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ABSTRACT

The electrochemical detection of synthetic redox DMPC (1,2-dimyristoyl-sn-glycero-3-

phosphocholine) liposomes by single collisions at 10 µm diameter carbon and Pt 

ultramicroelectrodes (UMEs) is reported. To study the parameters influencing the lipid 

membrane opening/permeability, the electrochemical detection of single redox DMPC 

liposome collisions at polarized UMEs was investigated under different experimental 

conditions (addition of surfactant, temperature). The electrochemical responses recorded 

showed that the permeability of the DMPC lipid membrane (tuned by addition of Triton X-100 

surfactant or by the increase of the solution temperature) is a key parameter for the liposome 

membrane electroporation process and hence for the release and oxidation of its redox content 

during the collision onto UMEs. The presence of ferrocenemethanol as an additional redox 

probe in the aqueous solution (at room temperature and without addition of surfactant) is also 

an interesting strategy to detect current spikes corresponding to single redox DMPC liposome 

collisions with K3Fe(CN)6/K4Fe(CN)6 as the encapsulated aqueous redox probe.
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Electrochemical discrete collisions at an ultramicroelectrode (UME) is a useful 

technique to detect one at a time single biological entities such as cells,1–3 bacteria,4–7 

macromolecules,8 viruses,9–11 and synthetic or biological vesicles.12–15 Especially, 

electrochemical detection of single liposome collisions by recording electron transfer from the 

UME to an encapsulated redox species is fully appropriate for studying their membrane 

permeability. Since electron transfer do not readily occur across a bilayer lipid membrane, the 

electrolysis of the liposome redox active content after collision and membrane rupture or 

opening at the electrode surface provides insights on the membrane permeation 

mechanism.12–14,16,17 According to Ewing and co-workers, the so-called vesicle impact 

electrochemical amperometry is mainly driven by an electroporation process of the vesicle 

membrane on polarized carbon UMEs which leads to the vesicle rupture and the electrolysis 

of its content.18–21 Vesicle membrane opening by electroporation is strongly dependent on lipid 

membrane properties, liposome content, vesicle size, temperature, electrode potential, the 

nature of the electrode and probably the concentration of redox species inside and outside the 

liposome.18–22 For example, to observe the current spikes corresponding to the oxidation of 

ferrocyanide encapsulated inside phospholipid vesicles when they collide with a Pt UME, the 

presence of an appropriate concentration of surfactant in solution is required.14 In the absence 

of surfactant, we found that collision and adhesion of vesicles at the Pt UME does not allow 

the electrolysis of their ferrocyanide content.14 Ewing and co-workers recently hypothesized 

that the crucial step to initiate the membrane electroporation process of single vesicles isolated 

from pheochromocytoma cells (a cell line originating from adrenal chromaffin cells) is that 

“membrane proteins act as a barrier to electroporation and must diffuse away from the contact 

point between the vesicle and the electrode for membrane opening to occur”.19 In addition, the 

osmotic pressure effects are well known to play a major role in the vesicle membrane 

permeability23–25 and hence the encapsulation of a high concentration of chemical redox probe 

such as ferrocyanide (typically 0.5 M) inside 100 nm diameter DMPC liposomes should involve 

changes in the membrane structure. Furthermore, it is well established that the liposome 

membrane stability is strongly dependent on its lipid composition and external parameters such 
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as temperature and pH26 but also depends on interactions with specific molecules able to 

weaken, permeabilize, and penetrate the lipid bilayer following different pathways.27–34 An 

understanding of these different interactions and especially the mechanism leading to the lipid 

membrane opening is still an active research field. To this end, chronoamperometry is a useful 

method to probe the liposomes membrane permeability and to understand vesicle fusion 

processes onto electrode surface.35–41 Especially, the electrochemical detection of single 

liposome collisions at UMEs is becoming an efficient and complementary tool for analyzing 

fundamental biological processes related to intracellular and extracellular electron transfers to 

discrete biological or artificial entities.42–44

To explore the factors influencing the vesicles membrane permeability, we investigated 

the electrochemical and electrocatalytic reaction of different aqueous redox species 

