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38 ABSTRACT

39 The role of iron in non-erythroid hematopoietic lineages and its implication in hemato-oncogenesis are 

40 still debated. Iron exerts an important role on hematopoietic stem cell transformation and on mature 

41 white blood cell differentiation. Iron acts experimentally as an oncogenic cofactor but its exact role in the 

42 transformation of the myelodysplastic syndrome into leukemia continues to be discussed. Body iron 

43 overload frequently develops mainly as the result of multiple erythrocyte transfusions in patients with 

44 leukemia or myelodysplastic syndrome, and, in the latter, as a result of increased ineffective 

45 erythropoiesis. Iron overload, especially through the deleterious effects of reactive oxygen species, leads 

46 to organ damage that likely impacts the global outcome of patients, especially after hematopoietic stem 

47 cell transplantation (HSCT). In these pathological settings (before and after HSCT), oral iron chelation 

48 should be considered whenever body iron overload has been firmly established, ideally by magnetic 

49 resonance imaging.

50

51

52 KEYWORDS

53 Iron; leukemia; myelodysplastic syndrome; hematopoietic stem cell transplantation; oral chelation; 

54 phlebotomy.

55

56 ABBREVIATIONS

57 ALL: acute lymphoblastic leukemia

58 AML: acute myeloid leukemia

59 DFX: deferasirox 

60 HSC: hematopoietic stem cell

61 HSCT: hematopoietic stem cell transplantation

62 LIC: liver iron content

63 LPI: labile plasma iron
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64 LPS: lipopolysaccharide

65 MDS: myelodysplastic syndromes

66 MDS-RS: myelodysplastic syndrome with ring sideroblasts

67 MSC: mesenchymal stromal cell

68 MRI: magnetic resonance imaging

69 NTBI: non transferrin-bound iron

70 ROS: reactive oxygen species
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71 INTRODUCTION

72 The crosstalk between iron and hematology is illustrated by the well-known relationship between 

73 iron and erythrocytes where iron is required in order to sustain erythrocyte production within the 

74 bone marrow. Iron is abundantly found in the blood within these erythrocytes, and released during 

75 erythrocyte degradation mainly within the spleen (1). The goal of the present review, beyond 

76 examining the role of iron in the erythroid lineage, is to focus on the relationship between iron and 

77 hematopoietic cells, with a special emphasis on iron overload and leukemias. Systemic iron overload 

78 frequently develops in leukemias, mainly due to transfusion therapy (2-4). Another mechanism, 

79 involved in myelodysplastic syndromes (MDS) in particular (hematologic malignancies characterized 

80 by a risk of progression to acute myeloid leukemia (AML)), is ineffective erythropoiesis (5). Ineffective 

81 erythropoiesis, notably through increased bone marrow production of the hormone erythroferrone 

82 (6), reduces hepcidin expression (7), leading to increased digestive absorption of iron and increased 

83 splenic release of the iron originating from erythrophagocytosis (8). After a reminder on the 

84 physiological role of iron in bone marrow stem cells and mature white blood cells, the following 

85 pathological aspects will be considered: the body iron load status in leukemia patients both at 

86 diagnosis and during medical care, the negative consequences of iron excess on patient outcome, 

87 especially after hematopoietic stem cell transplantation (HSCT), and the clinical interest of removing 

88 excessive iron in leukemia patients. 

89

90 1. IRON: HOMEOSTASIS AND FUNCTIONAL LINKS BETWEEN IRON AND BONE MARROW

91

92 1.1. General iron homeostasis 

93 Iron is critical for life due to its major roles in oxygen transport, key enzymatic reactions (such 

94 as DNA synthesis or detoxification) and the growth of microorganisms. In vertebrates, iron is 

95 abundantly present within red blood cells and in a tiny but functionally essential amount in 
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96 the plasma; this plasma iron ensures the delivery of iron to the bone marrow primarily for 

97 erythrocyte synthesis and to all living cells (9-11) (Fig. 1). Iron is stored in parenchymal cells 

98 (essentially hepatocytes where it is sequestered within ferritin molecules) and in 

99 macrophages (mainly splenic macrophages). The only physiological source of iron for the 

100 body is alimentary, explaining the risk of iron deficiency when this input is limited. In the case 

101 of excessive iron input, either by increased intestinal absorption (such as in 

102 hemochromatosis) or by excessive parenteral entry (due to multiple transfusions or excessive 

103 iron supplementation), there is no effective possibility for the human body to adapt its 

104 excretory pathways, which explains the risk of iron overload. This dual vulnerability to iron 

105 deprivation and to iron excess explains that iron homeostasis is very finely regulated, both at 

106 the systemic and cellular levels. At the systemic level, the key role belongs to hepcidin, the 

107 major hormone regulating iron metabolism. Hepcidin is a small peptide of 25 amino acids, 

108 essentially produced by hepatocytes, that decreases the plasma iron concentration. The 

109 decreasing effect exerted by hepcidin on the plasma iron level is mediated by the degradation 

110 of ferroportin, which is the only known protein to export cellular iron into the plasma. This 

111 hepcidin-ferroportin duo acts at two main sites, duodenal enterocytes and the spleen. At the 

112 digestive level, through the combined action of ferroportin export and hephaestin oxidation, 

113 iron is delivered to plasma transferrin which principally targets the bone marrow in order to 

114 produce new red blood cells (see Table 1 for names and symbols of the genes). In the spleen, 

115 iron originating from erythrophagocytosis is exported into the plasma through ferroportin, 

116 oxidized by ceruloplasmin, bound to transferrin and recycled toward the bone marrow. Many 

117 factors can regulate hepcidin expression. Body iron load status is a major regulator: a 

118 decrease in iron levels (either plasma transferrin saturation level and/or intrahepatocyte iron 

119 load level) leads to lower hepcidin production in order to counteract iron deficiency. The 

120 reverse phenomenon occurs in the case of iron overload. Inflammation is also an important 

121 regulatory factor, in which the IL6-STAT3 pathway is involved to increase hepcidin production. 
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122 The erythroferrone hormone, mainly produced by the bone marrow, is another important 

123 regulatory factor (12, 13). Its increased production in the case of dyserythropoiesis leads to 

124 the downregulation of hepcidin expression. This decrease in hepcidin production may 

125 override the expected increased hepcidin expression in the presence of coexisting iron 

126 excess. At the cellular level, iron homeostasis is mainly ensured at a post-transcriptional level 

127 by the iron regulatory proteins (IRP). Schematically, in a context of cellular iron deficiency, 

128 IRP1 and IRP2 bind to iron regulatory elements (IRE) located in the 5’ or 3’ untranslated 

129 transcribed region (UTR) of the mRNA involved in the entry (TFR1), storage (ferritin) and 

130 export of iron (ferroportin). This leads, through different mechanisms (inhibition of 

131 translation or stabilization of transcripts), to increased cellular iron entry and decreased 

132 cellular iron storage and egress. The reverse effects occur in the case of cellular iron overload, 

133 where IRP1 and IRP2 lose their capacity to bind to IRE. Any acquired and/or genetic 

134 abnormality in these regulatory processes may lead to iron-related disorders.

