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Abstract—A conformal, planar, and low profile ultrawideband
(UWB) antenna with monopole-like radiation and band-notched
characteristics is presented. A circular patch shorted to the
ground is combined with two rectangular slots and two concentric
rings, to achieve an ultra-wide bandwidth from 3.8 to 8.3 GHz
with a single rejection band from 5 to 6 GHz. The monopole-
like radiation features, generated by combining TM01 and TM02

operating modes of a circular patch antenna, are maintained over
the entire operating bandwidth. The antenna has only 0.046λo

height at 3.8 GHz and is realized using polydimethylsiloxane
(PDMS)-conductive fabric composite technology making it highly
flexible and physically robust. This was validated through severe
bending tests with various curvatures.

Index Terms—Band-notched antenna, conductive fabric, con-
formal antenna, flexible antenna, monopole-like radiation pat-
tern, polydimethylsiloxane, ultrawideband (UWB).

I. INTRODUCTION

Low profile ultrawideband (UWB) antennas with monopole-

like radiation characteristics have been a popular solution to

ground sensor networks, Unmanned Aerial Vehicles (UAVs),

and Wireless Body Area Networks (WBANs) to name a few

[1]–[3]. In such applications, UWB antennas having wide om-

nidirectional coverage, vertical polarization for minimum path

loss, and at the same time small physical size are of supreme

importance. Being very high in profile, conventional quarter-

wavelength monopole antennas or vertically-polarized electric

monopole antennas over a ground plane, are consequently

not an ideal solution, despite their radiation characteristic and

recent improvements in bandwidth [4], [5].

There has been a considerable advancement in ways of

achieving UWB antennas with monopole-like radiation while

maintaining the profile low. This includes the utilization of

sophisticated structures incorporating ring patches, loops, and

monocones with and without shorted top-hat loadings [1]–

[3], [6]–[9]. Monopole-like radiation characteristics over ultra-

wide bandwidth of more than 100% were successfully demon-

strated, with reduced antenna height to even lower than 0.05λo
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Fig. 1. Proposed antenna geometry: (a) front view, (b) side view. The final
dimensions are r1 = 2.9, r2 = 11, r3 = 12, r4 = 16.5, r5 = 17.5, r6 = 31,
ls = 70, lg = 68, l = 10.5, w = 1.5, ds = 4.9, dv = 9.7, rv = 0.6, d = 0.5,
ht = 0.4, hs = 3, and hb = 0.2. All dimensions are in millimeters.

at the antenna’s lowest operating frequency. However, these

successes generally come with some drawbacks. Among them

are the need for auxiliary feeding or matching network, which

remains a challenge for an antenna engineer, and the use of

3-D shaped structures and delicate parts (e.g., long and thin

shorting or feeding strips/pins unsupported in the air). The

latter particularly challenges the deployment of such antennas

in modern wireless applications, which value antenna confor-

mality and flexibility for better integration to system platforms

with prescribed shapes, unobtrusiveness, users’ comfort, and

optimum use of limited spaces. In fact, all the aforementioned

UWB antennas were composed of rigid materials.

Another important consideration for antennas that are used

to sense ultra-wide bandwidth, is the strong interference from

the existing wireless network technologies, for instance, IEEE

802.11a and HIPERLAN/2 in the 5.15–5.825 GHz band. It

is, therefore, a suitable approach to introduce a ‘notch’ in

the bandwidth, to remove frequency bands susceptible to

strong interference. The most common method to introduce

the band-notched function to planar UWB antennas is by

cutting slots with various shapes on the patch, ground plane,

or feed line [10]–[12]. Other efforts by using electromagnetic-

band gap (EBG) structures [13], [14], inclusion of vias [15],

parasitic elements [16], [17], or combination of parasitic

elements and slots [18], [19], have also been reported. Through

these approaches, good band rejection performances have

been achieved in a lot of UWB antenna designs, but rarely

in the case of those having vertical monopole-like radiation

characteristics.

In this paper, motivated by the needs described above,

we propose for the first time a conformal and low profile
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UWB antenna with monopole-like radiation and band-notched

characteristics. The antenna structure is based on a circular

microstrip patch antenna, which does not require any matching

circuit and completely planar with 0.046λo height at its lowest

operating frequency. By loading the patch with two rectangular

slots, two parasitic rings, and vias, an ultra-wide bandwidth of

3.8–8.3 GHz with 5–6 GHz notched band has been achieved.