(potassium ferrocyanide and cobalt(II) nitrate) encapsulated inside synthetic DMPC (1,2-

dimyristoyl-sn-glycero-3-phosphocholine) liposomes subjected to different experimental 

conditions (addition of surfactant, increase of temperature or presence of a redox probe in 

solution), by single collision detection on 10 μm diameter UMEs (Pt and carbon) as illustrated 

in Figure 1. We discuss the effect of the solution temperature on the liposome collision, its 

membrane rupture, and subsequent electrolysis of its redox content. We also report that the 

presence of an additional redox probe in the aqueous electrolyte can lead to the detection of 

current spikes (corresponding to the oxidation of the redox active liposomes content) in the 

chronoamperometric response recorded at the Pt UME. The distribution of the redox liposomes 

size obtained by dynamic light scattering and their size estimated from the electrochemical 

charge consumed during the electrolysis resulting from collision of liposomes encapsulating 

potassium ferrocyanide were finally compared and discussed.
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Figure 1. Schematic representation of the redox DMPC liposomes collision experiments at a 

polarized UME in aqueous solution, and typical electrochemical responses observed in the 

chronoamperometric measurements. The UME is not drawn to scale.

EXPERIMENTAL SECTION

Reagents. All chemicals were reagent grade and used as purchased without further 

purification. Water used in each experiment was Milli-Q water. Chloroform (≥99.8%), sulfuric 

acid (97%), and hydrogen peroxide (30%) were obtained from Fisher Scientific. 

Ferrocenemethanol (97%), cobalt(II) nitrate hexahydrate (≥98.0%), potassium ferrocyanide, 

potassium ferricyanide, potassium phosphate monobasic (≥99.0%), potassium phosphate 

dibasic (≥98%), and Triton X-100 were purchased from Sigma Aldrich. Pt (99.9%) wire and 

carbon fiber were obtained from Goodfellow (Devon, PA). 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC) lipids were purchased as a powder from Avanti Polar Lipids and 

stored in a freezer.

Liposomes preparation. Liposomes solutions were prepared by dissolving 10 mM 

DMPC lipid (powder) in chloroform (1 mL), then vortexed for 5 minutes and placed into a warm 

water bath (40 °C) for a minimum of 10 minutes until the complete dissolution of lipids. The 

homogeneous mixture was placed under ambient atmosphere overnight, and then under 

vacuum for 1 hour for the complete evaporation of chloroform. The dry lipid film was hydrated 

by addition of aqueous solution (2 mL of potassium phosphate buffer or 2 mL of redox 

probe/catalyst aqueous solution), and then the solution was shaken for 5 minutes and heated 

on a hot plate at 40 °C for 30 minutes. The DMPC liposome solutions were extruded using 400 

nm diameter polycarbonate membranes from Avanti Polar Lipids. The liposomes solution was 
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passed through the extruder 10 times, which was kept warm at 40 °C, to obtain DMPC 

liposomes solutions. The final step was to pass DMPC liposomes solution through a column 

(PD-10 Desalting Columns, GE Healthcare) by using potassium phosphate buffer aqueous 

solution for removing redox probe/catalyst outside liposomes and typically obtaining a 

nanomolar range DMPC liposomes solution.

Materials and Instrumentation. The liposome extrusion was carried out with the 

extruder set from Avanti Polar Lipids including a mini-extruder, 2 syringes of 1 mL, 

polycarbonate membranes of 0.4 μm, and filter supports. The electrochemical experiments 

were performed using a CHI model 920C and CHI630 potentiostat (CH Instruments, Austin, 

TX) with a three-electrode cell placed in a Faraday cage and using the CHI Instruments 

software. Pt wire was used as a counter electrode, and the reference electrode was Ag/AgCl 

(3 M KCl). For all chronamperometric i-t curves recorded, the sample interval (in sampling 

time) was 50 ms and the signal filter used was 150 Hz. Dynamic light scattering data was 

carried out on a Zetasizer Nano ZS (Malvern, Westborough, MA). All data and results 

presented in the manuscript and Supporting Information are reproducible and were repeated 

at least three times in the same experimental conditions. Note that the electrochemical 

measurements at different temperatures (higher level of noise) consistently report that there is 

an optimum temperature (60 ± 5 °C) for which a maximum frequency of release events is 

observed. At this optimum temperature (experimentally either 55 or 60 °C) the maximum 

frequency only changes by a factor of 2 (Figure S2).