135

136

Altogether, many of the players involved in iron metabolism are now described at the 

137

molecular level. They are transporters, receptors, oxido-reductases, sensors, chelators, 

138

regulatory pathway players and hormones. Their interdependency and fine-tuning explain 

139

the functional relationship between diverse tissues and iron.

140

141 1.2. The functional relationship between iron and bone marrow

142 There is a very close relationship between iron and bone marrow that can be considered through 

143 two reciprocal perspectives. On the one hand, there is an iron flux toward the bone marrow that 

144 is physiologically required to sustain crucial hematopoietic functions, and which, when excessive, 

145 can exert deleterious effects on hematopoiesis (14-16). On the other hand, the bone marrow not 

146 only ensures the delivery into the blood of the different hematological cells involved in iron 
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147 metabolism (the erythrocytes in first line), but also plays a key role in the systemic distribution of 

148 iron. 

149

150 1.2.1. From iron to the bone marrow: iron is used by all hematopoietic lineages

151

152 1.2.1.1. Iron and bone marrow stem cells: hematopoietic and mesenchymal stromal cells (HSC and 

153 MSC) 

154 Iron, through its propensity for producing reactive oxygen species (ROS), exerts a determining role 

155 on the fate of HCS (14, 15) and its impact depends on the dose of iron. Low ROS levels are required 

156 for HSC renewal. ROS levels also fine-tune HSC differentiation: very low levels can hamper HSC 

157 differentiation, whereas increasing ROS levels favor their differentiation. On the contrary, very high 

158 ROS levels promote stem cell exhaustion and death by causing cytotoxicity through the binding of 

159 ROS to lipid membranes, proteins and DNA, promoting deleterious oxidation of these 

160 macromolecules. Excessive iron impairs hematopoiesis by inducing apoptosis and cell cycle arrest 

161 (17), and decreases the ratio and clonogenic function of hematopoietic stem and progenitor stem 

162 cells (18). Iron also plays a role in other cells in the hematopoietic niche. Iron increases the 

163 proliferation of human MSCs and accelerates their entry into S-phase (19). In contrast, excess iron 

164 negatively impacts the hematopoietic microenvironment, as shown by the delayed hematopoietic 

165 reconstitution observed in mice overloaded by iron-dextran and transplanted with bone marrow 

166 from untreated mice (20). Moreover, in MDS patients, iron overload has been shown to promote 

167 mitochondrial fragmentation of mesenchymal stromal cells (21).

168

169 1.2.1.2. Iron in white cell lineages
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170 A short history… In 1952, CB Laurell wrote that “nobody has investigated whether the white blood 

171 cells have any function in iron transportation or hemoglobin breakdown, in spite of the fact that 

172 leucocytes have a relatively high iron content” in a seminal review entitled “Plasma iron and iron 

173 transport in the organism” (22).Twenty-two years later, Summers and Jacobs (23, 24) showed that 

174 monocyte ferritin content was approximately seven times higher than that in lymphocytes or 

175 polymorphs in normal subjects. They also reported that the ferritin content increased during 

176 anemia of chronic disease in lymphocytes, monocytes and polymorphs. Iron uptake by lymphocytes 

177 was also greatly increased during iron deficiency anemia. At the same time, Worwood et al. 

178 reported that leukemia cells had a markedly increased ferritin content (25). We will now consider 

179 the present state of knowledge about iron content, function and impact in white blood cells.

180 Iron and monocytes-macrophages. Monocytes are known to correspond to circulating 

181 macrophages. Iron is required for the differentiation of peripheral blood monocyte precursors into 

182 functional macrophages; iron deprivation by desferrioxamine generates macrophages unable to 

183 develop a mature phenotype, with an impaired capacity for phagocytosis (23). It is also well known 

184 that iron sequestration occurs within macrophages during inflammation. Importantly, interleukin 

185 6 (IL-6), which is produced by macrophages in response to pathogen-associated molecular patterns, 

186 activates the STAT3 signaling pathway leading to hyperhepcidinemia, and therefore to the 

187 degradation of ferroportin, and eventually to hyposideremia. It has also been shown that 

188 inflammation can cause hyposideremia through a hepcidin-independent mechanism involving the 

189 transcriptional downregulation of ferroportin (26). Depending on their microenvironment and 

190 cooperation with lymphocytes, monocytes polarize into active macrophage populations that are 

191 subdivided into activated M1 macrophages exerting proinflammatory and antitumor activities, and 

192 into activated M2 macrophages that are immunosuppressive and promote tumor activity. 

193 Importantly, iron modulates this macrophage polarization, increasing the M2 phenotype and 

194 decreasing the M1 proinflammatory lipopolysaccharide (LPS)-induced response (27). In a mouse 

195 model of hemochromatosis (a genetic iron overload disease), attenuated inflammatory responses 
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196 to Salmonella infection or LPS were observed compared to non-hemochromatosis control mice. 

197 This study demonstrates a novel role of iron in the regulation of macrophage IL-6 cytokine mRNA 

198 translation (28). This result is coherent with a previous report that showed that TNFα 

199 concentrations were decreased in the supernatants of monocytes from hemochromatosis patients 

200 (29). Youssef et al. (30) reported that, following increased erythrophagocytosis, splenic 

201 macrophages undergo ferroptosis and are replaced by circulating monocytes and local cell division. 

202 Haschka et al. (31) found that classical (CD14+, CD16-) and intermediate (CD14+, CD16+) subsets of 

203 human monocytes are involved in clearing non-transferrin-bound iron (NTBI) and damaged red 

204 blood cells. Therefore monocytes may play a role in limiting iron toxicity in iron overload conditions.