The proposed antenna was fabricated based on the polydime-

thilsiloxane (PDMS)-conductive fabric composite technique,

in which all antenna parts including radiators and ground plane

are embedded inside the PDMS, making it flexible and resilient

to the harsh environment [20]–[22]. The mentioned antenna

characteristics along side its low profile and flexibility make

the proposed antenna a suitable candidate for any applications

with the need for wide coverage in all directions, particularly

in which the antenna has to be placed on the non-flat surface,

near to the ground.

II. ANTENNA CONFIGURATION AND DESIGN METHOD

The proposed antenna configuration is depicted in Fig. 1

and its optimized dimensions are given in the caption. The

design comprises a proximity-fed circular patch loaded with

two rectangular slots and the two ring patches. The main

circular patch is connected to a full ground plane underneath,

by four symmetrically placed vias. Both radiator and ground

plane layers are placed on each side of a 3 mm thick PDMS

substrate, having permittivity of 2.77 with an increasing loss

tangent from 0.02 to 0.076 from 2 to 10 GHz based on

the measurement conducted using Agilent 85070E Dielectric

Probe Kit. The antenna is coated completely with the same

substrate material for mechanical robustness [20], which leads

to a total antenna thickness of 3.6 mm.

As the antenna conductive parts, highly conductive fabric,

a nickel-copper coated ripstop from Less EMF Inc., is used.

In simulations, the conductive parts of the antenna were

modeled as a box with the fabric thickness as specified by the

manufacturer, 0.08 mm. The box was then assigned an effec-

tive conductivity of 5.4×104 S/m, which is an approximated

effective conductivity of the composite material consisting of

PDMS and the chosen conductive fabric, obtained from our

previous study [20], [21]. This was done to get an accurate

simulation, considering the percolation of PDMS into the

pores of the conductive fabric during the integration of both

materials.

A. Design Steps

The main design strategy is to combine TM0n resonance

modes of a circular patch over a certain bandwidth except for

the target notched band, 5–6 GHz. Such monopolar operating

modes were chosen over other modes (e.g., TM21, TM31) for

its better azimuthal omnidirectional pattern and gain [23], [24].

We found that two modes, TM01 and TM02, are enough to

achieve the aim of this work. The antenna simulations and

optimizations were conducted using CST Microwave Studio

2018. The optimizations were done by also taking into account

the tolerance of the antenna manual fabrication.

The general flow of the antenna design process is illustrated

by the input reflection coefficient (|S11|) results, which are

provided in Fig. 2 and explained in five steps below.
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Fig. 2. Simulated |S11| of the antenna for each design step.

Step 1: Initially, a circular patch antenna was designed to

operate in its TM02 mode at 9.3 GHz [23]. The proximity

feeding was chosen for more freedom in controlling the

antenna bandwidth, for instance through the tuning of r1 and

d. However, the value of d had to be maintained much smaller

than the wavelength, to keep the operating modes of the patch.

Step 2: To add another resonance to the lower frequency

region, we decided to generate a lower operating resonance

mode TM01. To excite such mode which naturally does not

exist in a pure circular patch antenna, shorting vias were

introduced [23], [25], [26]. For maintaining a symmetrical

current distribution on the patch, four vias were added to the

patch in a symmetrical configuration. The optimum positioning

of the vias resulted in the generation of TM01 resonance mode

at around 4.1 GHz, while maintaining the resonance of TM02

mode at 9.3 GHz.

Step 3: Ring 1 was added at the perimeter of the patch. It

was found that its coupling to the patch, controlled through

the optimization of its radius and the gap to the patch, can

lead to the resonance shift particularly in the TM02 operating

mode, thus controlling the notched band achieved from Step 2.

As can be noted in Fig. 2, the TM02 resonance shifted from

9.3 GHz to 7.7 GHz. A shift in TM01 can also be noticed,

although relatively marginal.

Step 4: Following step 3, ring 2 was added at the perimeter

of ring 1, to improve further the bandwidth characteristic of the

antenna without changing the current distribution. We found

that the right coupling between ring 2 and ring 1, achieved

through the optimization of the radius of both rings and the

gap between them, can improve the bandwidth of the TM01

resonance mode and further shift the TM02 resonance mode.