The carbon fiber and Pt ultramicroelectrodes (UMEs) were prepared following a published 

procedure.45,46 In short, UMEs were prepared by sealing a 10 μm diameter carbon fiber or Pt 

wire in a borosilicate capillary using resistive heating. Silver epoxy was used to connect the 

electrode to a nickel–chromium wire. The electrode was then polished to expose the active 

surface of the carbon or that of platinum. Before each experiment, electrodes were 

mechanically polished using wetted diamond polishing pads and washed successively in 

water, acetone, ethanol, and several times in water. The ultramicroelectrode was then 

immersed in the electrolyte, connected as a working electrode and the chronoamperometric 
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measurement at the required potential was launched straight away in a matter of a few seconds 

(max. 5 s of elapsed time). After injection of redox liposomes and/or surfactant solution in the 

electrochemical cell, the electrolyte was let to stabilize for 5 min before immersing the 

ultramicroelectrode and launching the chronoamperometry.

RESULTS AND DISCUSSION

We have previously demonstrated that the presence of an appropriate concentration of 

surfactant (0.20 ± 0.03 mM of Triton X-100) close to the critical micelle concentration (CMC = 

0.17 mM)47 in aqueous solution of redox DMPC liposomes encapsulating potassium 

ferrocyanide as a redox probe is necessary for weakening their lipid membrane and to observe 

single electrochemical collisions at Pt UMEs.14 Previous investigations of vesicle adsorption 

on different substrates have shown that vesicles adsorbed on hydrophilic surfaces such as Pt 

electrodes tend to remain intact while they are prone to break (membrane rupture) on 

hydrophobic surfaces.48,49 Herein, we first study the effects of the encapsulated redox probe 

on liposome membrane permeability. Chronoamperometric measurements were carried out at 

a polarized 10 µm diameter carbon UME (+1.2 V vs. Ag/AgCl) in potassium phosphate buffer 

as aqueous electrolyte in the presence of DMPC liposomes that contained cobalt(II) nitrate as 

catalyst for water oxidation50 (Figure 2). For DMPC liposomes, addition of an appropriate 

concentration of Triton X-100 (previously optimized at 0.2 mM)14 as a surfactant in the 

electrolyte is required to detect current spikes (orange i-t curve in Figure 2) corresponding to 

the liposome membrane breaking and the cobalt(II) content release catalyzing water oxidation 

at this potential during collision on the carbon electrode surface. Because of the short elapsed 

time (max. 5 s) between the ultramicroelectrode immersion and the launching of the 

chronoamperometric measurement, pre-adsorption of the liposomes can be excluded in these 

experimental conditions and the observed current spikes can be confidently assigned to 

collision and rupture of redox liposomes. The need to add surfactant here is at variance with 

other reports on different liposomes where the observation of current spikes at a carbon UME 

does not require any additive.15,17,19 This observation coupled to those from our previous work14 
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suggest that irrespective of the nature of the encapsulated redox probe and its concentration, 

the nature of the electrode or the applied potential, the lipid membrane of synthetic redox 

DMPC liposomes is robust enough to withstand collision on the carbon UME surface (blue i-t 

curve in Figure 2). The relatively more robust and stable lipid bilayer of pure DMPC liposomes 

studied in the present work is most likely the reason for the apparent discrepancy with other 

works,15,17–19 for example those of Ewing and co-workers19 who used pheochromocytoma cells 

with a complex glycosphingolipid membrane composition51 or liposomes composed of lipid 

mixture (DOPC/DOPE/cholesterol) which are less robust in their experimental conditions (37 

°C).18 In addition, the DMPC liposomes size (here the hydrodynamic liposome diameter 

estimated from dynamic light scattering data is ca. 250 nm, Figure S1) does not change the 

lipid membrane permeability as these experiments have been repeated for liposomes with 

diameter in the range 100 to 300 nm. This result confirms that synthetic redox liposomes based 

on a pure DMPC lipid bilayer do not break during collision onto a platinum or carbon UME 

surface at 20 °C and that an external stimulus such as a surfactant (Triton X-100) is required 

to permeate the lipid membrane and bring about liposome lysis.