205 Iron and dendritic cells. Kramer et al. showed that differentiation from human peripheral blood 

206 monocyte precursors into functional dendritic cells requires iron and is dependent on the 

207 expression of the cyclin-dependent kinase inhibitor p21 (32). Iron depletion by the chelator 

208 desferrioxamine produced undifferentiated dendritic cells unable to stimulate naive allogeneic T 

209 lymphocytes. Olakanmi et al. showed that lung myeloid dendritic cells acquire iron from various 

210 types of extracellular sources (iron-citrate, iron-transferrin and iron-lactoferrin) (33).

211 Iron and neutrophils. The positive role of iron on granulopoiesis is suggested by studies in anemic 

212 Belgrade (b/b) rats. Indeed, an increased proliferation of granulocytic cells is observed in iron-

213 treated b/b rats (34). Importantly, neutrophils impact iron metabolism during inflammation by 

214 secreting lactoferrin (35, 36). Lactoferrin is an iron-binding multifunctional glycoprotein secreted 

215 by neutrophils and exocrine glands. During inflammation or infection, the plasma lactoferrin 

216 concentration increases through the recruitment of neutrophils (37). The antibacterial and 

217 antibiofilm activity of lactoferrin is dependent, although not exclusively, on its iron-binding affinity. 

218 However, no evidence has been brought forward regarding a significant impact of lactoferrin on 

219 human granulopoiesis (38).
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220 Iron and eosinophils. To our knowledge, the sole interference of iron with the eosinophil lineage 

221 involves the role of iron-loaded lactoferrin. Bovine lactoferrin regulates the pathway implicating 

222 the CD11b and CD49d integrins and the MIP-1α and MCP-1 chemokines in granulocyte-macrophage 

223 colony-stimulating factor (GM-CSF)-treated human eosinophils (39).

224 Iron and lymphocytes. Transferrin receptor 1 (TFR1)-mediated iron uptake is essential for 

225 lymphocyte proliferation (40). Iron also plays a key role in the differentiation of T lymphocytes. The 

226 absence of TFR1 in genetically modified mice leads to a total arrest of T lymphopoiesis at a very 

227 early stage of maturation, and the function and impact of iron on B lymphocytes is less pronounced 

228 (41). A significant increase in lymphocyte number is observed in iron overload situations such as 

229 human HFE-related hemochromatosis (42). The number of CD8+ T lymphocytes negatively 

230 correlates with the severity of iron overload in HFE-related hemochromatosis (43). Lymphocytes 

231 can also internalize iron through pathways involving non-transferrin-bound iron (NTBI) (44, 45), 

232 supporting the view that T lymphocytes may play a protective role against the consequences of 

233 iron excess. This result is in accordance with the proposal that T lymphocytes act as a first line 

234 protective barrier against the deleterious effects of iron excess (46). The cellular localization of iron 

235 was not addressed in this study but the authors suggest that it may be stored within ferritin, in 

236 agreement with the demonstration that T lymphocytes are able to synthetize H-ferritin (47). 

237
In summary, all hematopoietic lineages use iron for proliferation and/or differentiation functions, 

238
including the white blood cell lineages. The physiological flux of iron toward the bone marrow exerts 

239
proliferative and differentiating effects on HSCs and MSCs. An excess of iron within the bone 

240
marrow impairs these processes, mainly through an excessive production of ROS. Regarding mature 

241
white blood cells, iron is required for the maturation and phagocytotic activity of peripheral 

242
monocytes, the differentiation of monocytes into functional dendritic cells, the proliferation of 

243
granulocytic cells, and T lymphopoiesis.

244
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245 1.2.2. From the bone marrow to iron: bone marrow is a prominent player in systemic iron 

246 metabolism

247

248 Bone marrow, erythrocyte production, and spleen erythrocyte degradation participate in the 

249 systemic distribution of iron. Once produced inside the bone marrow, erythrocytes are released into 

250 the plasma in order to help oxygenate the body. Circulating red blood cells contain half the total 

251 quantity of whole-body iron, i.e. approximately 1.5 to 2 g of iron. After 120 days, senescent 

252 erythrocytes are degraded within macrophages that release iron from hemoglobin. Iron then re-

253 enters the iron cycle without being excreted.

254 Bone marrow also plays a critical role in systemic iron regulation by modulating the expression of 

255 hepcidin (Fig. 2). The main bone marrow factors that may ultimately regulate hepcidin are GDF15 

256 (growth and differentiation factor 15) (48), TWSG1 (twisted gastrulation BMP signaling modulator 1) 

257 (49), and the hormone erythroferrone (encoded by the gene ERFE) (6, 7, 12). During 

258 dyserythropoiesis, as seen for instance in thalassemia major or intermedia (50-52) or in MDS (5, 53), 

259 those factors secreted by the bone marrow may negatively impact hepcidin synthesis, leading to 

260 hepcidin deficiency and, in turn, to hypersideremia and subsequently body iron overload (54-56), 

261 even prior to any transfusion. Bair et al. (57) showed that allogeneic  T-replete stem cell 

262 transplantation   alters iron homeostasis in non-obese diabetic/severe combined immunodeficient 

263 (NOD/SCID) mice, by downregulating liver hepcidin synthesis ahead of upregulating duodenal 

264 ferroportin . 

265 In summary, we have shown in this first section that iron is an essential player of bone marrow 

266 functions through its implication in proliferation/apoptosis and differentiation of all hematopoietic 

267 lineages. In return, the bone marrow impacts the systemic homeostasis of iron by the massive release 

268 of iron after erythrophagocytosis, the major source of circulating iron, and by modulating two crucial 

269 hormones of iron metabolism, hepcidin and erythroferrone. Having described the normal functional 
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270 relationships between iron and the bone marrow, we next explore pathological aspects of this 

271 relationship. In the following sections, we report the causative links between iron and leukemia and 

272 their clinical implications.

273

274

275 2. IRON STATUS IN LEUKEMIAS

276

277 2.1. The most suitable methods to assess body iron load in patients

278 Evaluating the total body iron load requires the use of reliable tools. In particular, it may not be 

279 sufficient to rely exclusively on plasma ferritin levels in light of the numerous non-iron-related factors 

280 susceptible to induce hyperferritinemia (58, 59). In leukemia patients, these factors include 

281 inflammation (60), the metabolic syndrome (61) and a high ferritin content within leukemic cells (25). 