This leads to a better notched characteristic of the antenna.

Step 5: Lastly, to narrow further the notched band, another

resonance at approximately 6.3 GHz was introduced by cutting

two rectangular slots having an approximate λg/2 length at

6.3 GHz, from the circular patch. The position and dimensions

of the slots were optimized in such a way that their impact on

the operating modes were minimum.

The surface current distributions of the antenna at two

different frequencies, 4.2 and 6.8 GHz, are simulated and

shown in Figs. 3(a) and (b). It can be deduced from the current

patterns that, the two operating modes at these two frequencies

correspond respectively to the TM01 and TM02 modes. The

currents vary along the radial direction but are independent of

the azimuth angle (φ), hence the produced fields [23], [27].

Consequently, vertical-monopole like radiations are expected

from this antenna.
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(a) (b)

Fig. 3. Simulated current distributions on the patch surface at (a) 4.2 GHz
(TM01) and (b) 6.8 GHz (TM02).

TABLE I
PARAMETER VARIATIONS FOR NOTCHED-BAND TUNING

Par. Set Dimensions (mm)

Set 1 r3 = 12, r4 = 16.5, r5 = 17.5, r6 = 31, l = 10.5, w = 1.5

Set 2 r3 = 11.5, r4 = 15, r5 = 16, r6 = 32, l = 12, w = 1

Set 3 r3 = 13, r4 = 18.5, r5 = 19.5, r6 = 31, l = 9.5, w = 1.5

Set 4 r3 = 12, r4 = 18, r5 = 19.5, r6 = 31.5, l = 11.8, w = 2.7
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Fig. 4. Simulated VSWR of the antenna with different parameter sets.

B. Antenna Parameters Effects on Notched Band

From the design guideline described above, particularly

steps 3 to 5, it can be inferred some antenna parameters that

have a significant effect on the notched band characteristic

of the proposed antenna. Among them are r3, r4, r5, r6,

l, and w. By simultaneously tuning these parameters, the

rejection band of the antenna can be controlled. As examples,

we conducted some simulations, where we varied these six

parameters (Table I) and maintained the other parameters

fixed as in the caption of Fig. 1. The simulated voltage

standing wave ratio (VSWR) of each parameter set is given in

Fig. 4, where we can see clearly the aforementioned role of

these parameters. By properly arranging the resonance mode

positions throughout the bandwidth, or equivalently having the

right combination of these key parameters, the notched band

can be tuned or even removed as demonstrated in the VSWR

of set 4 in Fig. 4. As the changes were only made for the

six parameters mentioned above, it can thus be implied from

the results that, matching in the non-rejection bands can be

improved through further optimizations of the overall antenna

parameters. Also, it should be noted that a good monopole-like

radiation performance was still achieved when the parameters

variations given in Table I were applied.

x

y

(a) (b)

Fig. 5. Fabricated band-notched UWB antenna: (a) view from the top, (b)
view while bent.

III. PROTOTYPE FABRICATION

A bottom-top assembly process as illustrated in [20], [21]

was conducted to fabricate the antenna prototype. Each PDMS

layer was prepared by pouring liquid PDMS into a customized

ring-shaped mold having the required thickness, followed by

curing in the oven. The conductive parts of the antenna were

prepared by manually cutting the conductive fabric following

the design in Fig. 1. The attachment of the conductive parts

on the cured PDMS layers was done by using uncured PDMS.

Upon completion of the layers assembly process, the vias

were realized by using copper pins, pierced into the cured

PDMS. Silver epoxy was used to connect the pins with the

patch and the ground. Lastly, a SubMiniature version A (SMA)

connector was connected from the bottom of the antenna with

silver epoxy. The fabricated prototype is shown in Figs. 5(a)

and (b).