Figure 2. Schematic representation and the i−t curve for collision experiments of redox DMPC 

liposomes encapsulating 5 mM cobalt(II) nitrate recorded at a 10 μm diameter carbon UME 

polarized at +1.2 V vs. Ag/AgCl in 2 mL of 0.1 M potassium phosphate buffer aqueous solution 

at pH 7 in the absence (black) and in the presence of 20 μL of redox DMPC liposomes aqueous 

solution with (orange) and without (blue) addition of 0.2 mM Triton X-100 surfactant. 

Temperature: 20 °C. The UME is not drawn to scale.
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We also investigated the effect of increasing the temperature of the liposomes solution on the 

lipid membrane permeability and the detection of single collisions. The chronoamperometric 

measurements presented in Figure 3 were performed at a polarized 10 μm diameter Pt UME 

(+0.6 V vs. Ag/AgCl) in potassium phosphate buffer at pH 7 as aqueous electrolyte at different 

temperatures (from 20 to 70 °C) in the presence of synthetic DMPC liposomes encapsulating 

potassium ferrocyanide ([K4Fe(CN)6] = 0.5 M, E0 = +0.20 V vs. Ag/AgCl) as redox probe. The 

lipid membrane permeability is strongly dependent on the temperature, and there is an optimal 

temperature where this permeability is maximum depending on the lipid membrane 

composition.52,53 The i-t curves reported in Figure 3 show that current spikes corresponding to 

the release of the redox DMPC liposomes content during single collisions on a Pt UME are 

detected when the temperature reaches 45 °C (the pink i-t curve in Figure 3). The frequency 

of release events then increases from 0.01 ± 0.01 Hz at 45 ± 5 °C up to a maximum value of 

0.12 ± 0.08 Hz at 60 ± 5 °C (Figures 3 and S2, Table S1). Note that the experimental frequency 

of release events is always found lower than the theoretical liposome collision frequency 

(calculated using either a steady state or transient diffusion model). This maybe rationalized 

by the fact that above 50 °C there are some redox liposomes that immediately break upon 

impact (observation of release events), others that only adsorb without membrane rupture (no 

release event) or that release their redox content in solution without collision (for the most 

weakened membranes). The small difference (± 0.03 Hz) reported in Table S1 between the 

theoretical collision frequency values determined with either a steady-state or a transient 

model confirms that both models are appropriate for the time scale of our experiments (300 s). 

Taken together these results show that varying the temperature is an efficient external stimulus 

for weakening the membrane and observing the release events. The maximum collision 

frequency temperature (60 ± 5 °C) is slightly but significantly higher than those reported for the 

maximum membrane permeability of various phospholipid liposomes (~ 42 °C),52–54 and clearly 

higher than the phase transition temperature of the DMPC lipid (24 °C). Assuming that the 

concentration of encapsulated ferrocyanide (0.5 M) is the same in each redox liposome and 
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that all the liposome content is electrolyzed during the collision onto the UME, integration of 

the total charge transferred during each current spike allows the calculation of the liposome 

hydrodynamic diameter using Faraday’s law. The mean diameter of the liposomes (270 nm ± 

52%) estimated from the charge passed during collisions (Figure S4) is close to the average 

value obtained from dynamic light scattering data (Figure S3) indicating that the current spikes 

observed in the orange i-t curve in Figure 3 (55 °C) are due to oxidation of the ferrocyanide 

content of single liposomes. Importantly, over the time scale of the experiment (max. 300 s) 

the size distribution of redox liposomes (136 to 403 nm) estimated by charge integration of the 

current spikes is consistent with those determined by dynamic light scattering data in the first 

Gaussian peak centered at 240 ± 67 nm and representing more than 80% of particles in 

solution (Figure S3). Because a "signal" (collision) is considered when the current spike is at 

least three times the background current noise, the smaller redox liposomes (<120 nm of mean 

diameter) are not detected in the electrochemical measurement at the optimal temperature of 

60 ± 5 °C, with a limit of detection corresponding to an integrated charge of 100 fC. In addition, 

the current spikes observed at 55 °C are higher and narrower than those observed at 45 °C 