282 It should also be noted that plasma ferritin levels not only depend on the amount of cellular iron 

283 deposition but also on the cellular iron distribution. For equivalent cellular iron concentrations, the 

284 corresponding plasma ferritin levels are higher for macrophagic (typically transfusional) iron than for 

285 parenchymal (hepatocyte) iron, as typically observed in iron excess related to ineffective 

286 erythropoiesis (62). The clinician must keep this difference in mind since it may impact the threshold 

287 ferritin values used for clinical decision-making when treating iron overload. Combining plasma 

288 ferritin and transferrin saturation levels is especially informative, widely available, and cost-effective 

289 for the clinician, although both measurements can be affected by inflammation and must be 

290 interpreted with caution in this setting. In addition, ferritin can be affected by liver damage, and 

291 transferrin saturation fluctuates diurnally and is also affected by cytolysis (63). However useful these 

292 iron-related blood parameters may be, the main message is that it is of utmost importance to rely on 

293 the direct visualization and quantification of the tissue iron content (especially in the liver and spleen) 

294 in order to rigorously assess the body iron load. Non-invasive approaches such as magnetic resonance 
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295 imaging (MRI) should be preferentially used (64-67). MRI to determine the liver iron concentration 

296 (LIC) has now largely replaced histological assessment by liver biopsy. However, MRI is not widely 

297 available nor uniformly done. Bone marrow iron evaluation using MRI, the interest of which has 

298 recently been reported for Gaucher disease (68), has not yet been fully evaluated in hematologic 

299 malignancies (69). As an illustration of the superiority of MRI evaluation as compared to serum 

300 ferritin for body iron load assessment, no hepatic iron overload was found in 13 out of 39 patients 

301 who had a serum ferritin level over 1000 ng/mL (70) (71). The bone marrow iron score could be an 

302 interesting indicator of secondary iron overload in acute myeloid leukemia patients (72). Dual-energy 

303 computed tomography (73) may be a promising technique for the precise assessment of intrahepatic 

304 iron distribution in transfusion-dependent patients with hematological malignancies (74). 

305 In summary, the assessment of body iron stores is a two-step process. First, together with the 

306 hemoglobin level, the reticulocyte count, red blood cell morphology, serum ferritin and transferrin 

307 saturation must be checked. If both the ferritin and transferrin saturation parameters are normal, 

308 reflecting an absence of iron excess, no further investigations are required. If they are elevated, and 

309 after having checked for possible confounding factors, a direct evaluation of the tissue iron load is 

310 required. MRI has currently become the preferred approach given its non-invasive nature, provided 

311 it is available and affordable. Among the various methods, the signal intensity ratio method (64, 75) 

312 is quite promising as it enables the direct assessment of the hepatic and splenic iron load without 

313 requiring specific MRI equipment and provides free interpretation.

314

315 2.2. Iron status at diagnosis

316 It remains difficult to obtain precise data on the body iron status at the time of diagnosis since the 

317 iron load check-up is usually done during or after chemotherapy and often from the perspective of 

318 HSCT. However, Vag et al. (76) reported that LIC measured by MRI was close to normal in eight 

319 patients with acute leukemia for whom the determination was performed within 10 days after 
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320 therapy initiation. Moreover, the study by Moafi et al. (77), based on a histological evaluation of the 

321 bone marrow iron stores, reported that, when 30 acute lymphoblastic leukemia (ALL) patients at 

322 diagnosis were compared with 30 control subjects, the bone marrow iron score did not differ 

323 significantly whereas a significant elevation appeared in leukemia patients after one year of 

324 chemotherapy. 

325 Altogether, those limited data suggest that the iron status at diagnosis of acute leukemia is not 

326 different from control subjects. However, larger cohorts and prospective studies are required to 

327 definitively conclude of this point. 

328

329 2.3. Body iron load increases in leukemias, mainly due to iron input from blood transfusions

330

331 Body iron status has mostly been evaluated while leukemia was being treated. Altogether, the 

332 number of studies remains limited when referring to the direct evaluation of body iron stores using 

333 appropriate techniques (MRI or histology). Halonen et al. reported that 30 children with acute 

334 lymphoblastic leukemia (ALL) of whom 19 (63%) had moderate iron overload as assessed by the total 

335 iron score (78, 79). Vag et al. (76) showed that the mean LIC of 15 children (nine ALL, six AML (acute 

336 myeloblastic leukemia)) was significantly increased compared to non-leukemic children. The mean 

337 LIC was then correlated with the number of transfusions. Armand et al. (80) found that 85% of 48 

338 patients with AML (n=29), ALL (n=11) or MDS (n=8) had a LIC value above the upper limit of normal 

339 and, in 42% of patients, significant iron excess corresponded to more than three times the upper 

340 limit of normal. Again, iron overload was correlated with the number of transfusions. In Trottier et 

341 al.’s cohort (4) consisting of 37 leukemia case, eight out of 10 ALL patients and all of the AML patients 

342 had an iron overload. A poor relationship was found between LIC and transfusion history. Maximova 

343 N et al. performed an MRI-based evaluation of multiorgan iron load in pediatric patients who 

344 subsequently underwent hematopoietic stem cell transplantation (HSCT) (69). Among these patients, 

345 21 had ALL and eight had AML. Thirteen ALL and all eight AML patients had a significantly elevated 
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346 LIC (>2-3 times the upper limit of normal) after HSCT. LIC was not found to be a reliable indicator of 

347 total body iron stores as indicated by marked discrepancies between LIC data and the iron estimation 

348 in the spleen or bone. 

349 On the whole, for the previously mentioned studies, 49% (91/185) of the ALL or AML patients had 

350 significant iron overload before HSCT. In these hematologic malignancies (2, 3), transfusions 

351 appeared to be the main cause of the iron burden.

352

353 3. IS IRON A PREDISPOSING FACTOR TO LEUKEMIA?

354

355 3.1. The potential cellular toxicity of iron

356

357

Physiologically, most iron in the body is incorporated within molecular moieties that make it redox-

358

inactive. For instance, iron is bound to plasma transferrin that ensures its transport, and iron is stored 

359

within cells in ferritin macromolecules that act as sponges preventing “unbound” or “free” cytosolic 

360

iron from being toxic. At the cellular level, a large quantity of iron is incorporated into heme as part 

361

of the hemoglobin molecule in erythroid cells, or myoglobin in muscle cells. 

