝑠[𝑄]) where 𝐾𝐷 is the dynamic quenching constant and 
𝜏0

𝜏
= (1 + 𝐾𝐷[𝑄]).

68 

Fitting initially the lifetime quenching curve in Figure 8c, we obtain 𝐾𝐷 = 0.011 ∙ 10−3eq.-1. Then 

𝐾𝑆 can be easily found by the intensity quenching curve to be 𝐾𝑆 = 0.022 ∙ 10−3eq.-1.  

C3 exhibits a similar behavior regarding the dynamics i.e. the lifetime of the neutral species is 

unchanged upon adding CSA and TFA, while it decreases upon adding AcOH. The corresponding 

results are presented in figures S8-S11 and Tables S2, S3 and S4. Specifically, the decays of the 

neutral species display a ~2.30 ns component which is considered as the lifetime of the C3 
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molecules (Figure S8 and Table S2). However, in the case of CSA, although the average lifetime 

remains the same, the decays become bi-exponential, when the quantity of CSA exceeds 1.33 eq., 

with a 2.10 ns and a 2.5-4.5 ns components. The fact that the neutral lifetime remains almost 

unchanged when CSA is added, points to a static quenching as in the case of C2. Similarly to 

CSA, when adding TFA, the lifetime of the neutral species again remains unchanged, while a 

slower component also emerges at high amounts of acid (Figure S9 and Table S3). On the other 

hand, upon addition of AcOH, the excited state lifetime of the neutral molecules decreases from 

2.32 to 0.86 ns (Figure S10 and Table S4), meaning that a dynamic quenching is operative as was 

also confirmed for C2. Finally, the decays of the protonated species, detected at 670 nm, also 

become accelerated with increasing the amount of acids. This is due to the enhanced ICT behavior 

of the protonated pyrimidines. 

 

4. Conclusions 

In conclusion, the photophysics of two pyrimidine chromophores, bearing the A-(π-D)2 and A-(π-

D)3 structure, have been studied focusing on their excited state dynamics, upon protonation with 

three common acids i.e. CSA, AcOH and TFA in order to shed light on the interactions of solute 

and acid molecules. A quenching of the fluorescence of the neutral chromophores after addition of 

acid is revealed by steady state spectroscopy, while the generation of a red-shifted emission band, 

originating from the protonated species, is also observed. Upon addition of CSA and TFA, the 

excited state dynamics of the chromophores are not changed. This strongly shows that the 

interaction among the solute and acid molecules is operative in the ground state and the quenching 

is considered as static. On the other hand, the excited state dynamics of the neutral molecules 

becomes faster upon interaction with the AcOH molecules. This observation together with steady 

state measurements and the Stern-Volmer plots indicate that the interaction leading to the 

quenching, takes place both in the excited and ground state namely, the quenching has a dynamic 

and a static nature.  
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