(Figure S5), meaning that a lower temperature results in a longer release of the liposome redox 

content upon collision. This phenomenon is probably related to the weakened level of the 

liposome membrane. Indeed, at lower temperature, the liposome membrane is less weakened 

and hence a longer release is observed (longer electrolysis time) due to gradual and longer 

partial membrane opening. In contrast, at higher temperature the redox liposome is more 

weakened and hence immediately broken upon collision onto the ultramicroelectrode, leading 

to a fast electrolysis. Above 60 °C, the noise level in the chronoamperometric curves (Figure 

3) is too high to clearly discriminate the signal of the collision events as confirmed by the control 

experiments reported in Figure S6. These results demonstrate the robustness of the 

homemade synthetic redox liposomes of pure DMPC with a lipid membrane that only starts to 

weaken above 40 °C. The effect of temperature is similar to the effect of surfactant previously 

studied on the liposomes membrane permeability showing that this parameter can also be an 

efficient external stimulus (in place of/or coupled to the addition of a surfactant) for detection 

Page 9 of 19

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10/19

of current spikes corresponding to the liposomes redox probe electrolysis upon impact at the 

electrode surface.

Figure 3.The i-t curve for collision experiments recorded at +0.6 V vs. Ag/AgCl on 10 µm 

diameter Pt UME in 30 mL of 0.1 M potassium phosphate buffer aqueous solution at pH 7 in 

the presence of 0.6 mL of redox DMPC liposomes aqueous solution at different temperatures 

(from 20 to 70 °C). Figures 3B and 3C are enlarged portions of the orange i-t curve (55 °C) of 

Figure 3A.
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While studying different parameters affecting the lipid bilayer permeability of redox liposomes, 

we also observed the interesting effect of adding a redox probe (1 mM ferrocenemethanol, E0 

= +0.15 V vs. Ag/AgCl) in the aqueous solution containing redox DMPC liposomes (with 

encapsulated 0.5 M K3Fe(CN)6 / 0.5 M K4Fe(CN)6, E0 = +0.20 V vs. Ag/AgCl). Indeed, the 

addition of a redox probe in potassium phosphate buffer aqueous solution containing redox 

DMPC liposomes leads to single collisions events at Pt UME. Thus, in the absence of 

surfactant and at room temperature (20 °C), the electrochemical detection of collisions of single 

redox DMPC liposome containing an equimolar amount of ferri/ferrocyanide at a 10 µm Pt 

UME polarized at +0.3 V vs. Ag/AgCl (an oxidizing potential for both ferrocenemethanol and 

ferrocyanide) was successfully achieved in a 1 mM ferrocenemethanol aqueous solution 

(Figure 4). Note that the presence of both ferrocyanide and ferricyanide in the liposome is 

required to detect current spikes at Pt UME corresponding to the oxidation of ferrocyanide at 

the applied electrode potential (+0.3 V). Control experiments with only ferrocyanide 

encapsulated in the liposomes demonstrate the absence of current spikes (see Figure S7A for 

a representative example). In addition, we have checked that in the absence of 

ferrocenemethanol, liposomes containing both ferro- and ferricyanide do not undergo 

electrolysis of their content (see Figure S7B for a representative example). The mean 

hydrodynamic diameter of redox DMPC liposomes was estimated using Faraday’s law, and 

the integration of the charge consumed during each collision in the current spikes 

corresponding to the ferrocyanide oxidation (the orange i-t curve in Figure 4). This estimated 

diameter is in agreement with the dynamic light scattering data (Figure S8). This result shows 

that the presence of ferrocenemethanol in aqueous solution containing DMPC liposomes 

encapsulating K3Fe(CN)6/K4Fe(CN)6 as redox probe is necessary and sufficient to observe 

current spikes recorded at Pt UME polarized at +0.3 V (the orange i-t curve in Figure 4). This 

observation suggests that the (FcMeOH)+/FcMeOH chemical species, relatively soluble in 

water but possessing some lipophilicity,55,56 play the role of redox mediators or increase the 

lipid membrane permeability, and hence facilitates electron transfer between the liposome 
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content and the UME after impact, possibly without full membrane breaking. This hypothesis 