362

However, this protective process can be overridden in iron excess. This holds true when the plasma 

363

transferrin saturation with iron is over 45%, with the appearance of non-transferrin-bound iron 

364

(NTBI), and especially when the transferrin saturation becomes higher than 75% with the appearance 

365

of labile plasma iron (LPI). NTBI is thought to be under the biochemical form of low-molecular weight 

366

complexes (such as citrate and acetate), whereas LPI represents the potentially toxic form of 

367

circulating iron, defined by its propensity to generate reactive oxygen species (ROS), capable of 

368

damaging the membranes of the cells, intracellular organelles and nuclei (17, 81, 82).

369

In summary, while iron is physiologically redox-inactive, iron excess, characterized by a plasma 

370

transferrin saturation with iron over 45%, is toxic for the cells. 

371
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372 3.2. Experimental data converge to indicate the promoting role of iron on leukemia development

373

374 The promoting role of iron on tumor development has been explored in numerous types of cancer 

375 (83) and the proliferative effect of iron is well documented (84, 85). Iron is also known to favor 

376 genetic instability (82). Focusing on leukemia models, the following data were reported. Inoculated 

377 L1210 cells (a mouse lymphocytic leukemia cell line) proliferated more in mice injected with iron than 

378 in non-iron-treated control animals (86). Further experimental data shed some light on the possible 

379 mechanistic impact of iron on tumorigenesis. Iron has been shown to reduce tumor suppressor p53 

380 activity (87); however, two types of data do not fit with a promoting role of iron on tumorigenesis 

381 through decreasing p53: on the one hand, iron favors ferroptosis, whereas the mechanism by which 

382 p53 could sometimes favor tumorigenesis has been reported to be its suppressing effect on 

383 metabolic stress-induced ferroptosis (88); on the other hand, p53 has been shown to decrease the 

384 NTBI transporter ZIP14 (also known as SLC39A14)  (89), leading to decreased NTBI entry into tumor 

385 cells and subsequently to decreased iron-related cell death. The precise role of iron on p53 regulation 

386 and its effect needs further clarification. The Eltrombopag effect further illustrates the promoting 

387 role of iron on leukemia cell growth. This compound is an oral small-molecule thrombopoietin 

388 receptor (TPO-R also known as MLP) agonist used for treating chronic immune thrombocytopenic 

389 purpura. However, independently of its TPO-R mediated effect, Eltrombopag is able to inhibit the 

390 growth of human and murine leukemia cell lines by inducing differentiation and by slowing cell 

391 division through blocking the cell cycle in the G1 phase. Interestingly, Eltrombopag decreased the 

392 iron content within leukemic cells in a dose-dependent manner. Preloading cells with iron also 

393 resulted in a rescue from the anti-proliferative and differentiation-inducing effects of Eltrombopag, 

394 suggesting that the antileukemic effect of Eltrombopag is mediated through intracellular iron content 

395 (90). Iron deprivation has been reported to induce monocyte differentiation of AML cells (91) and, 

396 more generally, cellular iron-binding may be an interesting approach to counteract cancer through 

397 the involvement of various signaling pathways (92). Finally, dihydorartemisinin has been reported to 
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398 induce acute myeloid leukemia cell death by inducing ferroptosis through the autophagy-dependent 

399 degradation of ferritin (93). 

400 In summary, experimental preclinical data converge to indicate the promoting role of iron on 

401 leukemia development, and conversely, the role of iron chelation/deprivation to counteract cancer.

402

403 3.3. Is systemic iron overload in non-malignant hematological conditions a predisposition to 

404 leukemia?

405

406 3.3.1. Lessons from hemochromatosis, the archetype of systemic iron overload

407 Hemochromatosis is a genetic disorder characterized by diffuse body iron overload caused by 

408 increased intestinal iron absorption, which itself is related to hepcidin deficiency (10). HFE is by far 

409 the most frequently mutated gene found in hemochromatosis, with C282Y HFE mostly present in 

410 Caucasians. It is still being debated whether or not HFE-related genetic susceptibility to 

411 hemochromatosis, and therefore iron excess, could favor the development of leukemia. A causative 

412 link between the C282Y HFE mutation and ALL has not been clearly proven (94, 95) and the same 

413 holds true for an association with the haplotype HLA-A3, known to be closely associated with the HFE 

414 gene (95). However, in a US cohort of 161 childhood ALL cases, Kennedy et al. (96) reported that the 

415 risk of ALL was not only associated with C282Y and H63D HFE variants and S142G TFR1 (transferrin 

416 receptor 1) variant, but also to some SNPs in other iron regulatory genes (SLC11A2 and TMPRSS6 

417 genes). Although no data were given on the iron status of this cohort, these results strengthen the 

418 view that iron overload mediated by genetic variants could contribute to a risk of ALL. No HFE 

419 association has been reported with AML (97). It should be noted that only exceptional cases 

420 associating HFE-related hemochromatosis and ALL have been reported (98). 

421 Altogether, a genetic correlation has been found between some variant genes involved in iron 

422 metabolism and ALL. The impact of the level of the iron burden is not clearly demonstrated as a cause 

423 of those ALL. Moreover, in our opinion, despite the absence of an established link between 
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424 hemochromatosis (iron overload) and leukemia, it is important in clinical practice to check HFE 

425 mutations and, if negative, non-HFE mutations, in every leukemic patient with marked iron overload 

426 exhibiting the characteristic profile of hepcidin deficiency (increased plasma transferrin saturation 

427 associated with parenchymal, especially hepatocyte, iron overload (10, 52)) so as not to miss a 

428 coincidentally associated hemochromatosis (10).

429

430 3.3.2. Lessons from sickle cell disease and thalassemia, archetypes of secondary iron overload

431 Sickle cell disease and thalassemia are inherited disorders treated with chronic blood transfusions 

432 resulting in diffuse body iron overload. Here again, very little data are available on the promoting 

433 role of iron overload in leukemia transformation in these diseases. In sickle cell disease, an over two-

434 fold increase in the risk of leukemia, mostly AML, has been reported in California (99) although it is 

435 still unclear if iron overload was one of the risk factors in this study. In thalassemia, only exceptional 

436 cases of leukemia have been described, suggesting a coincidental occurrence of these conditions 

437 (100).

438

439 3.4. Is iron overload a factor favoring the transformation of myelodysplastic syndrome (MDS) into 

440 leukemia?