IV. RESULTS AND DISCUSSION

A. Impedance Performance

The VSWR of the fabricated prototype was measured using

Agilent PNA-X N5242A network analyzer in both flat and

bending conditions. The latter was done to verify its con-

formality and physical robustness against deformation. The

measured result for the case of flat antenna is given in Fig. 6,

alongside the numerically computed result from the simulator,

showing a good agreement. As can be seen in Fig. 6, the

measured VSWR is kept between 1 and 2 for the entire

bandwidth of 3.8 to 8.3 GHz except at the target notched

band from 5 to 6 GHz. At the measured rejection band, the

antenna has a peak VSWR of more than 4 at 5.5 GHz with

acceptable discrepancy compared to the simulated result. The

differences between the measured and simulated results are

most likely attributed to minute fabrication inaccuracies, for

instance, during the manual cutting of the conductive fabric,

the shorting pins inclusion, and the antenna patches assembly.

For the conformability testing, the antenna was bent along

its x- and y-axis over plastic tubes with various radii (rb), from

20 to 35 mm, as illustrated in the inset of Fig. 7. The measured

VSWR results of the antenna are given in Fig. 7, showing

a stable performance of VSWR up to the bending radius of

30 mm. The results under x-axis bending are also found to be

very similar to those under y-axis bending. Repetitive bendings

with smaller radius seemed to affect the connections between

the conductive fabric and the SMA connector, realized by

means of silver epoxy. Such occurrence is likely caused by

the fact that the area around the connector where the silver

epoxy was applied, turns to be more rigid than the other part
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Fig. 6. Simulated and measured VSWR of the antenna in flat form.
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Fig. 7. Measured VSWR of the antenna under various x-axis (thin lines) and
y-axis (thick lines) bending radii compared to that of the flat case (triangle
symbol). The inset illustrates the bending test scenarios over plastic tube.

of the antenna. Moreover, the size of the SMA connector is

comparable with the minimum bending curvature that possibly

happens on that part of the antenna. The use of a smaller

size connector or flexible conductive glue can, therefore, be

implied to reduce this issue. Nevertheless, even after repetitive

severe bendings, we noticed that the antenna can still return to

its flat state without any cracks noticed on the PDMS layers

or the conductive fabrics. This verifies its conformability and

resilience against deformation.

B. Far-Field Characteristics

Figs. 8(a) and (b) show far-field patterns of the proposed an-

tenna at two selected frequencies of 4.2 and 6.8 GHz under flat

and bending (rb = 30 mm) scenarios, obtained from NSI700S-

50 spherical near-field anechoic chamber. A good agreement

can be seen between the measured and simulated radiation

patterns of the flat case. The results show that the antenna

has a null in the broadside direction of xz- and yz-planes

with a good omnidirectional pattern in xy-plane, resembling

the radiation features of a vertical monopole antenna. The

physical deformation of the antenna indeed leads to slight

deviations on its radiation patterns, for instance, the beam

width and cross-polarization level. However, more importantly,

the monopolar radiation mode is still maintained over the

entire operating band of the antenna, even when the antenna

is severely conformed.

The peak gains of the antenna are shown in Fig. 9. The

measured results indicate that the proposed antenna when un-

bent, has a reasonably good gain over the operating bandwidth,

ranging from 3 to 4.7 dBi with an average of approximately

3.9 dBi and a radiation efficiency of up to 60%. On the other

hand, a sharp decreased in the peak gain to a minimum level

of -9.7 dBi can be noticed in the rejection band, validating
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Fig. 8. Normalized simulated and measured radiation patterns of the proposed
antenna in flat and bending (rb = 30 mm) conditions at (a) 4.2 GHz and (b)
6.8 GHz.
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Fig. 9. Simulated and measured peak gains of the proposed antenna in flat
and bending (rb = 30 mm) conditions.

the optimum notched function of the proposed antenna. Such

gain performance is seen to be relatively stable in both x- and

y-axis bending cases.

V. CONCLUSION

A new low profile band-notched UWB antenna has been

presented. Different to previously reported band-notched UWB

antennas, the proposed antenna has a vertical monopole-

like radiation, which is maintained over the entire operating

bandwidth. It also exhibits high flexibility and physical robust-

ness as attributed to the employed PDMS-conductive fabric

composite fabrication technology, which makes it suitable for

conformal applications. This has been validated through a

severe bending test over various radii. The measurements show

that the unbent antenna covers 3.8 to 8.3 GHz bandwidth with

a notched band from 5 to 6 GHz. An average gain of 3.9 dBi is

shown across the operating bandwidth, which drops to up to -

9.7 dBi in the rejection band. This performance was reasonably

maintained under different bending radii of up to 30 mm.
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