is supported by the observation of current spikes corresponding to single redox liposome 

collisions only when the UME is polarized at potentials sufficiently oxidizing for 

ferrocenemethanol (> 0.2 V vs. Ag/AgCl, Figure S9). Comparison of the estimation of 

liposomes diameter from collisions experiments (230 nm ± 77%) with the size distribution 

determined by dynamic light scattering (~ 280 nm, Figure S8) leads to the conclusion that the 

liposomes ferrocyanide redox content is not entirely oxidized. Thus, only a partial electrolysis 

of ferrocyanide (~ 80%) occurs during the collision onto the UME. This observation shows that 

the process occurring here for oxidation of the redox liposomes content is different than the 

transfection mechanism previously proposed for the membrane permeabilization with the 

nonionic surfactant Triton X-100.14,47,57 Contrary to the surfactant and temperature effects 

discussed above that induce electroporation and fusion processes of weakened redox DMPC 

liposomes on the UME surface, the addition of ferrocenemethanol as a redox probe in solution 

only leads to a partial electrolysis by a different mechanism possibly involving the lipophilic 

and/or redox shuttle properties of (FcMeOH)+/FcMeOH with no associated full membrane 

rupture. This different suggested role is also supported by the comparison of the shape of the 

current spikes in other experimental conditions. In the presence of ferrocenemethanol and 

redox liposomes containing ferri/ferrocyanide (orange i-t curve, Figure 4) the current spikes 

show significantly lower half-time (0.15 s) and rise time (0.13 s) compared for example with 

those reported in Figure 3 (orange i-t curve) for which we find half-time of 0.33 s and rise time 

of 0.35 s. Additionally, previous data14 also show comparatively higher half- and rise time 

(0.58/0.21 s respectively). This suggests a different mechanism in the presence of 

ferrocenemethanol and lends supports to a redox shuttle behavior (comparatively partial and 

rapid electrolysis of the liposome content upon collision) rather than a surfactant behavior that 

would cause complete and longer electrolysis upon membrane weakening and rupture. This 

novel and non-destructive mechanism should be clarified and extended to other aqueous 

redox active probes with different normal potential and hydrophilic/hydrophobic properties and 

to other artificial or natural liposomes/vesicles.
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Figure 4. Schematic representation and the i-t curve for collision experiments recorded at +0.3 

V vs. Ag/AgCl on 10 µm Pt UME in 2 mL of 1 mM ferrocenemethanol aqueous solution in the 

presence of 100 µL non-redox DMPC liposomes (black curve) and redox DMPC liposomes 

(orange curve) aqueous solution. Figures 4B and 4C are enlarged portions of Figure 4A. 

Temperature: 20 °C. The UME is not drawn to scale.

Page 13 of 19

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14/19

CONCLUSIONS

In summary, the electrochemical detection of synthetic redox DMPC liposomes by 

single collisions at a carbon or Pt UME under different experimental conditions has been 

successfully achieved. The influence of the presence of surfactant (Triton X-100) and the 

increase of solution temperature (20-70 °C) on the lipid membrane permeability has been 

investigated, and the results showed a similar effect of these two parameters with a maximum 

collision frequency reached for an optimal surfactant concentration (0.2 mM) and temperature 

(60 °C) respectively, at platinum or carbon UMEs. An interesting result has also been reported 

showing that the presence of ferrocenemethanol as an additional redox probe dissolved in the 

liposomes aqueous solution at 20 °C, allows observation of current spikes in the 

chronoamperometric curve. This corresponds to partial oxidation of the liposomes redox 

content (K4Fe(CN)6/K3Fe(CN)6) during collision on UME surface and is only observed provided 

that the applied potential is greater than that of (FcMeOH)+/FcMeOH. This last result opens 

the way to electron shuttling and/or membrane permeabilization via a redox species able to 

diffuse through or dissolve in the thick lipid membranes of redox liposomes. Observation of 

single electrochemical collisions is a powerful method to study liposomes lipid membrane 

permeability and various interaction mechanisms which influences its stability and its structure. 

This study can be extended to other aqueous redox active probes and to biomolecules able to 

interact with a cell’s lipid membrane for a better understanding of fundamental biological 

processes.
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