441 MDS represents a particularly valuable experimental model and clinical situation for studying the role 

442 of iron as a leukemia predisposing factor since MDS evolves towards AML transformation in 

443 approximately one third of cases (101) (102). MDS encompasses a heterogeneous group of acquired 

444 myeloid disorders leading to ineffective hematopoiesis with peripheral cytopenia(s) (103), among 

445 which anemia is the most frequent. Patients with MDS can develop iron overload through repeated 

446 blood transfusions and/or as a consequence of dyserythropoiesis. 

447

448 3.4.1. Iron-related oxidative stress in MDS

449
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450 It is now clear that MDS patients present increased oxidative stress that is further increased by iron 

451 overload (104, 105), even in transfusion-independent cases (105). It has been proposed (106) that 

452 iron deprivation by low-dose deferasirox can improve erythropoiesis in MDS. It should be noted, 

453 however, that iron overload inhibited the proliferation of erythroid progenitor cells in MDS whereas 

454 the myeloid compartment was not affected (107). All of the blood marrow cell types in 27 MDS 

455 patients exhibited high ROS and low glutathion levels compared to 12 controls, with some correlation 

456 with overall survival (108). Interestingly, Ghoti et al. found a correlation between ROS and serum 

457 ferritin levels in the erythrocytes and platelets of low-grade MDS patients (109). Increased oxidative 

458 DNA damage was found in MDS patients both on bone marrow cells (110) (however without 

459 correlation with serum ferritin) and on peripheral blood mononuclear cells (111), with a protective 

460 effect of oral iron chelation. Importantly, low-risk MDS patients have been reported to present the 

461 highest ROS levels (108). Using NHD13 transgenic mice, a murine model of MDS, Chung et al. showed 

462 that ROS may contribute to the progression of MDS to AML through ineffective DNA repair and 

463 increased mutation frequency (112). Given the close relationship between iron and ROS, it is possible 

464 that this progression was at least partly related to an iron effect (iron exposure, however, was not 

465 used in this experiment).

466

467 3.4.2. The impact of dyserythropoiesis and erythroblastic mitochondrial iron overload in MDS to AML 

468 transformation

469

470 Iron overload due to dyserythropoiesis is mainly found in MDS with ring sideroblasts (MDS-RS), a 

471 subgroup characterized by erythroblastic mitochondrial iron overload and a high frequency of 

472 somatic mutations in the spliceosome gene SF3B1 (113). Mean hepcidin levels are heterogeneous 

473 across the different MDS subtypes, with the lowest levels in refractory anemia with ring sideroblasts 

474 (now classified as MDS-RS with single dysplasia), which present the highest plasma NTBI levels (114-

475 116). Thus, MDS-RS patients have inappropriately low hepcidin levels, a typical feature of iron-
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476 loading anemia (117). Most patients with MDS-RS with single dysplasia are stratified into the lower-

477 risk groups by the revised IPSS (118), pointing out that abnormal mitochondrial iron accumulation 

478 may not be a strong factor favoring leukemic transformation.

479

480 3.4.3. The impact of transfusional systemic iron overload in MDS to AML transformation

481

482 It has been reported that chronic red blood cell transfusions induce an iron overload that impacts 

483 the survival of MDS patients (119). In a retrospective study of 467 MDS patients, the leukemia-free 

484 survival of transfusion-dependent patients was significantly inferior to that of patients not requiring 

485 transfusions, raising the possibility that transfusional iron overload may increase the risk of AML 

486 transformation to leukemia (120). However, in a recent Brazilian study, hepatic iron overload, 

487 measured by MRI and found in two-thirds of transfused and non-transfused MDS patients, was 

488 associated with a lower overall survival, but was not correlated with an increased risk of AML 

489 transformation (121). These results should nevertheless be considered in the light of the small cohort 

490 size and the heterogeneous clinical status of the patients.  

491 Although clinical data converge to indicate that blood transfusion dependency and an increasing 

492 number of transfusions favor shorter overall survival and increase leukemic transformation in MDS 

493 patients, it remains difficult to ascertain that these deleterious effects are related to iron overload 

494 itself (5). Limiting and confounding factors may include: i) the fact that transfusion dependency could 

495 reflect the overall disease severity; ii) the impact of comorbidities that are frequent in these elderly 

496 patients; iii) the almost exclusive use of plasma iron parameters (especially ferritin levels) to estimate 

497 body iron excess, which does not consistently reflect the iron store (as discussed in 2.1); and iv) the 

498 risk of selection bias related to the possible proposal of chelation therapy to patients with a better 

499 prognosis. Evaluating the impact of iron depletion by chelation therapy represents a “reverse” 

500 approach to understanding the effect of iron excess on MDS to AML transformation. In this regard, 

501 the repeatedly-found beneficial effect of iron chelation therapy (106, 122-126) represents an 
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502 important argument in favor of iron overload being responsible for promoting AML. In particular, the 

503 TELESTO trial by Angelucci et al. (127), which is the sole prospective study randomizing deferasirox 

504 vs. placebo in low-risk MDS patients, reports a favorable effect of iron chelation on event-free 

505 survival, the rate of cardiac and hepatic events and the transformation to AML. However, it should 

506 be kept in mind that part of the beneficial effect of the iron chelator deferasirox may be due not only 

507 to iron chelation, but to well-documented associated hematopoietic effects (106, 125, 128-134). 

508 Finally, regarding the specific effect of iron chelation on AML transformation, the Spanish Iron2 study 

509 (126) identified a beneficial effect, although the German registry did not (123). 

510

511 In summary, while systemic iron overload observed in hemochromatosis and sickle cell disease is not 

512 clearly shown as a predisposing condition to leukemia, data are clearer for MDS. Some experimental 

513 studies suggest that iron may be a factor facilitating MDS to AML transformation, and bioclinical data 

514 show that there is an increase in ROS production in MDS likely causing oxidative stress, including 

515 oxidative DNA damage. Clinical data are still lacking, however, to firmly establish the causal 

516 relationship between iron overload and leukemia transformation in MDS.

517

518

519 4. THERAPEUTIC ASPECTS RELATED TO IRON OVERLOAD IN LEUKEMIA

520

521 4.1. Leukemia treatment and body iron burden

522

523 4.1.1. The impact of chemotherapy on iron metabolism: the transient appearance of NTBI

524 Chemotherapy impacts iron metabolism through two mechanisms. The first one is that 

525 chemotherapy causes iron excess when red blood cell transfusions are needed to counteract 

526 chemotherapy-related anemia. A high amount of iron bound to hemoglobin is brought together 
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527 with massive erythrocyte supplementation. This iron, released from the erythrocytes during 

528 erythrophagocytosis, will not be extracted out of the body since no specific iron excretion exists, 

529 and will be stored within the organism. This corresponds to a net addition of iron. Another 

530 mechanism is that chemotherapy favors the appearance of plasma NTBI. Harrison P et al. were the 

531 first to report the presence of NTBI during chemotherapy, often concomitant with neutropenia 

532 (135). In 23 out of 25 patients, labile plasma iron (LPI) levels increased 48 hours after the start of 

533 conditioning pre-autologous HSCT, with a peak before cell infusion and a return to the normal range 

534 at engraftment (136, 137). Studying a cohort of 30 patients with acute leukemia (16 AML and 14 

535 ALL), Belotti et al. (138) showed that this peak of NTBI was found for all subsequent high-dose 

536 chemotherapy courses. The appearance of NTBI during chemotherapy may be essentially due to 

537 the massive iron release from the degradation of hemoglobinized bone marrow cells leading to 

538 elevated transferrin saturation (139). The presence of NTBI can also be explained on the one hand 

539 by a decrease in NTBI uptake by the erythroid cells, given that such uptake has been demonstrated 

540 in rat erythroid cells (140). Furthermore, it could be related to hypohepcidinemia due to the 

541 absence of erythropoiesis. These different mechanisms can act simultaneously. Finally, high NTBI 

542 levels were associated with a higher risk of sepsis (138). It should be noted that susceptibility to 

543 infection may be, by itself, an important factor in terms of the survival of patients with leukemia 

544 undergoing chemotherapy.

545 As a whole, chemotherapy causes iron excess when red blood cell transfusions are provided and 

546 favors the appearance of plasma NTBI.

547

548 4.1.2. The prognostic impact of body iron burden on hematopoietic stem cell transplantation 

549 (HSCT) 

550 Numerous studies have concluded, overall, that high serum ferritin levels prior to HSCT are a 

551 predictive factor of poor prognosis both in terms of morbidity and mortality. However, as previously 
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552 mentioned, hyperferritinemia clearly does not only reflect body iron overload, as this is notably an 

553 inflammation marker (see reviews by Moukalled et al. (101), Isidori et al. (15); Leitch et al. (141), 

554 Wang et al. (142), and Bertoli et al. (60)). This is why, in the present review, only studies using a 

555 direct assessment, by MRI or histological studies, of the tissue iron concentration will be 

556 considered. 

557 A meta-analysis performed by Armand et al. (143) of four prospective studies (144) (4, 145, 146), 

558 involving 144 AML, 90 ALL and approximately 50 MDS patients, concluded that iron overload was 

559 not related to either overall survival or to non-relapse-mortality. However, one of the four studies 

560 (145) was not in agreement with the other three, and meta-analysis bias due to a sample size issue 

561 could not be totally excluded. Primarily, Wermke et al. (147) coordinated the first prospective, 

562 German multicenter observational study (the ALLIVE study) assessing the relevance of 

563 pretransplantation body iron overload measured by serum ferritin, transfusion burden, enhanced 

564 LPI (defined as biologically active iron) and LIC (determined by MRI) in a cohort of hematopoietic 

565 malignancies (92 AML and 20 MDS patients) undergoing HSCT. The results indicated that LIC values 

566 more than three times the upper limit of normal were significantly associated with increased non-

567 relapse mortality. It is still a possibility that this impact could be restricted to patients having 

568 undergone a reduced-intensity conditioning regimen (this case concerns 83% of the studied 

569 patients). Moreover, the ALLIVE study showed a significantly increased incidence of non-relapse 

570 mortality in patients exhibiting a raised baseline enhanced-NTBI concentration. Moafi et al. (77) 

571 concluded that high levels of bone marrow iron were associated with a poor response to treatment 

572 and to the risk of relapse.

573 To summarize, body iron overload assessed by direct methods has a predictive value for poor 

574 survival after HSCT. However, the predictive value of increased serum ferritin levels, which reflect 

575 not only body iron excess but also other mechanisms, of which the foremost is inflammation, may 

576 be stronger.
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577

578 4.2. The impact of iron removal during leukemia treatment 

579 4.2.1. Iron chelation

580 We will focus on the results obtained using oral iron chelation, especially deferasirox (DFX). Sivgin 

581 et al. (148) retrospectively investigated 80 patients including 45 AML and 18 ALL patients for whom 

582 the pretransplant serum ferritin levels were ≥ 1000 ng/mL. Thirty-seven patients were given DFX 

583 and compared to 26 patients who were phlebotomized due to DFX side effects or compliance 

584 problems. Overall survival and disease-free survival were significantly better in the DFX group. The 

585 first prospective multicenter clinical trial of DFX in adult allogeneic HSCT was carried out in Spain 

586 (149). Thirty patients (including 17 AML patients and one ALL patient), with transfusional iron 

587 overload (serum ferritin ≥ 1000 ng/mL or ≥ 20 units of packed red blood cells; the LIC assessment 

588 was assessed by MRI, depending on equipment availability) received DFX at a starting dose of 10 

589 mg/kg for 52 weeks or until the serum ferritin level was less than 400 ng/mL on two consecutive 

590 occasions. There were no severe drug-related adverse events. A significant reduction in ferritinemia 

591 was observed from baseline to 52 weeks (1444 to 755 ng/mL) in the intent-to-treat population. LIC 

592 was also significantly reduced for the seven patients for whom basal and final LIC (at 52 weeks) 

593 could be obtained. The multicenter German study (DE02) (150) assessed the safety and efficacy of 

594 DFX in 76 recipients of allogeneic HSCT (comprising 52 AML) who started at a dose of 10 mg/kg with 

595 an escalating design up to 20 mg/kg. The median exposure was 330 days. Seventy-one percent of 

596 the patients experienced drug-related adverse events (increased blood creatinine, nausea and 

597 abdominal discomfort) leading to occasional discontinuation. The median compliance rate was > 

598 80%. A significant decline in serum ferritin was observed (from 2045 to 957 ng/mL) and a negative 

599 iron balance was obtained in 84% of patients.Acc
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600 In summary, these studies indicate that DFX is effective for iron chelation therapy after HSCT, with 

601 a manageable safety profile. Gastrointestinal side effects may be reduced with the new DFX film-

602 coated tablet formulation (151, 152).

603

604 4.2.2. Phlebotomy 

605 Iron removal by phlebotomy is the alternative to iron chelation for therapeutic iron removal. As to 

606 the impact of phlebotomies in leukemia patients, most studies have involved patients after 

607 allogeneic HSCT. We will focus here on those studies that used a direct evaluation of tissue iron 

608 load by liver biopsy (153, 154) or imaging techniques (MRI (155) and, in one study, SQUID 

609 (superconducting quantum interference device) (156)). All of the studies converged to conclude 

610 that phlebotomy was a safe and well-tolerated procedure. A significant reduction in the liver iron 

611 concentration (and serum ferritin) was obtained. A single retrospective study reported that DFX 

612 was more effective on iron excess than phlebotomy. However, only serum ferritin levels were 

613 evaluated (148).

614 On the whole, further clinical studies should be carried out to ascertain if the long-term prognosis 

615 after HSCT is favorably influenced by decreasing iron excess, through chelation or phlebotomy. 

616 Irrespective of the therapeutic method, it should be emphasized that it is highly recommended to 

617 avoid foods containing high amounts of iron since this is a natural and cheap way to counteract 

618 intestinal iron absorption.

619

620 CONCLUSION

621 Close functional interactions exist physiologically between iron and bone marrow that concern the 

622 leukocyte lineage as well as the erythroid cells. From a pathological point of view, iron acts as a co-

623 carcinogenic factor that experimentally promotes leukemia cell growth, whereas clinical data 

624 promoting the role of iron in MDS transformation is still under debate. Body iron overload, best 
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625 assessed by direct MRI quantification, is usually not increased at the time of leukemia diagnosis; it 

626 increases significantly during medical care, especially due to multiple transfusions. Iron overload, 

627 notably through the damaging effects of NTBI, which is more likely to appear in the plasma with 

628 chemotherapy, significantly contributes to a poor prognosis after HSCT. Hyperferritinemia only 

629 partially reflects excess iron in the body but seems to be an interesting prognostic factor since it 

630 also occurs in inflammation. Iron removal, mostly by oral chelation, must become the standard of 

631 care whenever significant body iron overload has been firmly established.

632 FUTURE CONSIDERATIONS

633 In our opinion, increased awareness of the importance of diagnosing body iron excess in leukemia 

634 patients remains a key objective. Further clinical trials evaluating the long-term prognostic effect 

635 of iron removal by oral chelation are warranted, in principle, but may raise practical difficulties for 

636 recruiting patients. Strategies to target iron removal from specific tissues should be considered.

637

638 PRACTICE POINTS 

639  Iron experimentally promotes leukemia cell growth; however, clinically, the promoting role of iron 

640 overload in the transformation of MDS into leukemia is still being debated.

641  The assessment of body iron status in leukemia patients requires the direct visualization and 

642 quantification of iron excess, especially by magnetic resonance imaging (MRI).

643  Iron overload, mainly due to transfusions, is likely to contribute to a poor prognosis after 

644 hematopoietic stem cell transplantation.

645  Hyperferritinemia is an interesting overall indicator of a poor prognosis; this parameter reflects 

646 the inflammatory status and, albeit partially, the body iron burden.

647  Iron removal by oral chelation or phlebotomies is well tolerated and acts efficient on the body 

648 iron burden; its favorable effect on the long-term prognosis is uncertain.
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649

650 RESEARCH AGENDA

651

 Exploration of the promoting role of iron in the development of 

652

myelodysplastic/myeloproliferative syndromes from hematopoietic stem cells especially by using 

653

appropriate transgenic mouse models.

654

 Further clinical trials investigating the impact of iron on MDS transformation, with appropriate 

655

measurement and follow-up of iron burden.

656

657
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1058 FIGURE LEGENDS

1059

1060 FIGURE 1. Systemic iron homeostasis. Plasma iron comes from the duodenum (digestive iron absorption) 

1061 and the spleen (iron originating from erythrophacocytosis). Once in the plasma, iron is bound to 

1062 transferrin (TF) and mainly sent to the bone marrow for the production of new red blood cells. The “bone 

1063 marrow-spleen-bone marrow” cycling process represents, quantitatively, every day, about 20 times the 

1064 amount of iron coming from digestive absorption. If plasma iron increases, hepcidin production by the 

1065 liver is increased, leading to decreased activity of ferroportin both at the duodenum and spleen levels, 

1066 which in turn decreases plasma iron (the reverse regulation occurs in case of decreased plasma iron).  

1067

1068

1069 FIGURE 2. Bone marrow and iron metabolism. Due to iron toxicity, malignancy or chemotherapy, the 

1070 functionality of bone marrow stem cells (BMSC) can be altered, leading, for the erythroid cell lineage, to 

1071 dyserythropoiesis, which in turn causes an increased production of various factors including GDF15 and 

1072 the hormone erythroferrone. These factors lead to a decrease in hepcidin production, then to an increase 

1073 of plasma iron and, through non-transferrin bound iron, to iron deposition into various parenchymal cells 

1074 (in first line the hepatocytes): it may lead to body iron overload (this iron excess can increase hepcidin but 

1075 the increasing signal remains dominated by the reverse impact of dyserythropoiesis (and anemia itself)).
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Table 1 : Principal iron regulatory genes presented in the review, with their multiple gene symbols. We have 
underlined the names and/or symbols used in the review.

Gene name and aliases Gene symbol (Official, others)

aconitase 1, soluble ACO1 ; IRP1 ; IREB1; IREBP 

ceruloplasmin CP

erythroferrone ERFE, FAM132B

ferritin, heavy polypeptide 1 FTH1 ; FTH 

ferritin, light polypeptide FTL ; L-ferritin 

ferroportin ; solute carrier family 40 (iron- 
regulated transporter), member 1 SLC40A1 ; IREG1 ; MTP1; SLC11A3; FPN 

hemochromatosis HFE ; HH; HFE1; HLA-H 

hepcidin ; human anti-microbial peptide HAMP ; HEPC ; LEAP1 

hephaestin HEPH ; CPL

iron-responsive element binding protein 2 IREB2 ; IRP2 ; ACO3; IRP2AD 

thrombopoietin Receptor MPL, TPO-R

transferrin TF 

transferrin receptor TFRC ; TFR1 ; TFR; CD71 

transferrin receptor 2 TFR2 
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